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Kinematics in generalized vs. Cartesian coordinates”

generalized q=(q1,q2,q3,q4)T 45 94, (A)-—r-
Cartesian  x=(4,,4,,B,,B,.C,.C,)" /

dim(q) equals the number of degrees of freedom (DOFs)
dim(x)>dim(q), i.e. Cartesian coordinates are over-complete

forward kinematics:
always well-defined mapping from q to x = h(q)

A =q,
A, =q,
B, =q, +|AB| cos(q,)
B, =q, +|AB| sin(g,)
C, =q,+|AB| cos(q, )+ |BC| cos(q; +q,)
C, =q, +|AB|sin(q,)+|BC| sin(q; +q,)
inverse kinematics:

usually not well-defined, but one can resolve redundancy via optimization:
of all g satisfying x = h(q) for given x, pick the one closest to a preferred g*

q=argmin;. _x[d-q*




Kinematics in 3D

Attach a spatial frame to each body - usually at the
center of mass, or at the center of the joint connecting
it to its parent body. Rotations can be expressed as

A
BR: e e €

R"=R*, det(R)=1

frame A

Transformation between frames: “x = 40+4R ®x

Addition and multiplication can be combined using homogeneous coordinates:

A A
3R 30

w5 1) o) e o

The spatial relations between body frames depend on the joint parameters q.
Let g,y be the parameters specifying the joint between body n and its parent.
Then the corresponding transformation is parameterized as parent(n)fg(q( ))

Computing the forward kinematics involves a forward recursion:

world p __
nR -

I’é parent(r:l)jé (q(n))

Numerically, forward kinematics is more accurate using quaternions instead of 3x3 matrices.

Rigid-body dynamics

(0]

Velocity

0P

velocity (w,vp) at P
is equivalent to (m,vo) at O
where Vo=Vp+ O_f’ XM

Rigid Body Inertia

mass: m
CoM: C
c inertia
0 at CoM: I,
spatial inertia tensor: i”= I[j, me
mer ml
where I,=I.-m¢€¢
0 -1
F=|r 0 - rv=rxv
-y 0

Force

general force (fnp) at P
is equivalentto (fn,) at O
where ng=np+ O_f’ o f

Equation of Motion (Newton-Euler)

_d _
f -dt(lw =la+vxIv

L ]
[}

net force acting on a rigid body
inertia of rigid body

= velocity of rigid body

-
I

Iv = momentum of rigid body
a = acceleration of rigid body

see Featherstone’s slides on
Spatial Vector Algebra




Newtonian mechanics with implicit constraints
Newton'’s second law for a scalar point massis mx=f
m,I, Xy S

For a set of n point masses in 3D we have
which in vector notationis Di = f m,I, )\ X, Sus

Now consider a set of m positional equality constraints defined implicitly as #(x)=0
They could specify that some masses belong to the same rigid body, or that some rigid
bodies are constrained by joints, etc. The constraints eliminate m DOFs and create a
3n-m dimensional configuration manifold parameterized by q.

The constraint forces can only act within the null space, o /\K
which is spanned by the rows of the Jacobian matrix J=—. q
Thus f,, = f+J"4 for some m-dimensional vector A, ox
found by taking into account the differentiated constraints:
p=Jx, $p=Ji+Jx=0, whereJ= Z,S—in
1 xl

The constrained dynamics Dx = f, , are The constrained dynamics are
the solution to the linear in X,4 equation

SRS HER

Dié=f-J"(JD I ) (Jx+ D)

Constrained inertia and the Gauss principle
When the system is stationary, the constrained dynamics simplifyto ¥=A f
where A is the inverse of the constrained inertia matrix:

A=D*-D*J"(JD*J") JD*
There is no acceleration in the null space: Jx =JAf =0, which follows from
JA=JD* - gD J"(JDJT) D" =JD - JD " =0
A is singular, with rank(A) = dim(q).

Using the matrix inversion lemma, we can represent A as
A=lim,__(D+eJ"J)"

£—>0

Thus the constrained inertiais "D +oJ"J", and is infinite in the null space.

The same results can be obtained from the more general Gauss principle:
the constrained acceleration X 1is the solution to the minimization problem

¥=argmin, (a-%,)" D(a-%,) st Ja=b

X, 1s the unconstrained acceleration; J, b can encode general constraints.




Explicit constraints

The implicitly-constrained dynamics Dx = f —J (J¢D‘1J¢T )71 (J¢x + J¢D‘1f)

are expressed in over-complete Cartesian coordinates (x), which is often undesirable.
Instead it is better to express the dynamics in generalized (q) coordinates. This is done
through explicit constraints given by the forward kinematics function x = h(q)

Differentiating the constraints twice yields ¥ =J(q)g+J(q)q

The dynamics are DX = f + f, where f, are the constraint forces.
Since the columns of J span the tangent space to the manifold, J(q)" f, =0

Assembling these equations, we obtain The constrained dynamics are
a system which is linear in X,q, f.
D -1 0)(x f
I 0 —J|f|=Jq
o J" 0 )\g 0

M(q)G+c(q.q)=r

where M=JTDJ
c=J"DJg
r=J"f

Coordinate transformations

Consider any set of coordinates x, related to g as x = h(q)

Velocities in the two coordinate systems relate as x =J(q)q

Let fand t denote the same force expressed in x and g coordinates respectively.
Power is coordinate-independent:

qu_:X.Tf:q'TJTf
Since this holds for any velocity, forces in the two coordinate systems relate as
r=J(q)" f
Let D and M denote the same inertia expressed in x and g coordinates respectively.
Kinetic energy is coordinate-independent:
qg"Mq=x"Dx=q"J"DJq
Since this holds for any velocity, inertias in the two coordinate systems relate as

M(q)=J(q)" D(x)J(q)




Equality constraints in generalized coordinates

Equality constraints are handled as in the case of point-mass dynamics:
we solve the linear in ¢,4 equation

M(q)i+c(q.q)=7+J(q)" 2
J(q)i+J(g)g=0

Here the constraintsare ¢(q)=0 and the Jacobianis J(q)= o¢

aq
Equality constraints are often used to create kinematic loops (e.g. holding hands)

In simulations, the constraints can be violated numerically due to integration errors.
Thus it is necessary to introduce constraint stabilization (resembling PD control).
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Example: 2-link arm

Implicit constraints:

O:¢(x)=[( X2+ x2 12 2) J¢(x)=2{ X, X, 0 0 j

X3 _x1)2 +(x4—x2)2 =1

Explicit constraints:

L Cos(ql) -1 Sin(ql) 0
I, sin(q,) ,cos(q,) 0

x:h = ! ! J X )= . . l -
(@) I, cos(q, )+1,cos(q, +q,) W) ~Isin(q,)-1Lsin(q, +q,) -1sin(q, +q,)

;sin(g,)+1,sin(g, +4q,) Lcos(q,)+1,cos(q, +q,) 1 cos(g, +qs,)
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Fast recursive computation of M and c

Computing M =J'DJ and c=J"DJ¢q directly is inefficient.
Instead one can use faster algorithms exploiting the structure of kinematic trees.
Let s; be the 6D motion vector of the (1-dof) joint connecting body i to its parent.

Composite Rigid Body algorithm for computing the inertia matrix M(q)

(1) backward recursion: (2) set: sJT D®™s. if i e descendan ts(j)

comp __ comp . .
D™ =D+ 3 iarency D5 M, ={sD®™s; if j edescendants(i)

0 otherwise

Recursive Newton-Euler algorithm for computing the inverse dynamics (q,q,q')—> T
(1) forward recursion: (2) backward recursion: (3) set:
X; = xparent(i) +5; q; Ji=D; X+ x;xD; x; + Zjechildren(i)fj L= Slel

X = xparent(i) +5:4;+S; q;

running this algorithm with G=0 yields —c(q,q)

Once M and c are computed, we can compute ¢ = M‘l(r—c) and integrate.
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Dynamics in generalized coordinates

M(q)q+c(q,q)= r+g(q) M inertia matrix
_ o ¢ Coriolis and centrifugal forces
where c,(q.q)= Zijry‘,k(Q) 4.9, g gravitational forces
L )_l 5Mik(q)+ank(q)_aMij(q) r  applied/control forces
e\ 4= 2| oq; aq, aq, I Christoffel symbols

This can be derived from the Euler-Lagrange equation:

d oL(g.q) oL(g.q)
dt 0q oq

where the Lagrangian is the kinetic energy minus the potential energy:
L(g.9)=K(q.9)- P(q)
N )
K(g.4)=24"Mlg)q

P(g)=3 9.81m, h,(q), glq)=- %(Jq)

If M does not depend on q, then c=0 and we have Newton’s second law: Mg=7+g
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Hamiltonian formulation

The same dynamics can be obtained from the equivalent Hamiltonian formulation,
based on the Hamiltonian H = K + P instead of the Lagrangian L = K — P.
Now the state is represented in terms of g and the generalized momentum p = M(q)q

H and L are related by the Legendre transformation H=q"p-L
Kinetic energy in the new coordinates is K(q,p)= %pTM(q)lp = %qTM(q)q =K(q.q)
0H(a.p), _

oq

_0H(g,p)
op

Hamilton’s equationsare: p=-

The rate of change of the Hamiltonian (i.e. the total energy) equals power:

d oH . O0H . ¢0H oH o0H oH oH T
—H(q.p)=—7q+—P= —+——7=4"r
dt oqg" 7 op oq” 6p 6p oq op”

In the absence of external forces, the Hamiltonian is conserved.
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Manifolds and metrics

Q is a differentiable manifold and T,Q the tangent space at point g. T.Q
T*,Q denotes the co-tangent (or dual) space. .

A metric defines a dot-product on the tangent space:
(wv), = u"M(q)v= > Myu'v’ = Mju'v’ (Einstein)

The manifold is Riemannian if M(q) is s.p.d. for all gq.

The dot-product on the co-tangent space is defined by the inverse of M:
(wrv*) =u*" M(q) v*=M"uv; where (pri)= (pr,) " u= (), u* = (u,)

The metric provides the mapping between the two spaces:
= MYy,

u* = Mu,u= M 'u*; incoordinates, u, =M, ul,u ;

Tangent and co-tangent vectors are multiplied directly: u"v* =u'v, =u"Mv

Application to multi-joint dynamics:

The configuration space of a multi-joint system is a Riemannian manifold with metric
given by the joint-space inertia matrix M(q). The tangent vectors are velocities g .

The co-tangent vectors are forces fand momenta p = M(q) qg.

p'q iskinetic energy; f'q is power.
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Covariant derivatives and geodesics

The tangent basis vectors are associated with partial derivatives:  e; =0/dq;
The co-tangent basis vectors are associated with differential forms: ¢; =dg;
If f(q) is scalar and v ="', is a tangent vector, then vf is the directional derivative:

vfzvieifzv"isz grad(f)
oq;

1

A connection specifies how nearby coordinate frames “connect”, i.e. how the basis
vectors change over the manifold. The usual vector directional derivative is replaced
with the covariant derivative, defined in coordinates by the Christoffel symbols T'(q)

k
V.e; =L e .
For general vectors u=u'e;, v="0'e; the covariant derivative is V u = [vl Z_ + rl;fule e,
q;
A connection is flat when Fij.‘ =0. Inthat case we recover the regular derivative.

For a Riemannian manifold with metric M(q), there exists a unique metric-preserving
torsion-free connection (the Levi-Civita connection) with Christoffel symbols:
oM. oM,
Il = M"T, T, :l(aMls it L v]
oq; 9q;  0q,

y.s .S 2
A geodesicis a curve y(t) such thatv_y=0,ie. 7 +T}y'y/ =0 forallk.
This is called the geodesic equation.
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Unforced motions as geodesics

The unforced motions of a multi-joint system satisfy ~ M(q) ¢ +c(q,q)=0
which we can rewrite (using the fact that Miss.p.d.)as  G+M(q) c(q.q)=0
Recalling the expression for ¢, this can be written in component form as

G +(M7e) =G, + Y, Tha,d, =0

1
k -1
where I = E sM r.. and Fl.jvs:—[

ks 1j,s 2

oM,  OM; oM,
J’_ J—
oq; aq; oq

Thus we have recovered the geodesic equation V,g=0

The Levi-Civita connection for the Riemannian metric defined by the inertia matrix
is called the mechanical connection. Its geodesics are the unforced motions.

With external forces and gravity, the dynamics become M(q)Vq g=t+g

This is equivalent to Newton’s s second law, d
with the covariant derivative in place of the regular derivative: d—q - Vq q
t
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Simulation software

A number of physics engines are available, mostly free. All of them can now simulate
complex systems (e.g. humanoids) faster than real time on a laptop.

Dealing with contacts (especially hard contacts) turns out to be harder than dealing
with smooth dynamics, and is needed for stable and realistic simulations.

MuJoCo (our engine) is the only one optimized for control rather than simulation.
It uses parallelism to compute gradients and Hessians of trajectory costs.

OpenSim is the only one that combines muscle simulation with multi-joint dynamics.

| |coordinates |contasts |free

MATLAB Robotics Toolbox g yes + source
SD/Fast q n/a no
OpenSim q spring yes + source
NVidia PhysX b's hard yes
Intel Havoc X hard yes
Open Dynamics Engine b's hard yes + source
MuJoCo q hard yes + source
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Speed comparison (no contacts)

Number of forward dynamics evaluations per second,
single thread, 3GHz Intel processor

All models hare around 30 DOFs

MuJoCo | SF/FAST | MuJoCo +

factor(M)
isolated 140,800 113,600 122,000
chain 100,000 125,000 36,800
hand 006,200 85,500 68,500
humanoid 116,300 125,000 67,600




Contact dynamics and Coulomb friction .

Continuous-time equations of motion .
may not have a feasible solution! Mass m 2

Moment of inertia J

Coefficient of friction U

Example: Painleve’s problem

mz = F,
my = N —mg, ‘
J6= (I/2)+Fsinf — N cosb] ey oL
; . F=uN C
Je =1+ (1/2)sin 06 + (1/2) cos 0 6° TN Ty
. 1 12 . - ‘o
o= |— — —cosO(usinf —cosf)| N+ (I/2) cosf 0 — g
m 4]
complementarity condition: 0<y. 1 N >0

When J/mi? is sufficiently small, the contact force generates a counter-clockwise
torque, causing the rod to rotate into the table.

The general problem is that “rigid” bodies in contact no longer remain rigid,
so all computationally-efficient models are approximations and fail in some cases.
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see ICRA 2010 slides

(at the end of the PDF)
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Convex, smooth and invertible contact model

Motivation:
» complementary-based formulations yield non-convex NP-hard optimization problems

¢ aconvex optimization problem can be obtained by relaxing complementarity
« this also yields an invertible contact model, which is very useful for trajectory optimization

Discrete-time dynamics in contact coordinates: vi+1 = c; + A:f:
v — velocity after contact interaction (A, c) rard g y)
f — contact force/impulse . '

. - . . ;A v INVerse 3
A —inverse inertia in contact space (A,v) — (f.c)
¢ — velocity in the absence of contact interaction (i.e. when f=0)

Forward dynamics: 1
the velocity minimizes the kinetic energy nflin 3vT.4_1v subject to constraints:
Voo

R inci inti 2 42 .2 2 -
the contact force must be inside the friction cone pifis—fia—fia = 0

« the normal force must be non-negative Nf >0

« the normal velocity must avoid penetration Nv —vpin =20

The objective is convex (quadratic) and the constraint set is convex (conic and linear inequalities).

E. Todorov, to appear in ICRA 2011
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Interior-point minimization

Replace the inequality constraints s; (f) > 0 with the (modified) log-barrier function

d(f) = —k ZQ_”T&“ log s; (f) \
.

ol _ . d=dr(D)+dv(v)

The kinetic energy cost is k=0.1,05,1,2.

o1
((f)=sfT (A+R)f+fTc ol
- ' 0 1
Forward dynamics then comes down to unconstrained minimization of the composite cost

((F) +d(f)

Inverse dynamics
The (now unknown) f must satisfy Vgl + Ved =0
which can be expanded as Rf + v+ Vidp + AVydy =0

The solution to this nonlinear equation is the unique minimizer of the convex cost

1
SETRE +dp (f) +£7 (v + AVydy (v))




Simulation results

ball-drop test

4

normal
impulse

2 vertical
velocity

0 200 400 600
time (msec)

numerical performance for inverse dynamics
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<
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# contacts inverse evaluations per second
2 241,774

5 54,190

10 12,991

20 2,361

e <
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# iterations per step
.
time per step (msec)
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