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Kinematics in generalized vs. Cartesian coordinates 2
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dim(q) equals the number of degrees of freedom (DOFs)
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forward kinematics:
always well-defined mapping from q to x = h(q)

dim(x)>dim(q), i.e. Cartesian coordinates are over-complete
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inverse kinematics:
usually not well-defined, but one can resolve redundancy via optimization:
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y , y p
of all q satisfying x = h(q) for given x, pick the one closest to a preferred q*
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Kinematics in 3D 3

Attach a spatial frame to each body - usually at the e2center of mass, or at the center of the joint connecting
it to its parent body. Rotations can be expressed as e1
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Addition and multiplication can be combined using homogeneous coordinates:
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The spatial relations between body frames depend on the joint parameters q.
Let q be the parameters specifying the joint between body n and its parent
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Let q(n) be the parameters specifying the joint between body n and its parent.
Then the corresponding transformation is parameterized as

Computing the forward kinematics involves a forward recursion:
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Numerically, forward kinematics is more accurate using quaternions instead of 3x3 matrices.
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Rigid-body dynamics 4

(Newton-Euler)

vrvr ~ see Featherstone’s slides on
Spatial Vector Algebra



Newtonian mechanics with implicit constraints 5

Newton’s second law for a scalar point mass is fxm 

For a set of n point masses in 3D we have

which in vector notation is 
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Now consider a set of m positional equality constraints defined implicitly as
They could specify that some masses belong to the same rigid body, or that some rigid
b di   i d b  j i   h  i  li i  O  d  
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bodies are constrained by joints, etc. The constraints eliminate m DOFs and create a
3n-m dimensional configuration manifold parameterized by q.

The constraint forces can only act within the null space,

null space

The constraint forces can only act within the null space,
which is spanned by the rows of the Jacobian matrix               .
Thus for some m-dimensional vector λ,
found by taking into account the differentiated constraints:
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When the system is stationary, the constrained dynamics simplify to

Constrained inertia and the Gauss principle 6

fAx When the system is stationary, the constrained dynamics simplify to
where A is the inverse of the constrained inertia matrix:
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A is singular, with rank(A) = dim(q).
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Using the matrix inversion lemma, we can represent A as
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Thus the constrained inertia is , and is infinite in the null space.
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The same results can be obtained from the more general Gauss principle:
the constrained acceleration      is the solution to the minimization problemx
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is the unconstrained acceleration; J, b can encode general constraints.  0x



The implicitly-constrained dynamics

Explicit constraints 7

   fDJxJJDJJfxD TT 111    The implicitly constrained dynamics
are expressed in over-complete Cartesian coordinates (x), which is often undesirable.
Instead it is better to express the dynamics in generalized (q) coordinates. This is done
through explicit constraints given by the forward kinematics function  x = h(q)
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Differentiating the constraints twice yields

The dynamics are where fc are the constraint forces. 

   qqJqqJx  

cffxD y fc

Since the columns of J span the tangent space to the manifold, 

Assembling these equations  we obtain The constrained dynamics are
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Assembling these equations, we obtain The constrained dynamics are
a system which is linear in  cfqx ,, 
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Coordinate transformations 8

Consider any set of coordinates x, related to q as x = h(q)

Velocities in the two coordinate systems relate as  qqJx  

Let f and τ denote the same force expressed in x and q coordinates respectively.
Power is coordinate-independent:

Since this holds for any velocity, forces in the two coordinate systems relate as
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Let D and M denote the same inertia expressed in x and q coordinates respectively.
Kinetic energy is coordinate-independent:
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Kinetic energy is coordinate-independent:

Since this holds for any velocity, inertias in the two coordinate systems relate as
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Equality constraints in generalized coordinates 9

Equality constraints are handled as in the case of point-mass dynamics:
we solve the linear in          equation
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Here the constraints are and the Jacobian is
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Equality constraints are often used to create kinematic loops (e.g. holding hands)

q

In simulations, the constraints can be violated numerically due to integration errors.
Thus it is necessary to introduce constraint stabilization (resembling PD control).

Example: 2-link arm 10
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Computing                        and                         directly is inefficient.

Fast recursive computation of M and c 11

qJDJc T JDJM TComputing                        and                         directly is inefficient.
Instead one can use faster algorithms exploiting the structure of kinematic trees.
Let si be the 6D motion vector of the (1-dof) joint connecting body i to its parent.
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Composite Rigid Body algorithm for computing the inertia matrix M(q)
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Recursive Newton Euler algorithm for computing the inverse dynamics
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Once M and c are computed, we can compute                              and integrate. cMq   1

Dynamics in generalized coordinates 12
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This can be derived from the Euler-Lagrange equation:

     qPqqKqqL  ,, 

where the Lagrangian is the kinetic energy minus the potential energy:

   

       qP
qgqhmqP

qqMqqqK T






 819

2
1

, 

     
q

qgqhmqP
n nn 

 ,81.9

If M does not depend on q, then c=0 and we have Newton’s second law: gqM 



The same dynamics can be obtained from the equivalent Hamiltonian formulation,

Hamiltonian formulation 13

The same dynamics can be obtained from the equivalent Hamiltonian formulation,
based on the Hamiltonian H = K + P instead of the Lagrangian L = K – P.
Now the state is represented in terms of q and the generalized momentum
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In the absence of external forces, the Hamiltonian is conserved.
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Manifolds and metrics 14

Q is a differentiable manifold and TqQ the tangent space at point q.

u
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TqQQ s a d e e t ab e a o d a d qQ t e ta ge t space at po t q
T*qQ denotes the co-tangent (or dual) space.

A metric defines a dot-product on the tangent space:
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The manifold is Riemannian if M(q) is s.p.d. for all q.
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The metric provides the mapping between the two spaces:

Tangent and co-tangent vectors are multiplied directly: 
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Application to multi-joint dynamics:
The configuration space of a multi-joint system is a Riemannian manifold with metric
given by the joint-space inertia matrix M(q)  The tangent vectors are velocities    qgiven by the joint space inertia matrix M(q). The tangent vectors are velocities    .
The co-tangent vectors are forces f and momenta . 

is kinetic energy;            is power.
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Covariant derivatives and geodesics 15

The tangent basis vectors are associated with partial derivatives: ii qe 
The co-tangent basis vectors are associated with differential forms: 
If f(q) is scalar and is a tangent vector, then vf is the directional derivative:
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A connection specifies how nearby coordinate frames “connect”, i.e. how the basis
vectors change over the manifold. The usual vector directional derivative is replaced
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For general vectors the covariant derivative is

A connection is flat when .  In that case we recover the regular derivative.  

F   Ri i  if ld ith t i  M( )  th  i t   i  t i i

kij
i

v evu
q

vu 








ii evveuu ,

0k
ij

For a Riemannian manifold with metric M(q), there exists a unique metric-preserving
torsion-free connection (the Levi-Civita connection) with Christoffel symbols:
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A geodesic is a curve γ(t) such that , i.e. for all k.
This is called the geodesic equation.
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The unforced motions of a multi joint system satisfy

Unforced motions as geodesics 16

    0 qqcqqM The unforced motions of a multi-joint system satisfy

which we can rewrite (using the fact that M is s.p.d.) as
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1

Thus we have recovered the geodesic equation

The Levi-Civita connection for the Riemannian metric defined by the inertia matrix
i  ll d th  h i l ti  It  d i   th  f d ti

0 qq


is called the mechanical connection. Its geodesics are the unforced motions.

With external forces and gravity, the dynamics become   gqqM q  

This is equivalent to Newton’s s second law,
with the covariant derivative in place of the regular derivative: qq

dt
d

q
 



Simulation software 17

A number of physics engines are available, mostly free.  All of them can now simulate
l   (  h id ) f  h  l i    lcomplex systems (e.g. humanoids) faster than real time on a laptop.

Dealing with contacts (especially hard contacts) turns out to be harder than dealing
with smooth dynamics, and is needed for stable and realistic simulations.with smooth dynamics, and is needed for stable and realistic simulations.

MuJoCo (our engine) is the only one optimized for control rather than simulation.
It uses parallelism to compute gradients and Hessians of trajectory costs.

coordinates contacts free

OpenSim is the only one that combines muscle simulation with multi-joint dynamics.

MATLAB Robotics Toolbox q n/a yes + source

SD/Fast q n/a no

OpenSim q spring es + so rceOpenSim q spring yes + source

NVidia PhysX x hard yes

Intel Havoc x hard yes

Open Dynamics Engine x hard yes + source

MuJoCo q hard yes + source

Speed comparison (no contacts) 18

Number of forward dynamics evaluations per second,
single thread, 3GHz Intel processor

All models hare around 30 DOFs



Contact dynamics and Coulomb friction 19

Continuous-time equations of motionq
may not have a feasible solution!

Example: Painleve’s problem

complementarity condition:

When              is sufficiently small, the contact force generates a counter-clockwise
torque, causing the rod to rotate into the table.

h l bl i h “ i id” b di i l i i idThe general problem is that “rigid” bodies in contact no longer remain rigid,
so all computationally-efficient models are approximations and fail in some cases.

20

see ICRA 2010 slides

(at the end of the PDF)



Convex, smooth and invertible contact model 21

Motivation:
• complementary-based formulations yield non-convex NP-hard optimization problems
• a convex optimization problem can be obtained by relaxing complementarity
• this also yields an invertible contact model, which is very useful for trajectory optimization

Discrete-time dynamics in contact coordinates:

v – velocity after contact interaction
f – contact force/impulsef contact force/impulse
A – inverse inertia in contact space
c – velocity in the absence of contact interaction (i.e. when f=0)

Forward dynamics:Forward dynamics:
the velocity minimizes the kinetic energy subject to constraints:

• the contact force must be inside the friction cone

• the normal force must be non-negative

• the normal velocity must avoid penetration

The objective is convex (quadratic) and the constraint set is convex (conic and linear inequalities).

E. Todorov, to appear in ICRA 2011

Interior-point minimization 22

Replace the inequality constraints                     with the (modified) log barrier functionReplace the inequality constraints                     with the (modified) log-barrier function

The kinetic energy cost isThe kinetic energy cost is

Forward dynamics then comes down to unconstrained minimization of the composite costForward dynamics then comes down to unconstrained minimization of the composite cost

Inverse dynamics

The (now unknown) f must satisfy

which can be expanded as

The solution to this nonlinear equation is the unique minimizer of the convex cost



Simulation results 23

ball drop test ball-drop test 
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