
c©Copyright 2016

Galen Andrew



New Techniques in Deep Representation Learning

Galen Andrew

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2016

Reading Committee:

Emanuel Todorov, Chair

Emily Fox

Carlos Guestrin

Luke Zettlemoyer

Program Authorized to Offer Degree:
UW Computer Science and Engineering



University of Washington

Abstract

New Techniques in Deep Representation Learning

Galen Andrew

Chair of the Supervisory Committee:
Associate Professor Emanuel Todorov

CSE, joint with AMATH

The choice of feature representation can have a large impact on the success of a machine

learning algorithm at solving a given problem. Although human engineers employing task-

specific domain knowledge still play a key role in feature engineering, automated domain-

independent algorithms, in particular methods from the area of deep learning, are proving

more and more useful on a variety of difficult tasks, including speech recognition, image

analysis, natural language processing, and game playing. This document describes three new

techniques for automated domain-independent deep representation learning:

• Sequential deep neural networks (SDNN) learn representations of data that is con-

tinuously extended in time such as audio. Unlike “sliding window” neural networks

applied to such data or convolutional neural networks, SDNNs are capable of capturing

temporal patterns of arbitrary span, and can encode that discovered features should

exhibit greater or lesser degrees of continuity through time.

• Deep canonical correlation analysis (DCCA) is a method to learn parametric nonlinear

transformations of multiview data that capture latent shared aspects of the views so

that the learned representation of each view is maximally predictive of (and predicted

by) the other. DCCA may be able to learn to represent abstract properties when the

two views are not superficially related.



• The orthant-wise limited-memory quasi-Newton algorithm (OWL-QN) can be employed

to train any parametric representation mapping to produce parameters that are sparse

(mostly zero), resulting in more interpretable and more compact models. If the prior

assumption that parameters should be sparse is reasonable for the data source, training

with OWL-QN should also improve generalization.

Experiments on many different tasks demonstrate that these new methods are computationally

efficient relative to existing comparable methods, and often produce representations that

yield improved performance on machine learning tasks.
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Chapter 1

INTRODUCTION

The ultimate success of a machine learning algorithm applied to a given task is often

determined at least as much by the choice of data representation (i.e., feature representation)

as by the choice of algorithm or algorithm hyperparameters. A machine learning expert

usually cannot achieve the best results without collaborating with a domain expert to identify

which aspects of the problem would most fruitfully be included in the input. Yet, natural

learning systems, such as animal brains and in particular the human brain, seem to be

able to determine which aspects of their high-dimensional input are worth focusing on with

comparatively little guidance. This difference in the feature representation, as much as

differences in the “learning algorithm” employed by artificial vs. natural learning agents to

make predictions based on those features, may underlie the difficulty in creating computer

learning systems that can flexibly respond to high-dimensional sensory input and perform

“hard AI” tasks, such as communicating fluently in natural language, human-level image and

audio understanding, and robot control in noisy and uncertain environments.

In this thesis, we will take representation learning to mean any technique for constructing

a mapping from one data representation to another, with the intention that the altered data

would be more useful as input to a machine learning algorithm. Typically the input data

would be low-level, raw and unabstracted, such as pixel intensities for visual input, or local

air pressure deviation readings as measured by a set of microphones for audio. The job of a

representation learning algorithm is to determine functions of the raw input that compute

higher-level properties to aid in downstream tasks such as classification. For images, the

representation might include edges, color or texture patches, or object components; for audio,

we might have amplitude of certain frequency bands or the existence of component sounds
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from a dictionary. If the data is discrete, as in a set of independent images, the representation

learning algorithm may operate on instances independently of each other. In the case of

streaming data like continually processed audio, the representation mapping could act as a

filter, where the representation at a given time depends on the history of the signal up to

that time.

Some classical dimensionality reduction techniques, such as Principle Components Analysis

(PCA) [140], k-means clustering [112], and canonical correlation analysis (CCA) [77, 3] may

be considered to be forms of automatic representation learning. Such simple methods are

often useful as a preprocessing step for many learning algorithms. In the past few decades,

many, many other more sophisticated techniques have been proposed for inducing useful

features. To name just a few: there is manifold learning [178, 150], sparse coding [138, 100, 47],

spectral clustering [159, 118], (single-layer) autoencoder networks and variations [187], and

probabilistic latent factor models of many different flavors, such as latent Dirichlet allocation

(LDA) [26], sigmoid belief networks [131], and restricted Boltzmann machines (RBMs) [167].

What all of the approaches just mentioned have in common is that they may be viewed

as producing a single new representation “all at once”, without intermediate layers of

representation. In contrast, so-called “deep” representation learning constructs features

at multiple levels, with higher-level features constructed as functions of lower-level ones.

Theoretical and empirical evidence suggests that useful and compact representations for some

hard problems may require multiply nested layers of representation [73, 183]. Considering

biological learning systems, the primary visual cortex in mammals is known to have a

hierarchical organization with earlier stages of processing (area V1) identifying points, edges,

and lines, which are later used to detect more complex features in area V2 [81].1 H̊astad

and Goldmann [66] demonstrate that there exist efficiently computable binary functions that

would require exponentially sized circuits if the circuit depth were bounded.

1The visual cortex also makes use of feedback connections, where “higher level” features can influence
the perception of “lower level” ones. Some machine learning researchers have attempted modeling such
connections, (see, e.g., Stollenga et al. [174]), but all models in widespread use today are purely feedforward.
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Bengio et al. [20] discuss some properties we may demand of a representation learning

algorithm in order that it perform well on hard AI tasks, including expressivity (useless

information should be discarded), disentangling factors of variation (induced features should

vary independently of each other), and most critically abstraction (identifying meaningful,

predictive features, even if two inputs sharing some feature may be distant in the input

space). A hierarchy of successively more abstract features enables the recognition of properties

shared between instances that are superficially dissimilar. It promotes the re-use of features

lower in the hierarchy, increasing the efficiency of the representation, particularly when the

same representation is to be used for multiple tasks, as in transfer learning. A hierarchical

representation may make adaptation to new tasks or changes in the data distribution easier, so

long as most features remain identifiable and useful. Concepts that may require an impossible

amount of data to learn as functions of the raw input may be have a much simpler expression

in terms of higher level features.

Representation learning algorithms that aim to create such a feature hierarchy have been

referred to as “deep learning” algorithms, invoking the depth of the induced feature hierarchy.

Many people these days equate deep learning with artificial neural networks, but the basic

principle that more abstract features should be composed of more primitive ones applies to

a much richer set of models. Probabilistic models that posit the existence of at least one

“layer” of latent (unobserved) variables whose values influence the observations have been

used in statistics and machine learning for a long time, and multilayer probabilistic models

like the deep belief network also exist. Hierarchical representation learning methods based

on such models may be appealing in that they are grounded in the theory of probabilistic

reasoning, unlike neural models that involve seemingly arbitrary choices like the form of the

nonlinear activation function. Unfortunately, exact inference in probabilistic models with

multiple layers of latent variables is generally intractable, and fitting their parameters to

data is, if anything, more difficult.2 It is deep neural networks that have been shown to scale

2The exception that proves the rule is deep belief networks, a probabilistic model with multiple layers of
latent variables which can be usefully approximated by neural networks.
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up to very high-dimensional data (such as images, with millions of pixels and millions of

induced features) and that have empirically proven useful on so many tasks compared to

non-hierarchical approaches.

In this thesis, we will be concerned with the family of deep representation learning systems

based on artificial neural networks. As we will see, while all widely used deep RL models

are essentially descendants of the feedforward neural network architecture known as the

multilayer perceptron, there are many successful variations on the basic algorithm improving

its performance or specializing it to particular forms of data.

1.1 Contributions and thesis overview

In recent years, deep neural networks have advanced the state-of-the-art on several classically

difficult machine learning tasks, such as speech recognition [1], image and character recogni-

tion [38, 94], natural language parsing [171], language modeling [120], machine translation [14],

pixels-to-controls video-game playing [123], and playing the challenging game of go [162],

among others. The fact that all of the currently highest-performing systems on these tasks

make use of an induced deep feature hierarchy is itself evidence that learning multiple layers

of intermediate representations is a successful general strategy for complex tasks.

The details of the architectures and training methods used in all of these cases vary

considerably. The basic idea of composing feature mappings in multiple layers is so general

that there is a huge landscape of possible variations to explore, and different problem types may

benefit from different algorithms. For example, in image processing, convolutional networks,

in which parameters are shared between feature detectors at different locations throughout the

image, are typically used to obtain the best results [94, 99]. The convolutional architecture

itself has been further articulated in many ways to increase performance, including max

pooling (downsampling by retaining the maximum feature value over possibly overlapping

regions) and the use of fully-connected (non-convolutional) layers before the output.

To obtain optimal results on other tasks, different architectural variations and training

techniques are used. The field remains highly empirical and a certain amount of hands-on
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experience is necessary to be able to successfully choose from the many available tools and

apply them optimally toward solving a given problem on a given computing architecture.

New techniques are still being proposed at a rapid pace, and it will be a continuing empirical

question, as well as an art, to determine which techniques, in which combinations, obtain the

best results on any task.

In the present work, we consider three learning scenarios in which there exist aspects

of the problem that we believe current deep representation learning models have not yet

taken full advantage of: learning representations of continuous-time data (such as audio),

learning representations of multiview data (consisting of simultaneous data from different

sensory modalities), and learning compact representation models for application on low-power,

low-storage devices. Our specialized models can be used in combination with many existing

techniques.

This thesis is organized as follows. In the following chapter, we will review the state of

the art in deep representation learning, describing some of the important developments that

have led to the field’s resurgence and record-breaking performance on so many tasks.

Next, we will present our first model, the sequential deep neural network (SDNN), a deep

representation learning algorithm developed for continuous, discretized data streams such as

audio or video. Unlike a static network, or even a convolutional network, the SDNN allows

explicit temporal connections between corresponding components of the representation at

adjacent time frames. These connections give the SDNN the ability to directly model the

tendency for the components of the learned representation to exhibit continuity (or lack

thereof) through time. It also enables the representation to capture aspects of the input that

span arbitrarily long temporal intervals. In chapter 3 we describe the SDNN model in detail

and explore its performance and properties.

In chapter 4, we describe a form of network training appropriate for data with multiple

views. The deep canonical correlation analysis model (DCCA) uncovers deep representation

mappings of two different data views that expose latent correlated states (and suppress

uncorrelated “noise”). It is therefore a generalization of linear CCA and a parametric



6

counterpart to nonlinear kernel CCA in which, unlike these methods, the learned representation

mapping has explicit hierarchical structure. The intuition motivating the approach is that if

correspondences exist between deep level features of the different views, then those features

are likely to correspond to “real” latent aspects of the scene and, as such, may be considered

more likely to form part of a useful abstract representation.

In chapter 5 we present a training algorithm for deep neural networks (or for that matter

any other parametric representation learning model trained to optimize a nonlinear function

whose gradient can be evaluated) that employs L1 regularization to set some synapse weights

to exactly zero. Using L1 regularization produces a sparse parameter vector, encoding the

prior assumption that on average each component of the learned representation should depend

on only a few of its possible inputs. We first describe the orthant-wise limited-memory quasi-

Newton (OWL-QN) algorithm for convex training objectives, then we present an extension

that allows it to run on non-convex objectives. Networks trained with OWL-QN exhibit

competitive performance with only a tiny fraction of the weights, making representation

models that are far more compact and efficiently computable.

The field of deep neural network learning is extremely broad and varied. Architectures

like convolutional networks have been developed to specialize learning to particular forms

of input data, while techniques such as dropout training and novel transfer functions like

rectified linear units apply more generally. Many of the techniques that have been proposed

combine synergistically with each other, while others may substitute for each other if they

perform similar functions or have similar effects. Due to the highly empirical nature of the

field and the rich set of possibilities afforded by combining available techniques, it is generally

not possible to prove that any one method dominates another in all situations. Our purpose

in the present work is to contribute to the pool of available methods and to provide evidence

that our new models have desirable properties in some contexts. Future work by machine

learning practitioners employing our methods in combination with others should more clearly

define the circumstances under which our models are most useful.
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Chapter 2

THE CURRENT STATE OF RESEARCH
IN DEEP REPRESENTATION LEARNING

As introduced in the last chapter, a deep representation learning algorithm automatically

induces a hierarchy of features. Recent successes in the field have come from the burgeoning

arena of novel architectures, some tailored to particular forms of input data, and also from

the development of novel training methods. In this chapter I will survey some of the most

important recent developments that have not only made deep representation learning possible,

but have turned it into an essential component of systems that perform at the state-of-the-art

on many tasks.

2.1 Parameter optimization for deep representation learning models

Feedforward neural networks with multiple layers (shown in figure 2.1) were proposed long

ago [82, 84], but challenges in finding good parameters for such models kept them from being

useful in practice. With one or at most two hidden layers, initializing the network with

small, random parameters and then training them with stochastic gradient descent can find

reasonably well-performing models [152], but for deeper networks this simple strategy fails.

The loss function of deep neural networks is highly non-convex, is riddled with plateaus and

bad local optima, and may exhibit pathological curvature, making it impossible to optimize

with simple gradient methods from a random initialization[50, 116, 20]. Recent methods to

overcome these difficulties come in three major flavors.

The first generally effective methods for training many-layered networks to be discov-

ered involved initializing the network parameters through optimization of an unsupervised,

generative, layer-by-layer training criterion [69, 70, 19]. Initializing the parameters this way
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�� ��Canonical Correlation Analysis

m

View 1

m

View 2

h1

h2

h3

Input (x)

Output(y)

1

Figure 2.1: The basic multilayer perceptron (MLP) architecture, shown here with three

hidden layers. The lowest layer h1 of feature representation is computed directly from the

input x according to h1 = σ(W1x+ b1), where W1 and b1 are parameters and σ is a nonlinear

activation function applied componentwise. Then h2 = σ(W2h1 + b2) is computed the same

way using parameters W2, b2, and so on, until the output y = Wyh3 + by is formed as an

affine combination of the final representation layer. Given a differentiable loss function l(y; ŷ)

evaluating the output y compared to the ideal output ŷ, the gradient of l with respect to

the parameters at all layers can be computed using the backpropagation algorithm. A set of

parameters locally minimizing the average loss on a training set can be found using stochastic

gradient descent.
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   v1    v2    v3    v4    v5

   h1    h2    h3

Figure 2.2: The basic restricted Boltzmann machine (RBM) graphical model structure,

modeling the joint distribution between the observations v ∈ {0, 1}nv and the hidden variables

h ∈ {0, 1}nv , shown here with nv = 5 and nh = 3. The probability of a joint configuration

(v, h) is given by Pr(v, h) ∝ exp(h′Wv + a′h+ b′v) for parameters W,a, b.

before training to optimize the discriminative criterion of interest is known as “pre-training”.

An early successful approach came from attempts to learn parameters for a truly generative

probabilistic model called a deep belief network [69, 75]. To induce features at the first

level, one models the distribution over inputs using a Restricted Boltzmann Machine (RBM)

architecture, shown in figure 2.2. An RBM is a binary-valued, bipartite Markov random

field graphical model structure [69]. Although exact computation of the likelihood and its

gradient is intractable in an RBM, effective and very fast gradient approximations exist, in

particular, contrastive divergence (CD), which uses truncated Gibbs sampling to estimate

the gradient [74]. Once the RBM has been trained, the expectation over hidden values

conditioned on the observations (which can be efficiently computed) form the first level

feature representation.1 The dataset can then be mapped to the new representation, which

becomes the visible layer for another RBM stacked on top of the first. In this way, a hierarchy

1Alternatively a stochastic representation can be formed by sampling the hidden variables conditioned on
the observations, also a tractable operation.
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of features is constructed.

Conveniently, the expectation over hidden values in an RBM conditioned on the obser-

vations is computed simply as the logistic sigmoid function σ(t) = (1 + exp(−t))−1 applied

componentwise to the inputs.2 Thus the RBM parameters have a natural relationship to a

single layer of a feedforward neural network with the logistic sigmoid activation function:

computing the induced representations layer by layer is equivalent to forward propagation

through a multilayer perceptron. To perform, for example, classification of the input, one

could apply a simple linear classifier to the final layer representation and train it for a

discriminative criterion. However, this would leave the representation mapping unchanged,

bearing no relationship to the end task. Better results can be obtained by “fine-tuning” the

parameters of the entire representation hierarchy using backpropagation, in effect learning

not only the final classifier but adjusting the intermediate representations to model more

precisely what is necessary for the classification task at hand.

A related generative pretraining strategy uses autoencoder (AE) networks (also called

autoassociators). Autoencoder networks (illustrated in figure 2.3) are two-layer MLPs mapping

the input v to a reconstruction r(v), via a hidden layer h(v). An AE network is trained to

minimize a reconstruction criterion l(r(v); v), optimizing the network’s ability to produce

output values that closely reconstruct the input, thus forcing the intermediate layer to capture

as much of the information contained in the input as the network’s architecture allows.

As with RBMs, autoencoders can be stacked to learn a representation hierarchy, and then

all parameters can be fine-tuned jointly for a discriminative criterion [19]. AE and RBM

pretraining methods are closely related, as the AE network reconstruction error can be seen

as an approximation to the KL-divergence of the corresponding RBM model to the empirical

distribution of the training data [18]. One might expect the deterministic AE network to

be a more effective pretraining strategy, on the grounds that it is superficially more closely

2If the hidden variables take values {−1, 1} instead of {0, 1}, the conditional expectation corresponds to
the tanh function applied to the inputs. We discuss this property further in chapter 3 as it is used in our
SDNN model.
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   v1    v2    v3    v4    v5

   h1    h2    h3

   r1    r2    r3    r4    r5

Figure 2.3: The autoencoder network structure. The observations v are used to compute the

representation h according to h(v) = σ(Whv + bh) where σ is a nonlinear activation function

applied componentwise. The representation h is then in turn used to make the reconstruction

r(v) = σ(Wrh(v)+bh). The parameters Wh, bh,Wr, and br are learned to attempt to minimize

a reconstruction error criterion l(v; r(v)), making r close to v on average over the training

data. In a common variation called the tied-weights model, the reconstruction weights Wr

are constrained to equal the transpose of the hidden weights, Wr = W ′
h. In a denoising

autoencoder, v is corrupted stochastically to ṽ before presentation to the network, so the

training criterion becomes l(v; r(ṽ)).
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related to a layer of (deterministic) multilayer perceptron than is an RBM, but empirically

RBM pretraining tends to work better [188].

A stochastic elaboration of the AE called the denoising autoencoder (DAE) appears to

close the gap with RBM pretraining performance [187, 50]. In a DAE, the input v is corrupted

stochastically into ṽ before presentation to the network (for example, by independently setting

some components to zero, or adding independent Gaussian noise), so the loss to minimize

becomes l(r(ṽ; v)). The hidden representation then has to not only retain the information

about v but also to capture relationships allowing it to undo the effect of the noise. In

particular, adding noise renders the trivial solution in which h(v) = v suboptimal. The

DAE is discussed further in chapter 4 as it is used as a component of our deep canonical

correlation analysis model. Other successful pretraining strategies include sparse RBMs [101],

mean-covariance RBMs [146], and contractive autoencoders [148, 149].

Several researchers have attempted to answer the question of why pretraining deep neural

networks improves performance of deep neural networks so dramatically. One answer is that

it may regularize them toward more general solutions earlier in training, thereby reducing the

oversized influence of early examples [50]. It may also reduce the pathological curvature of the

objective observed around random initial parameters generated by standard schemes [116].

With random initialization, the error gradient of deep networks is of significant magnitude only

for the final layers; the early layers’ parameters are left essentially unchanged by stochastic

gradient descent training. Pretraining not only gives the deeper representations a reasonable

starting point in which they at least model some aspects of the input distribution, it also

allows the error gradient to propagate all the way down to the lowest layers.

Subsequent to the discovery of pretraining methods, it was found that good results could

be obtained without pretraining by using new classes of activation functions. Historically,

sigmoidal functions like hyperbolic tangent (tanh) or the logistic sigmoid σ(x) = (1 +

exp(−1))−1 have been favored in neural network research and applications. New classes

of functions, like rectified linear units (ReLU) using the function σReLU(x) = max(0, x), or

maxout units which take the maximum over a set of inputs, can be effective even when
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training from random parameters [130, 56]. These activation functions have broad regions

on which the function is linear and therefore the first derivative is constant (and non-zero),

whereas the classical functions saturate to maximal and minimal values, at which point the

derivative vanishes. Using piecewise linear activation functions thus lets the error gradient

propagate to the earlier layers, just as pretraining does, which may at least partially account

for their utility.

Finally, some excellent results have recently been obtained by moving from simple first-

order stochastic optimization training to more sophisticated second-order (often full-batch)

methods. Martens [116] used a Hessian-free algorithm to approximate Newton’s method

over minibatches of training data. The method was used to train recurrent neural networks

(discussed in more detail in the next section) by Martens and Sutskever [117]. This line

of research supports the view that the primary difficulty in training deep networks from

a random initialization is the pathological curvature, which makes first-order optimization

methods impractically slow.

The development of the aforementioned training techniques demonstrated finally that it

was possible to learn deep representation hierarchies (in particular, deep neural networks) that

perform very well. There has also been a significant amount of research into stochastic regu-

larization methods that, while perhaps not sufficient on their own without pretraining, have

been shown to improve the learned models. Perhaps the most significant such development

has been dropout training, in which a random set of internal units are deactivated during the

presentation of each training instance (or minibatch) during the fine-tuning phase [72, 173].

Such training may encourage the learned features to be more robust, not relying too heavily

on information coming from only one or two inputs. Dropout has been compared to learning

and averaging a large ensemble of networks, one for each possible set of deactivated units.

It has been shown to be equivalent to an adaptive L2-regularization that promotes rare but

useful features [191]. A popular variant of unit dropout randomly deactivates connections

rather than whole units [192]. Noise distributions other than the multiplicative Bernoulli

noise used by Hinton et al. [72] have been used, for example additive Gaussian noise [128].
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Stochastic downsampling in convolutional neural networks (discussed shortly) has also been

shown to yield improvements compared to the more typical max pooling [201].

2.2 Specialized architectures for structured data

So far, I have discussed some of the new training methods that have made it possible to learn

high-performing deep networks, or when used in combination, improve their performance on

some tasks. These methods apply to multilayer perceptrons, the basic feedforward neural

network architecture arranged in discrete layers, with a single-dimensional output, used for

classification or regression problems. In addition to advances in training algorithms, there has

also been significant research into developing alternative architectures for situations where

the input or output of the network exhibits special structure.

Consider a visual image presented to a machine learning algorithm. Most simply, the

image can be represented as an unstructured vector describing all of the pixel intensities, but

this ignores the fact that pixels in an image are naturally arranged in a two dimensional array.

Prior to the success of deep representation learning on images, specialized feature detectors for

edges [31], corners, textures [63] and other local features [109] had been successfully applied

to image processing tasks, all of which are critically dependent on the spacial arrangement of

the pixels. Convolutional neural networks (CNN), developed prior to the advances in deep

network training just described but enjoying particular success recently, make two reasonable

assumptions about how features should depend on pixels: first, that each feature should

depend only on pixels within a relatively small window, and second, that the same feature

detector can be applied to every patch of the image to detect localized features [52, 163].

A multilayer CNN applies the same assumptions that were made regarding pixels to the

mid-level features themselves, creating a deep hierarchy of feature detectors, each applied

over regions to compute local feature values. If those assumptions are reasonable for the data

source, the system should be able to learn from a smaller amount of training data due to

the sharing of parameters. A diagram of a convolutional neural network is shown in figure

2.4. In the last decade, deep CNNs have rapidly advanced the state-of-the-art in image
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Figure 2.4: An illustration of a convolutional neural network for image processing. In the

convolutional layers, local feature detectors are applied to patches that span the image,

producing maps of localized feature values. In the subsampling layers (labeled “S-Layer”),

aggregate values (typically the maximum value, although averaging or stochastic selection are

also used) of the local features within small patches are computed, reducing the dimensionality

of the representation. Just before the output, a fully connected layer is applied to detect

global properties.
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processing [39, 38, 94, 88, 55, 164].

Beyond applying the convolutional technique at multiple layers of feature hierarchy, a

variety of further elaborations to the CNN architecture have been developed to achieve higher

performance on image processing tasks. It is often helpful to reduce the dimensionality of the

image as we ascend the feature hierarchy by alternating convolution layers with “pooling”

layers, in which small patches of the image features are downsampled by retaining only a

single aggregate measure of the feature of each patch (typically the maximum value) for

further processing [145] (labeled “S-Layer” in figure 2.4). The pooling operation is inspired

by similar computations performed in popular non-neural image feature detection algorithms

such as Gist [160] and SIFT [110, 109], as well as biological models of the visual cortex [147].

The intuition behind such an operation is that if some feature has been detected within a

small patch of image, its precise location within the patch is not important, the more so

as we ascend into the higher-level, more abstract features. Pooling therefore increases the

invariance of the representation to small perturbations in the location of features, as well as

further reducing the number of trainable parameters.

Another common architectural choice for image-processing CNNs is to use fully connected

(non-convolutional) layers at the deepest levels of the hierarchy, just before classification

in the final layer (also shown in figure 2.4). This enables the discovery of properties of the

image as a whole. The best-performing image classification models combine all of these

specialized model choices, as well as algorithmic tricks discussed in the last section, like

dropout training [94, 164].

Specialized network forms have also been developed for data with a temporal component,

such as audio and natural language. In speech processing, convolutional architectures similar

to those used for images but with the convolution applied along the time dimension have

been fruitfully employed [1], as have various forms of recurrent neural networks (RNNs). The

basic form of an RNN is a feedforward neural network that propagates activations forward in

time. (See figure 2.5.) At each frame, a new representation is computed using a (possibly

multilayered) network that takes as input the current frame’s observations and the previous
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Figure 2.5: A simple recurrent neural network architecture for a sequential labeling task,

unrolled in time. At frame t, the hidden state vector ht is computed as a function of the

current observation xt and the previous hidden state ht−1, and the label yt is computed from

ht. An unrolled RNN can be seen as an extremely deep neural network “turned on its side”.

Training an RNN therefore has similar difficulties to training deep NNs.
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frame’s representation [161]. Learning in RNNs is considered difficult for many of the same

reasons as static deep networks [197, 195]. However a special form of network called “long

short-term memory” (LSTM) that employs multiplicative connections to gate the input

and output of each unit (illustrated in figure 2.6) has proved easier to train [76]. Several

recent successful representation learning models for audio processing (phone and speech

recognition) stack LSTMs to produce the feature hierarchy. In order that the component of a

representation at a particular frame depend not only on the inputs at previous frames but

also on future frames, bidirectional LSTMs are used, in which one LSTM computes features

forward in time, and one backward, at every layer [58, 153]. After generative pretraining,

all parameters of the LSTMs at all layers can be fine-tuned jointly for the discriminative

criterion of interest. Deep bidirectional LSTM networks are an excellent example of just how

elaborate some of the top-performing architectures are, despite being able to trace their roots

to the humble multilayer perceptron model.

Natural language data (in textual form) has a particularly interesting and rich structure

that can be exploited by specialized deep representation learning algorithms. Most trivially,

language has a discrete temporal form, with either letters or words as basic units. Simple

recurrent neural networks, using words as tokens, have been used with great success for

language modeling [120, 121]. Sutskever et al. [176] train an RNN to generate character

sequences (using a factored tensor representation of the hidden-to-hidden transition matrix

and second order training methods), producing surprisingly fluent text. Similar results were

obtained using deep LSTM networks trained on character sequences [59].

More interestingly, natural language has a recursive structure of nested constituents,

and this structure has also been exploited. Recursive neural networks (note the distinction

between recurrent and recursive) determine vector representations of each node in a tree

structure by applying the same transformation to the representation of each pair of daughter

nodes to produce the representation of the parent. The depth of the representation therefore

corresponds to the depth of the tree structure. Representations produced by recursive

NNs have proven useful in natural language parsing [171, 168] and sentiment analysis [170].
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Figure 2.6: A long short-term memory recurrent neural network uses multiplicative gates to

control the input and output of each recurrent unit. The figure shows a single LSTM “neuron”.

A complete LSTM network would include a vector of such units for each time step, each taking

inputs from the units at the previous frame, as well as the current frame’s observations. (Illus-

tration borrowed from http://blog.otoro.net/2015/05/14/long-short-term-memory.)
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Recursive NNs have also been used to identify compositional structure in natural images [169].

Specialized deep representation learning algorithms have also been developed for the holy

grail of NLP tasks: machine translation. In sequence-to-sequence ML, an LSTM network is

trained to scan the source sentence and output a fixed-length representation as its final state.

That representation is then decoded by another, jointly trained LSTM network to produce

the target sentence [177, 36]. Kalchbrenner and Blunsom [86] describe a similar model that

uses a CNN to produce the fixed-length representation of the source sentence (but still an

RNN for the output). These models makes use of the linear structure of natural language in

building the representation of the source sentence and in generating the output, however the

explicit structure is lost when the sentence is compressed into a fixed-length representation.

A recent approach that does not contain a fixed-length bottleneck is Bahdanau et al.

[14]. A (bidirectional) recurrent network is learned to produce a sequential, variable-length

representation of the source, with a vector representation of each word in context. Then a

decoder recurrent network generates the translation sequentially while jumping around the

source representation according to the alignment given by a separate network, in what is

called an attentional mechanism.3 These specialized deep representation learning systems

seem to be poised to overtake traditional phrase-based translation systems in the near future,

as evidenced by the performance of Bahdanau et al. [14] in the 2015 Workshop on Statistical

MT, coming in among the best systems in several languages [27].

So far I have discussed deep learning architectures that were tailored toward learning from

a particular form of data: CNNs for spatially arranged data, RNNs and LSTMs for temporally

extended data, recursive NNs for tree-structured data. There has also been research into

systems to process complex data of more than one form simultaneously. Ngiam et al. [134]

describe a model called the bimodal deep autoencoder for learning a shared representation

of synchronous audio and video data. Initial, shallow layers of representation are learned

3The alignment is “soft”, meaning that the representation si of the target word generated at each step is
a function of the weighted sum ci =

∑
j αijhj where hj is the source word representation and αij is the

alignment probability.
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from each modality separately, using an autoencoder network, while in deeper layers the

representation is combined: an autoencoder taking both representations as input produces a

single, joint representation. In image captioning, the input consists of an image, while the

output is text. A recent successful approach consists of learning a high-level representation of

the image using a CNN which then becomes the input to an RNN that generates the textual

caption [114, 87, 190]. This can be seen as similar to the sequence-to-sequence MT system of

Sutskever et al. [177] discussed earlier, only the system is “translating” images to captions.

2.3 Computational considerations

There is one more major factor contributing to the recent success of deep representation

learning algorithms: the ever-increasing speed of computation and the availability of new

hardware such as programmable GPUs that are exceptionally well suited to accelerating

existing algorithms. Deep MLPs with very wide hidden layers require matrix-matrix products

to compute the activations of each minibatch during SGD training. CNNs employ convolution

operators. Nonlinear activation functions of all units in a layer can be computed independently

in parallel. All of these operations can exploit the massive parallelism afforded by GPUs to

achieve major speedups [51]. New libraries like Caffe [83], CuDNN [35] and Theano [23, 16]

make it easier for researchers and practitioners to take full advantage of modern hardware.

Developments in computing architecture allow far larger models that can train for a

far greater number of iterations than was possible only a few years ago, and we probably

would not see nearly as much impact of the other strategies mentioned in this chapter if they

were forced to run on hardware of the nineties. Some techniques, like dropout training and

Hessian-free optimization, have been shown to yield higher performing models, but only at

the expense of requiring much greater amount of computation. (In the case of dropout, each

training iteration is not much more expensive, but the greater variance in the update means

that many more passes over the data are required to achieve the best results.) Therefore it is

an important consideration that new techniques be well-suited to efficient implementation on

contemporary hardware.
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2.4 Conclusion

In this chapter I have touched on some of the most important specialized architectures and

training algorithms used to learn deep representations of a variety of different types of data.

The models described in this chapter have been used as components in systems that advanced

the state of the art in many tasks. However, it would take a much larger survey to present in

any detail the record-breaking systems that have been built out of the huge number of possible

permutations on the basic architecture afforded by combining these and other contributions.

My intention has been to describe some of the most important and useful variations of the

basic deep multilayer perceptron, illustrating the diversity of the field, and putting my own

contributions, which follow, into context.
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Chapter 3

LEARNING DEEP REPRESENTATIONS FOR
CONTINUOUSLY EXTENDED DATA

3.1 Continuously extended data

Many machine learning tasks operate on data that is extended continuously in time. In

speech recognition, for example, a five-second audio clip might be discretized into 25ms

frames and presented to the ML algorithm as a matrix where each column provides features

for a given frame. Other examples include music analysis, object tracking from video or other

continuous-time inputs, and activity recognition. In all of these cases, the input features

are organized into frames that are inherently ordered according to the dimension of time,

and the values of the features within each frame come from a discretization of an underlying

continuous signal. Thus, the closer together two frames are in time, the more likely they are

to be “similar”, either in the raw input space (e.g., the corresponding pixels of two adjacent

frames of video are likely to have nearly the same colors), or in more abstract ways (e.g., the

same object is present at nearly the same location, and the activity being performed in two

adjacent frames is probably the same). 1

There are several common ways of using deep networks to learn representations of

continuously extended data. The simplest way is to feed each frame to a static network,

independently of the rest of the sequence so that a single network with a single set of weights

is applied to every frame. Although the representations of the hidden layers at different

frames cannot directly influence each other, the representation of adjacent frames may still

be highly correlated due to the similarity of the input. If the end goal is to segment and label

1The work presented in this chapter was originally published as Andrew and Bilmes [4] and Andrew and
Bilmes [5].
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the frames, the final layers’ representations can still be combined by a sequence classifier like

a hidden Markov model or conditional random field (discussed shortly) to at least model

dependencies between nearby labels.

In many cases better results can be obtained by simply expanding the input of the static

network to include a sliding window of frames on either side of the center, target frame. If

two frames on either side are included, for example, then the network is applied with inputs

[xt−2 xt−1 xt xt+1 xt+2] concatenated into a single vector to obtain the representation of frame

t. The same network (with the same parameters) would be applied to every window of five

frames. This allows the output to depend on aspects of the input that are nearby in time. For

example, a speech recognition system with a sliding window model could model the fact that

when the input features are characteristic of a t or d phoneme having recently completed, the

current frame may more likely to be labeled as a vowel. Such a “sliding window” network may

also learn to approximately represent the rates of change of each input feature, which could

be highly informative. Without context frames in the input, there is no way to recognize first-

or higher-order differential behavior of the signal unless derivatives are explicitly included as

features.

Another generally helpful technique for modeling continuously extended data is to use a

convolutional architecture, where the convolution is performed along the time dimension. In a

convolutional network, not only the input data, but also the hidden representations are explic-

itly arrayed in time. Whereas in the sliding window network, the inputs [xt−2 xt−1 xt xt+1 xt+2]

produce a first layer representation h1
t and then the next layer’s representation h2

t is a function

of h1
t alone, now the concatenated vector [h1

t−2 h
1
t−1 h

1
t h

1
t+1 h

1
t+2] may be used to produce h2

t ,

and so on for each layer. Such a convolutional architecture has the advantages of the sliding

window model at every layer, not just with respect to the input. In our example, the speech

recognition system could determine the likely existence of a t or d based on higher level

features, not just the raw input features like the sliding window model. It can also model the

rates of change of the hidden representations. Moreover, a deep convolutional architecture

in effect allows deeper layers to depend on a larger window of input than a simple sliding
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window model: if the representation hlt at each layer can depend on δ frames to each side of

the center frame of its input, then the output at layer L is ultimately influenced by 2Lδ + 1

frames of the input. A sliding window network would require far more (mostly redundant)

parameters to enable dependency on such distant frames. The convolutional network can

therefore be seen as more efficient.

In the present work I take the next step to describe a further elaboration of the con-

volutional network that provides an additional advantage on continuously extended data.

When the input is known a priori to come from a continuous signal, it may be reasonable to

expect that some features of the representation should also be more or less continuous, in the

sense that the values at nearby frames should be close. The representations discovered by a

convolutional architecture (or for that matter, any of the aforementioned architectures) may

in many cases turn out to be more or less continuous, just based on the fact that their inputs

are continuous. However the model has no way of explicitly encouraging continuity in the

hidden representations. If the input signal is noisy or corrupted, the hidden representations

may exhibit higher levels of discontinuity. In that case it may be particularly advantageous

to give the model the capacity to smooth the hidden representations.

Furthermore, our model implicitly allows a particular form of dependence of each hidden

representation on arbitrarily distant input features. While the convolutional network can,

at layer l recognize aspects of the input that span 2lδ + 1 input frames, it cannot hope to

recognize properties of larger spans, as frames outside of this window have no influence on it.

Our contribution is to enable hidden units at adjacent frames to directly influence each other,

not only via their overlapping inputs, thereby allowing the model to explicitly encourage

smoothness in the hidden representations as well as the potential to recognize properties of

the input of arbitrary temporal extent.

The model we will introduce is applicable whenever continuously extended data is input

to a representation learning algorithm. In this work we will assume the continuous dimension

is time, but in general the ideas presented in this chapter would apply to any type of data

in which a one-dimensional continuum of values is discretized into pieces small enough that
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the variation between adjacent pieces is low. It may also be extended to multi-dimensional

continua, for example high-resolution images (two continuous dimensions) or video (three

continuous dimensions). Our algorithms may also be useful for sequential data that is

inherently discrete, such as natural language (text) or bioinformatics data, so long as it is

useful for the induced representations to recognize features that occur over significantly longer

temporal extents than the underlying discrete bits.

Although we do not assume anything about the goal of the induced representation, a

particularly common usage case for continuously extended data is sequence labeling. For

concreteness, we will define our model and conduct experiments in this problem setting.

3.1.1 Sequence labeling

A frequent goal of ML algorithms processing continuously extended data is to segment the

data into coherent labeled pieces: given entire continuous (but discretized) sequences of

inputs over observations {x1, x2, . . . , xT}, we want to produce sequences of labeled segments

{(b1, e1, y1), (b2, e2, y2), . . . , (bn, en, yn)}, where bk < ek are the beginning and ending frame of

the kth segment, and yk is its label. The length of the sequence T , as well as the number of

segments n may vary from instance to instance. A static (non-sequential) learning algorithm

might be used to classify each frame xt separately, but we will consider a true sequential

labeling algorithm to be one that makes use of dependencies between observations or labels

at different positions within the sequence to produce a better labeling.

In conditional random fields (CRFs) [95], a Markov random field (MRF) is defined over

the label sequence whose parameters depend on the input. Typically, the graphical model

structure is a linear chain so that globally conditioned on the input, each label is conditionally

independent of the other labels given its neighboring labels. CRFs allow features of the input

to be defined at arbitrary distance from the associated label, but the user must consciously

design such features to allow long-distance dependencies and, moreover, the feature functions

may only be fixed length. Feature design is a difficult, task-specific problem, and it is especially

difficult to hand-design effective long-range features for tasks such as speech recognition, where
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the input is a relatively low-level representation of the acoustic signal. On the other hand,

results in speech science suggest that longer-range features (that is, longer than the typical 25

ms frame width) may be useful for speech perception, particularly in noisy environments [68].

In any case, the basic CRF model is a shallow architecture in which there is no feature

hierarchy at all. As argued in chapter 1 on general grounds, we would expect a deeper

representation learning algorithm to be very helpful for speech recognition.

Several methods have been proposed to introduce hidden variables to CRFs that might

be capable of modeling regularities in the data that are not explicit in the features but

nevertheless aid in classification. We focus here on approaches that were applied to phone

recognition, which is a prototypical sequential labeling task over continuously extended data,

and the subject of our experiments. The hidden CRF (HCRF) appends a multinomial hidden

state to each phone class and optimizes the marginal likelihood [60], so that subclasses

may be induced that are easier to recognize than the original classes. Another successful

approach models each phone as a sequence of three subphones, the boundaries of which are

latent [175]. Other work uses a multi-layer CRF in which the data is mapped through various

layers of multinomial sequences that may be either Markov order-1, or order-0 (conditionally

independent given the input) [199]. All of these approaches are more effective than a single-

layer CRF with no feature hierarchy, but much better results have been obtained with a

richer latent representation via deep networks.

Several researchers have employed deep MLPs to learn feature representations for use in

phone recognition [144, 72]. Preceding the deep NN revolution of the 2000s, shallow networks

had been combined with hidden Markov models for use in phone recognition [28].2 Mohamed

et al. [125] use deep networks combined with HMMs to achieve excellent results on phone

recognition. In later work, a deep MLP phone classifier is trained jointly with a CRF taking

the top hidden layer of the network as input [126]. Veselỳ et al. [186] describe a model where

2While HMMs require the emission probability P (xt|yt), a neural network can be trained to estimate the

class posterior P (yt|xt). Using Bayes’ rule one can estimate P (xt|yt) = P (yt|xt)P (xt)
P (yt)

, where the prior label

probability P (yt) can be estimated by relative frequency, and the observation prior P (xt) can be discarded
for the purposes of discriminating between label sequences.
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gradients based on a sequence error in an HMM-based system are passed down through

shared-parameter deep neural networks at each time frame. All of these models are of the

“sliding window” type mentioned earlier. Convolutional networks have also recently been

applied to phone recognition [1].

In the present work, we present our sequential deep neural network (SDNN) model, which

introduces true sequence models in each of the hidden layers of a deep MLP [4]. Each

layer is modeled with an MRF structure called a sequential restricted Boltzmann machine

(SRBM) that allows dependencies between corresponding hidden units at adjacent time

frames. Exact sampling of hidden structures given the input and computation of conditional

expectations remains tractable in the SRBM—it involves only matrix multiplication and

forward-backward computations—so CD training is still possible. As with RBMs, we can

stack SRBMs and append a discriminative sequence classifier (in particular, a CRF) atop

the final layer. Finally, using a backpropagation-like algorithm, we can compute the error

gradient exactly to discriminatively fine-tune all parameters of the representation hierarchy

jointly.

3.1.2 Notation

We employ the following notation in the remainder of the chapter. If X is a matrix, the

(i, j)th entry is Xij and the jth column (as a column vector) is X∗j . The submatrix of columns

j through k is X∗(j:k). The matrix transpose is denoted X ′. If X and Y are matrices (or

vectors) of the same dimension, 〈X, Y 〉 denotes tr(X ′Y ). If X and Y have the same number

of rows, [X|Y ] denotes their horizontal concatenation.

3.2 The sequential restricted Boltzmann machine (SRBM)

The restricted Boltzmann machine (RBM), shown earlier in Figure 2.2, is a graphical model

structure often used for representation learning [167]. The RBM consists of two vectors of

variables, the visible units v1, . . . , vnv and the hidden units h1, . . . , hnh
. The visible units vi

may be binary-valued or real-valued, while the hidden units hi are typically binary-valued. The
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joint distribution is defined by a Markov random field model with the given graphical structure.

Thus, the hidden units are independent given the visible units, and vice-versa. Although

exact computation of the likelihood and its gradient is intractable, successful approximation

schemes exist, including contrastive divergence updating and variants [74, 181].

Suppose that we are employing an RBM where both the visible and hidden units are

random variables taking values in ±1. Then for parameters W ∈ Rnv×nh , a ∈ Rnv and

b ∈ Rnh , the joint distribution is given by Pr(v, h) ∝ exp(h′W ′v + v′a+ h′b). Conditioned on

observed visible units v̂, the distribution of hidden unit hi is

Pr(hi|v̂) =
exp(hi(W

′
∗iv̂ + b))

exp(W ′
∗iv̂ + b) + exp(−(W ′

∗iv̂ + b))
.

Writing the input to unit i as αi = W ′
∗iv̂ + bi, this simplifies to

Pr(hi|v̂) =
exp(hiαi)

exp(αi) + exp(−αi)
.

Therefore, the expected value of hi given v̄ is

E[hi|v̄] =
exp(αi)− exp(−αi)
exp(αi) + exp(−αi)

= tanh(αi).

This is how RBMs can be used to initialize the parameters of one layer of a neural network

using the hyperbolic tangent activation function: given inputs α = Wv̂ + b, the activations of

the neural network hidden layer are the expected value of the hidden layer under the RBM

model, tanh(α). If we had used Bernoulli variables with hi ∈ {0, 1} instead of hi ∈ {−1, 1},
we would have logistic sigmoid units instead of tanh units. This motivates our use of an

extended RBM model for sequential data, in which the hidden units are not completely

independent given the visible units. Still, their expected value, taking into account the

dependencies, will become the activation of the next layer of a sequential neural network.

We now introduce a generalization of the RBM intended for sequential data, called a

sequential restricted Boltzmann machine (SRBM). An SRBM defines a joint distribution

over two matrix-valued layers, a visible layer V ∈ Rnv×T and a hidden layer H ∈ Rnh×T .

Conditioned on the hidden layer, all variables of the visible layer are independent (just as in a
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standard RBM). Conditioned on the visible layer, all rows of the hidden layer are independent

of each other, but we allow Markov interactions within each row (see Figure 3.1). Allowing

dependencies between variables within each row of the hidden layer lets the SRBM potentially

model long-range dependencies between widely separated time frames of the visible layer,

while retaining the tractability of important operations like marginalizing and sampling.

While an RBM typically has dense connections between the visible and hidden layers,

an SRBM has only edges that are local in time. Specifically, we use edges between Vit and

Hj(t+δ) for all i, j, t and for |δ| ≤ δmax. The weights on the edges linking the visible and

hidden variables are summarized in the matrices Wδ ∈ Rnv×nh , where (Wδ)ij is the weight

on all edges (Vit, Hj(t+δ)). The hidden layer of the SRBM also has a vector of transition

parameters θ ∈ Rnh which govern the interactions between adjacent frames within each row

of H, as we describe shortly. We intentionally disallow edges between observed units, in

order to encourage the hidden layer to model any dependencies between time frames of the

observations. In the experiments we also include three vectors of bias terms: one for H∗1, one

for H∗T and one that is shared by all columns of H. We omit these from the exposition to

keep the formulas uncluttered.

We assume the hidden variables are always binary, meaning H ∈ {±1}nh×T , and the

observed variables are either binary (V ∈ {±1}nv×T ) or real-valued Gaussian (V ∈ Rnv×T ).

For δmax = 1, the energy of a configuration is defined in terms of the matrix Ah ∈ Rnh×T :

Ah =
[
W ′
−1V∗(2:T )

∣∣0]+W ′
0V +

[
0
∣∣W ′

1V∗(1:T−1)

]
. (3.1)

In (3.1), the middle term W ′
0V produces the matrix of inputs to each hidden unit coming

from the visible units at the same time frame (the red edges in the figure). The other two

terms add the influence of visible units at the preceding and subsequent frame (the purple

edges). The computation of Ah is essentially a single-dimensional convolution operation. The

generalization to δmax > 1 is straightforward.
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(c) SRBM with δmax = 0

V11

V21

V31

V41

V51
V12

V22

V32

V42

V5211H

21H

31H

12H

22H

32H

23H

13H

33H

V13

V23

V33

V43

V53

V12

V22

V32

V42

V52

12H

22H

32H

23H

13H

33H

V13

V23

V33

V43

V53

V11

V21

V31

V41

V51

11H

21H

31H

V11

V21

V31

V41

V51
V12

V22

V32

V42

V5211H

21H

31H

12H

22H

32H

23H

13H

33H

V13

V23

V33

V43

V53

+ +
(d) Purple edges in the center figure correspond to W1, and those on the right, to W−1. The union

of the three graphs is an SRBM with δmax = 1.

Figure 3.1: Illustrations of SRBM with T = 3 time frames, n1 = 5 input units and n2 = 3

hidden units per frame. Fig. 3.1a shows a sequence of repeated, independent (non-sequential)

RBMs. Fig. 3.1b shows a model with dense connections in the hidden layer, which may

seem desirable from a modeling perspective, but including all green edges would render

contrastive divergence training and computation of the conditional expectations E[H|V̂ ]

intractable. Fig. 3.1c shows an SRBM with δmax = 0. The red edges correspond to the

weights of the matrix W0, while the blue edges have weights given by θ. Fig. 3.1d shows

the edges corresponding to W±1 when δmax > 0 in purple.
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If both layers are binary, the joint distribution is given by

Pr(V,H) ∝ exp

(
〈H,Ah〉+

nh∑
j=1

T−1∑
t=1

θjHjtHj(t+1)

)
. (3.2)

An examination of (3.2) reveals the function of the θ parameters. If θj = 0, there are no

terms involving the products HjtHj(t+1), so the hidden states in row j are independent. If

θj > 0, the model prefers configurations where Hjt = Hj(t+1), and the values are more likely

to be continuous through time. In the unlikely case that θj < 0, “flip-flopping” hidden state

configurations would be preferred. Because θ is a free parameter, just like the Wδ parameters,

the model is able to learn on a row-by-row basis precisely how important it is for each hidden

state to be continuous through time. The addition of the θ parameters is what differentiates

our SRBM model from the convolutional RBM described by Lee et al. [102].

Defining the matrix of visible unit inputs

Av =
[
0
∣∣W−1H∗(1:T−1)

]
+W0H +

[
W1H∗(2:T )

∣∣0] ,
note that

Pr(V |H) ∝ exp〈H,Ah〉 ∝ exp〈V,Av〉,

so the Vit are independent given H, with Pr(Vit|H) ∝ expAvitVit, or Pr(Vit|H) = σ(2VitA
v
it)

where σ is the logistic sigmoid: σ(x) = (1 + exp−x)−1.

We also allow the visible layer to be real-valued with a fixed-variance Gaussian distribution.

In that case, then the joint density is

f(V,H) ∝ exp

(
〈H,Ah〉+

nh∑
j=1

T−1∑
t=1

θjHjtHj(t+1) −
1

2
〈V, V 〉

)
.

Now f(V |H) ∝ exp
(
〈V,Av〉 − 1

2

∑
it V

2
it

)
, so the Vit are independent and Gaussian-distributed

given H, with Vit|H ∼ N (Avit, 1).

Regardless of the type of visible layer, Pr(H|V ) factorizes into terms involving individual
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Hjt and terms involving HjtHj(t+1):

Pr(H|V ) ∝ exp

(
〈H,Ah〉+

T−1∑
t=1

nh∑
j=1

θjHjtHj(t+1)

)

=
nh∏
j=1

exp

(
〈Hj∗, A

h
j∗〉+

T−1∑
t=1

θjHjtHj(t+1)

)

=
nh∏
j=1

( T∏
t=1

expHjtA
h
jt

)(T−1∏
t=1

exp θjHjtHj(t+1)

)
. (3.3)

So given V , the rows of H are independent Markov order-1 sequences with binary states.

Therefore the Baum-Welch (or “forward-backward”) algorithm can be used to sample from

Pr(H|V ) and to determine E [H|V ], which we will need for training.

As with a standard RBM, we would like to train the SRBM to maximize the likelihood of

the data, marginalizing over the hidden values:
∏

i Pr(V = V̂ (i)). It is not hard to show that

the gradient of the log-likelihood log Pr(V = V̂ ) with respect to the Wδ has the following

form, similar to a standard RBM:

∇W0 = V̂
(
E
[
H ′
∣∣ V = V̂

]
− E

[
H ′
])

and, e.g., ∇W1 = V̂∗(1:T−1)

(
E
[
H ′∗(2:T )

∣∣ V = V̂
]
− E

[
H ′∗(2:T )

])
.

Also, the gradient with respect to θj is

∇θj =
T−1∑
t=1

(
E
[
HjtHj(t+1)

∣∣ V = V̂
]
− E

[
HjtHj(t+1)

])
.

The positive terms (the conditional expectations) can all be computed exactly with Baum-

Welch. Just as with the basic RBM, it is intractable to compute the negative terms (the

unconditional expectations) exactly. To approximate them, we follow the successful contrastive

divergence algorithm for training RBMs. Specifically, we sample Ṽ by running two steps

of blocked Gibbs sampling, from V̂ to H and back, and then replace the unconditional

expectations with the corresponding conditional expectations given Ṽ :

∇W0 ≈ V̂
(
E
[
H ′
∣∣ V = V̂

]
− E

[
H ′
∣∣ V = Ṽ

])
.
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3.3 The sequential deep neural network (SDNN)

An L-layer SDNN is formed by stacking multiple layers of SRBMs. For l = 1 . . . L − 1,

the hidden layer at level l is a binary matrix H l ∈ {±1}nl×T with weight matrices W l
δ and

transition parameters θl. We define V l ∈ Rnl×T for l = 0 . . . L− 1 to be a matrix of features

at layer l. In case l = 0 (the input), the features are assumed to be real values that are

defined by the user in a task-specific way. For the hidden layers (l = 1 . . . L− 1), we specify

V l = E
[
H l|V l−1

]
, where Pr(H l|V l−1) is defined as in Eq. (3.3), using the input matrix Al of

the lth layer as defined in Eq. (3.1).

For a sequential labeling task, the output layer of the SDNN is a conditional random field

taking features over local configurations of the top hidden layer features V L−1. {y1 . . . yT}
is assumed to be a sequence of integer labels, with yi ∈ {1 . . . nL}. Let Y ∈ RnL×T be the

matrix where Yit = 1 if yt = i, and 0 otherwise. We have weight matrices WL
δ just as with

the hidden layers, and the input matrix AL is formed applying Eq. (3.1) to the features V L−1

of the deepest hidden layer. However now instead of a vector θ of transition parameters, we

have a full matrix U ∈ RnL×nL containing values that represent the affinities between each

pair of labels. The distribution is similar to Eq. 3.3:

Pr(Y |V L−1) ∝ exp

(
〈Y,AL〉+

T−1∑
t=1

Y ′∗tUY∗(t+1)

)
(3.4)

only here instead of a set of independent binary Markov sequences, Pr(Y |V L−1) defines

a single Markov sequence over multinomials with nL values. The normalization is done

by summing over all possible labelings {y1 . . . yT} which can be performed efficiently with

standard algorithms. An illustration of the SDNN structure is shown in Figure 3.2.

The temporal edges at internal layers of an SDNN can potentially offer distinct advantages

in modeling capacity. Consider, for example, a CRF that utilizes features with a fixed

temporal span over the input, for example, derived from a static DNN. The only hope to

recognize patterns that occur over larger spans is via the temporal integration at the output

CRF layer. A SDNN, by contrast, has the ability, starting at l = 2, for its hidden units to
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Figure 3.2: Illustration of sequential deep neural network structure with T = 3, L = 3,

δmax = 0.
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detect the presence of an arbitrarily long temporal pattern, or even properties of the entire

sequence, owing to the earlier layers’ Baum-Welch stages that can pass information over an

arbitrary temporal extent.

One way to conceptualize the effect of the message passing at intermediate layers is that

unlike a “sliding-window” network that labels each center frame independently given the

input in a fixed-size context window, or even a convolutional neural network, the SDNN is

able to enforce continuity of the hidden states through time. If the parameter θj is large, only

configurations in which Hjt and Hj(t+1) have the same sign will have significant probability,

so Vjt and Vj(t + 1) are likely to be close in value. In the limit as θj → ∞, only two

configurations will be allowed, in which either all Hjt are +1, or all are −1. Then the Vjt

will exhibit maximal continuity, all having the same value: the difference in the probabilities

of the two configurations. Giving the model a way to specify that certain values should be

more continuous through time would seem to be particularly advantageous for continuously

extended data, where we know a priori that the data varies continuously in time, and therefore

it may be reasonable to assume that our induced feature representations should as well. If

the input data is noisy or corrupted, the capacity to smooth out hidden values could prove

especially useful.

3.4 Backpropagation algorithm

To fine tune the SDNN parameters, we use a procedure similar to error backpropagation

in a static deep network to compute the gradient of the log-likelihood ` = log Pr(Ŷ |V L−1).

The computation has algorithmic properties that favor efficient implementation. Matrix-

matrix multiplication is used for both the upward and downward passes, enabling the use

of fast matrix multiplication routines. In addition, both passes require Baum-Welch-like

procedures that operate independently on rows of the matrix, and that can make efficient use

of distributed processing or vectorized arithmetic. (The reader who is uninterested in the

mathematical details may skip to the summary at the end of the section on page 40.)
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The gradient of the log-likelihood with respect to U is

∇U` =
T−1∑
t=1

Ŷ∗tŶ
′
∗(t+1) − E

[T−1∑
t=1

Y∗tY
′
∗(t+1)

]
=

T−1∑
t=1

(
Ŷ∗tŶ

′
∗(t+1) − E

[
Y∗tY

′
∗(t+1)

])
(3.5)

For WL
0 , we have that

∇WL
0
` = V L−1∇AL` = V L−1(Ŷ ′ − E

[
Y ′
]
) = V L−1(DL)′, (3.6)

where DL , ∇AL`, and the expressions for WL
1 and WL

−1 are similar. Note that a different

objective function `′ could be used, in which case we just need to replace DL with ∇AL`′,

and the rest of the derivation is unchanged.

By the chain rule, the derivative with respect to some value ρ at or below level l is

∂`

∂ρ
=

nl∑
i=1

T∑
t=1

∂`

∂V l
it

∂V l
it

∂ρ
. (3.7)

Define εl to be the matrix with εlit = ∂`
∂V l

it
. Then

εL−1 =
[
0
∣∣ WL

−1D
L
∗(1:T−1)

]
+WL

0 D
L +

[
WL

1 D
L
∗(2:T )

∣∣ 0].
Because V l is the conditional expected value of a log-linear distribution, it follows that

∂V l
it

∂ρ
= E

[
H l
it

(
E
[ ∂
∂ρ
E(V l−1, H l)

]
− E

[ ∂
∂ρ
E(V l−1, H l)

∣∣ H l
it

])]
. (3.8)

Now consider ρ = (W l
0)jk. Since ∂

∂ρ
E(V l−1, H l) = −∑T

τ=1 V
l−1
jτ H l

kτ ,

∂V l
it

∂ρ
=

T∑
τ=1

V l−1
jτ E

[
H l
it

(
E
[
H l
kτ

∣∣ H l
it

]
− E

[
H l
kτ

])]
=

T∑
τ=1

V l−1
jτ

(
E
[
H l
itH

l
kτ

]
− E

[
H l
it

][
H l
kτ

])
=

T∑
τ=1

V l−1
jτ Cov(H l

it, H
l
kτ ),
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which is zero when k 6= i because the rows of H are independent. Plugging this into Eq. (3.7)

only the i = k terms remain, yielding

∂`

∂(W l
0)jk

=
T∑
t=1

εlkt

T∑
τ=1

V l−1
jτ Cov(H l

kt, H
l
kτ ) =

T∑
τ=1

V l−1
jτ

T∑
t=1

εlkt Cov(H l
kt, H

l
kτ ).

Defining Dl
iτ ,

∑
t ε
l
it Cov(H l

it, H
l
iτ ) we can write the gradient with respect to the entire

matrix W l
0 compactly as ∇W l

0
` = V l−1(Dl)′ (exactly as (3.6)). The gradients with respect to

W l
δ can also be expressed in terms of Dl.

The case of θli is similar. Since ∂
∂θli
E(V l−1, H l) = −∑T−1

τ=1 H
l
iτH

l
i(τ+1), from (3.8)

∂V l
it

∂θli
= E

[
H l
it

(
E
[∑T−1

τ=1H
l
iτH

l
i(τ+1)

∣∣ H l
iτ

]
− E

[∑T−1
τ=1H

l
iτH

l
i(τ+1)

])]
=

T−1∑
τ=1

(
E
[
H l
itH

l
iτH

l
i(τ+1)

]
− E

[
H l
it

]
E
[
H l
iτH

l
i(τ+1)

])
=

T−1∑
τ=1

Cov(H l
it, H

l
iτH

l
i(τ+1)),

so

∇θli
` =

T−1∑
τ=1

T∑
t=1

εlit Cov(H l
it, H

l
iτH

l
i(τ+1))

,
T−1∑
τ=1

Fiτ .

Finally, by setting ρ = V l−1
it in (3.7), we can also derive

εl−1 =
[
0
∣∣W l
−1D

l
∗(1:T−1)

]
+W l

0D
l +
[
W l

1D
l
∗(2:T )

∣∣0]
which allows us to recursively compute the derivatives with respect to lower-level parameters.

At first glance, it may appear that it requires O(nlT
2) operations to compute Dl and F l,

since each entry is a sum over T weighted covariances. In fact, it is possible to compute all

entries of Dl and F l in time linear in T with an algorithm that bears a striking resemblance

to Baum-Welch. Analogously to the forward and backward probabilities of Baum-Welch, we
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define

αliτ =
τ−1∑
t=1

εlit
Cov(H l

it, H
l
iτ )

VarH l
iτ

and βliτ =
T∑

t=τ+1

εlit
Cov(H l

iτ , H
l
it)

VarH l
iτ

,

so that Dl
iτ = Var(H l

iτ )(α
l
iτ + εliτ + βliτ ). For F l

iτ we have

F l
iτ =

τ−1∑
t=1

εlit Cov(H l
it, H

l
iτH

l
i(τ+1))

+
τ+1∑
t=τ

εlit Cov(H l
it, H

l
iτH

l
i(τ+1))

+
T∑

t=τ+2

εlit Cov(H l
it, H

l
iτH

l
i(τ+1)).

Considering the first term,3

τ−1∑
t=1

εlit Cov(H l
it, H

l
iτH

l
i(τ+1)) =

τ−1∑
t=1

εlit
Cov(H l

it, H
l
iτ ) Cov(H l

iτ , H
l
iτH

l
i(τ+1))

VarH l
iτ

= Cov(H l
iτ , H

l
iτH

l
i(τ+1))α

l
iτ ,

so that

F l
iτ = Cov(H l

iτ , H
l
iτH

l
i(τ+1))(α

l
iτ + εliτ ) + Cov(H l

iτH
l
i(τ+1), H

l
i(τ+1))(β

l
i(τ+1) + εli(τ+1)).

To compute αli1, we can set αli1 = 0, and recursively apply

αli(τ+1) =
1

VarH l
i(τ+1)

(
τ−1∑
t=1

εlit Cov(H l
it, H

l
i(τ+1)) + εliτ Cov(H l

iτ , H
l
i(τ+1))

)

=
1

VarH l
i(τ+1)

(
τ−1∑
t=1

εlit
Cov(H l

it, H
l
iτ ) Cov(H l

iτ , H
l
i(τ+1))

VarHiτ

+ εliτ Cov(H l
iτ , H

l
i(τ+1))

)

=
Cov(H l

iτ , H
l
i(τ+1))

VarH l
i(τ+1)

(
αliτ + εliτ

)
=

1

2

(
E[H l

iτ |H l
i(τ+1) = 1]− E[H l

iτ |H l
i(τ+1) = −1]

) (
αliτ + εliτ

)
, (3.9)

3Here and in the recursion for α below, use the identity Cov(A,C) = Cov(A,B) Cov(B,C)
VarB which holds for

±1-valued variables where A is independent of C given B. The proof of this claim is given in Appendix A.
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and symmetrically

βli(τ−1) =
1

2

(
E[H l

iτ |H l
i(τ−1) = 1]− E[H l

iτ |H l
i(τ−1) = −1]

) (
βliτ + εliτ

)
,

yielding a dynamic program for computing αl and βl (and therefore Dl and F l) in linear time.

Note also that the normalization (dividing by the variance) from the definition of αl is not

necessary in (3.9) greatly increasing the numerical accuracy of the algorithm, considering

that VarH l
iτ may often be numerically zero.

The entire SDNN backpropagation procedure is summarized as follows.

1. (Upward pass.) Given V 0, for l = 1 . . . L− 1 compute the inputs Al from the previous

layer’s activations V l−1, and then V l from Al using Baum-Welch on each row. Compute

AL from V L−1 and the label marginals E[Yit] and E[YitYj(t+1)] with Baum-Welch over

the multinomial sequence.

2. (Downward pass.) Construct DL from the labels Ŷ and marginals, and update the

weights at the output layer L. Then for l = L − 1 . . . 1, backpropagate the error εl

from Dl+1, compute Dl and F l from εl with the Baum-Welch-like algorithm above, and

finally update the weights at layer l.

Since the message passing operations in both passes require only an amount of work that is

linear in the size of the layers, computation time for larger models will still be dominated

by the matrix multiplications to compute the inputs and backpropagate the errors. In other

words, the SDNN does not require significantly more computation than a CNN model with

the same architectural parameters.

3.5 Experiments

We tested the SDNN on the TIMIT phone recognition dataset. We use the standard train/test

split for phone recognition experiments: removing all SA records from training, and testing

on the core test set of 24 speakers. The dataset has 3696 train utterances and 192 test
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utterances, with an average of 304 frames per utterance. The input features were 12th order

mel-frequency cepstral coefficients (MFCCs) [44] and energy over 25 ms windows, plus the

first-order temporal differences, giving 26 total features per 10 ms frame. The outputs are

sequences of the standard 39-phone set of Lee and Hon [104].

We divide each phone into two subphone states, so frames are labeled as either the

beginning or ending substate of a phone, giving a total of 78 labels. This allows us to model

repeated phones and also to account for changes in the acoustic signal during pronunciation

of a single phone. We constrain the model to require traversal through each substate of

each phone. The boundaries between subphones are kept latent, that is, we follow the

gradient of log
∑

Ysub : phones(Ysub)=Ŷ Pr(Ysub). This only requires a small change to the usual

forward-backward algorithm on the output layer.

To establish the value of the primary innovation of the SDNN—that it makes use of

sequence models at all layers—we compared the complete SDNN to a CNN model with the

same architectural parameters. The CNN uses a sequence classifier at the top level, but no

sequential model at any hidden layer, exactly as if θl were constrained to be zero for l < L.

We compare the models over a range of configurations: we vary the model depth from one

layer to eight, the half-width δmax of the input window (at all layers) from one to four, and

the number of hidden units per frame (in each layer) from 50 to 150. Each stage of training

(that is, pre-training each layer with CD and also joint training of all parameters with BP)

continued until the training criterion (squared reconstruction error for CD, log-likelihood

for BP) failed to improve over five epochs, at which point the learning rate was annealed

linearly to zero over another five epochs. Weight decay is applied after each update, and the

amount of decay is scaled proportionally with T . The initial learning rates, weight decays

and momentum parameters were estimated using random search [22] to maximize phone

error rate (PER) on a randomly selected 10% the training set, which was added back before

training the final model for test results.

The results of the experiment are summarized in Figure 3.3. Comparing the complete

SDNN to the baseline CNN model, it is apparent that using full sequence information at all
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Figure 3.3: Average test set PER of the SDNN and baseline CNN model (labeled “stat”)

over a range of number of layers, nh and input window width δmax.
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layers is beneficial across nearly all configurations, and the gains are more significant as the

number of hidden layers increases.

Interestingly, the results also indicate that the use of temporal hidden units may make a

very wide input window unnecessary: our best results are obtained with δmax = 1, whereas

δmax from 5 to as high as 11 is more common with MLPs or DNNs for phone recognition

[42, 72]. This suggests that with temporal connections the hidden units are able to represent

longer-range features that would otherwise require large input windows to capture.

Our best performing configuration (150 units/frame, 8 layers, δmax = 1) achieved a PER

of 24.2, which surpasses many systems that are highly tailored to the phone-recognition task

[90, 41, 34, 129, 91, 175, 158]. Other recent developments using deep networks have improved

somewhat on those scores [42, 72, 144, 182], and in future work it would be interesting to try

combining some of those successful techniques with the SDNN model, in particular, the use

of triphone states (rather than our biphones), dropout training and larger numbers of hidden

units per frame. It is significant that the SDNN performs so well with only 150 hidden units

per frame, over an order of magnitude fewer than state-of-the-art neural systems (1500 in

Dahl et al. [42], 2000 in Tóth [182] and 4000 in Hinton et al. [72]), as well as much smaller

input windows. However our goal in the present work is not to build a state-of-the-art system

but to demonstrate that the use of temporal connections between hidden units improves upon

a strong baseline model that does not.

3.6 Conclusion

In this chapter we introduced the sequential deep neural network for inducing features of

continuously extended data. Unlike previous approaches such as a sliding-window network or

a convolutional network, the SDNN can capture temporal patterns of arbitrary extent, and

explicitly model the tendency of each feature to be continuous through time. We demonstrated

that the essential innovation of the SDNN—the use of temporal connections between hidden

units—can improve performance on a sequential task. We hope that the SDNN will prove to

be a useful component of the deep representation learning toolbox when the data has one or
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more continuous dimensions.

The SDNN model could be extended in several ways that may increase its effectiveness

at learning useful representations for continuously extended data. Although using dense

connections between hidden representations at adjacent frames would be impractical, dense

connections between small subsets of units (but larger than one) could give the model

additional expressive power at marginal computational cost. Another useful direction would

be to extend the model to different nonlinear activation functions than the hyperbolic tangent.

Something like rectified linear units could perhaps be used, but it is not clear how that

would fit into the formulation of the SRBM. These would be interesting directions for future

research.
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Chapter 4

LEARNING DEEP REPRESENTATIONS
FOR MULTIVIEW DATA

4.1 Multiview data

Some data is inherently multi-viewed, that is, the features of the input representation are

conveniently partitioned into two or more groups such that features within each group are

more tightly related than features in different groups. For example if a learning agent takes

input simultaneously from multiple sensory modalities such as vision and audio, the visual

components of the image might be considered to be one data view, while the acoustic features

of the audio form another. Within each view different features may be simply related: adjacent

pixels are likely to have similar values, and acoustic energy at some frequency is likely to be

predictive of energy at harmonic frequencies. However across views whatever relationships

exist are more likely to be complex and abstract. Continuing with our running example of

audio and video, the presence of a blue pixel may not be particularly associated with any

aspects of the audio, but if we can recognize abstract properties like the presence of a car in

the image, this could be predictive of the presence of a car’s engine sounds or other traffic

noises in the audio (which features are themselves at a fairly abstract level). The intuition

behind the model presented in this chapter is that if such correspondences exist between

deep level features of the different views, then those features are likely to correspond to “real”

latent aspects of the scene. Such features may be considered more likely to form part of a

useful abstract representation.1

Canonical correlation analysis (CCA) [77, 3] is a standard statistical technique for finding

linear projections of two random vectors that are maximally correlated. Kernel canonical

1The work presented in this chapter was originally published as Andrew et al. [7].
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correlation analysis (KCCA) [2, 119, 12, 64] is an extension of CCA in which maximally corre-

lated nonlinear projections, restricted to reproducing kernel Hilbert spaces with corresponding

kernels, are found. Both CCA and KCCA are techniques for learning representations of two

data views, such that each view’s representation is simultaneously the most predictive of,

and the most predictable by, the other. CCA and KCCA have been used for unsupervised

data analysis when multiple views are available [65, 189, 46]; learning features for multiple

modalities that are then fused for prediction [154]; learning features for a single view when

another view is available for representation learning but not at prediction time [25, 33, 8]; and

reducing sample complexity of prediction problems using unlabeled data [85]. The applications

range broadly across a number of fields, including medicine, meteorology [3], chemomet-

rics [127], biology and neurology [185, 65], natural language processing [189, 62, 46], speech

processing [37, 151, 9], computer vision [92], and multimodal signal processing [154, 166]. An

appealing property of CCA for prediction tasks is that, if there is noise in either view that is

uncorrelated with the other view, the learned representations should not contain the noise.

While kernel CCA allows learning of nonlinear representations, it has the drawback that

the representation is limited by the fixed kernel. Also, as it is a nonparametric method, the

time required to train a KCCA model or compute the representations of new datapoints

scales poorly with the size of the training set. In this chapter, we consider an alternative

method for learning flexible nonlinear correlated representations using deep neural networks.

Deep networks do not suffer from the aforementioned drawbacks of nonparametric models,

and given the empirical success of deep neural network representations on a wide variety of

tasks, we may expect to be able to learn more highly correlated representations, particularly

as in many cases whatever correspondences do exist between highly dissimilar data views

will likely be highly abstract and less recognizable by shallow architectures. In this work we

introduce deep CCA (DCCA), which simultaneously learns two deep nonlinear representation

mappings of two views that are maximally correlated.
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4.2 Related work

Some researchers have attempted to learn correlated representations via neural networks in

the past [10, 78, 79, 80]. However these early approaches used ad-hoc training procedures for

which it is not clear whether the multivariate total correlation is actually being maximized.

In contrast, we give an exact expression for the gradient of the correlation objective for use in

gradient-based optimization. The cited works had other weaknesses addressed by the current

work on DCCA: they did not regularize the models in a principled way, they were tested only

on very small (two-to-three-dimensional) artificial datasets, and were evaluated only on the

training set correlation, so it is not clear how well they generalize to unseen data.2

The most closely related work is that of Ngiam et al. [134] on multimodal autoencoders

and Srivastava and Salakhutdinov [172] on multimodal restricted Boltzmann machines. In

these approaches, there is a single network being learned with one or more layers connected

to both views (modalities); in the absence of one of the views, it can be predicted from the

other view using the learned network. The key difference is that in our approach we learn two

separate deep encodings, with the objective that the learned encodings are as correlated as

possible. These different objectives may have advantages in different settings. In the current

work, we are interested specifically in the correlation objective, that is in extending CCA

with learned nonlinear mappings. Our approach is therefore directly applicable in all of the

settings where CCA and KCCA are used, and we compare its ability relative to CCA and

KCCA to generalize the correlation objective to new data, showing that DCCA achieves

much better results.

4.3 Background: CCA, KCCA, and deep representations

Let (X1, X2) ∈ Rn1 × Rn2 denote random vectors with covariances (Σ11,Σ22) and cross-

covariance Σ12. CCA finds pairs of linear projections of the two views, (w′1X1, w
′
2X2) that

2There have also been attempts to approximate the linear CCA variates with MLPs, a task of questionable
utility which should not be confused with actually learning nonlinear representations [96].
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are maximally correlated:

(w∗1, w
∗
2) = argmax

w1,w2

corr(w′1X1, w
′
2X2) (4.1)

= argmax
w1,w2

w′1Σ12w2√
w′1Σ11w1w′2Σ22w2

. (4.2)

Since the objective is invariant to scaling of w1 and w2, we can constrain the projections to

have unit variance:

(w∗1, w
∗
2) = argmax

w′
1Σ11w1=w′

2Σ22w2=1

w′1Σ12w2 (4.3)

When finding multiple pairs of vectors (wi1, w
i
2), subsequent projections are also constrained

to be uncorrelated with previous ones, that is wi1Σ11w
j
1 = wi2Σ22w

j
2 = 0 for i < j. Assembling

the top k projection vectors wi1 into the columns of a matrix A1 ∈ Rn1×k, and similarly placing

wi2 into A2 ∈ Rn2×k, we obtain the following formulation to identify the top k ≤ min(n1, n2)

projections:

maximize: tr(A′1Σ12A2)

subject to: A′1Σ11A1 = A′2Σ22A2 = I.
(4.4)

There are several ways to express the solution to this objective; we follow the one in

Mardia et al. [115]. Define T , Σ
−1/2
11 Σ12Σ

−1/2
22 , and let Uk and Vk be the matrices of the

first k left- and right- singular vectors of T . Then the optimal objective value is the sum of

the top k singular values of T (the Ky Fan k-norm of T ) and the optimum is attained at

(A∗1, A
∗
2) = (Σ

−1/2
11 Uk,Σ

−1/2
22 Vk). Note that this solution assumes that the covariance matrices

Σ11 and Σ22 are nonsingular, which is satisfied in practice because they are estimated from

data with regularization: given centered data matrices H̄1 ∈ Rn1×m, H̄2 ∈ Rn2×m, one can

estimate, e.g.

Σ̂11 =
1

m− 1
H̄1H̄

′
1 + r1I, (4.5)

where r1 > 0 is a regularization parameter. Estimating the covariance matrices with

regularization also reduces the detection of spurious correlations in the training data, a.k.a.

overfitting [45].
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4.3.1 Kernel CCA

Kernel CCA finds pairs of nonlinear projections of the two views [64]. The reproducing

kernel Hilbert spaces (RKHS) of functions on Rn1 ,Rn2 are denoted H1, H2 and the associated

positive definite kernels are denoted κ1, κ2. The optimal projections are those functions

f ∗1 ∈ H1, f
∗
2 ∈ H2 that maximize the correlation between f ∗1 (X1) and f ∗2 (X2):

(f ∗1 , f
∗
2 ) = argmax

f1∈H1,f2∈H2

corr (f1(X1), f2(X2)) (4.6)

= argmax
f1∈H1,f2∈H2

Cov (f1(X1), f2(X2))√
Var (f1(X1)) Var (f2(X2))

,

To solve the nonlinear KCCA problem, the “kernel trick” is used: Since the nonlinear maps

f1 ∈ H1, f2 ∈ H2 are in RKHS, the solutions can be expressed as linear combinations of the

kernels evaluated at the data: f1(x) = α′1κ1(x, ·), where κ1(x, ·) is a vector whose ith element

is κ1(x, xi) (resp. for f2(x)). KCCA can then be written as finding vectors α1, α2 ∈ Rm that

solve the optimization problem

(α∗1, α
∗
2) = argmax

α1,α2

α′1K1K2α2√
(α′1K

2
1α2) (α′1K

2
2α2)

= argmax
α′
1K

2
1α1=α′

2K
2
2α2=1

α′1K1K2α2, (4.7)

where K1 ∈ Rm×m is the centered Gram matrix K1 = K −K1− 1K + 1K1, Kij = κ1(xi, xj)

and 1 ∈ Rm×m is an all-1s matrix, and similarly for K2. Subsequent vectors (αj1, α
j
2) are

solutions of (4.7) with the constraints that (f j1 (X1), f j2 (X2)) are uncorrelated with the previous

ones.

Careful regularization is critical to the performance of KCCA, since the spaces H1, H2

could have high complexity. Since α′1f1(·) plays the role of w1 in KCCA, the generalization

of w′1w1 would be α′1K1α. Therefore the correct generalization of (4.5) is to use K2
1 + r1K1

in place of K2
1 in the constraints of (4.7), for regularization parameter r1 > 0 (resp. for K2

2).

The optimization is in principle simple: The objective is maximized by the top eigenvectors

of the matrix

(K1 + r1I)−1 K2 (K2 + r2I)−1 K1. (4.8)
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The regularization coefficients r1 and r2, as well as any parameters of the kernel in KCCA, can

be tuned using held-out data. Often a further regularization is done by first projecting the data

onto an intermediate-dimensionality space, between the target and original dimensionality [49,

8]. In practice solving KCCA may not be straightforward, as the kernel matrices become

very large for real-world data sets of interest, and iterative SVD algorithms for the initial

dimensionality reduction can be used [8].

4.3.2 Deep learning

Deep neural networks, having more than two hidden layers, are capable of representing

nonlinear functions involving multiply nested high-level abstractions of the kind that may

be necessary to accurately model complex real-world data. As discussed in chapter 2, there

has been a resurgence of interest in such models following the advent of various successful

unsupervised methods for initializing the parameters (“pretraining”) in such a way that a

useful solution can be found [71, 70]. The growing availability of both data and compute

resources also contributes to the resurgence, because empirically the performance of deep

networks seems to scale very well with data size and complexity.

While deep networks are more commonly used for learning classification labels or mapping

to another vector space with supervision, here we use them to learn nonlinear transformations

of two datasets to a space in which the data is highly correlated, just as KCCA does. The

same properties that may account for deep networks’ success in other tasks—high model

complexity, the ability to concisely represent a hierarchy of features for modeling real-world

data distributions—could be particularly useful in a setting where the output space is

significantly more complex than a single label.

4.4 Deep canonical correlation analysis (DCCA)

Deep CCA computes representations of the two views by passing them through multiple

stacked layers of nonlinear transformation (see Figure 4.1). Assume for simplicity that each

intermediate layer in the network for the first view has c1 units, and the final (output) layer
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Figure 4.1: A schematic of deep CCA, consisting of two deep networks learned so that

the output layers (topmost layer of each network) are maximally correlated. Blue nodes

correspond to input features (n1 = n2 = 3), grey nodes are hidden units (c1 = c2 = 4), and

the output layer is red (o = 2). Both networks have d = 4 layers.
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has o units. Let x1 ∈ Rn1 be an instance of the first view. The outputs of the first layer for the

instance x1 are h1 = s(W 1
1 x1+b1

1) ∈ Rc1 , where W 1
1 ∈ Rc1×n1 is a matrix of weights, b1

1 ∈ Rc1 is

a vector of biases, and s : R 7→ R is a nonlinear function applied componentwise. The outputs

h1 may then be used to compute the outputs of the next layer as h2 = s(W 1
2 h1 + b1

2) ∈ Rc1 ,

and so on until the final representation f1(x1) = s(W 1
dhd−1 + b1

d) ∈ Ro is computed, for a

network with d layers. Given an instance x2 of the second view, the representation f2(x2)

is computed the same way, with different parameters W 2
l and b2

l (and potentially different

architectural parameters c2 and d). The goal is to jointly learn parameters for both views

W v
l and bvl such that corr(f1(X1), f2(X2)) is as high as possible. If θ1 is the vector of all

parameters W 1
l and b1

l of the first view for l = 1, . . . , d, and similarly for θ2, then

(θ∗1, θ
∗
2) = argmax

(θ1,θ2)

corr(f1(X1; θ1), f2(X2; θ2)). (4.9)

To find (θ∗1, θ
∗
2), we follow the gradient of the correlation objective as estimated on the

training data. Let H1 ∈ Ro×m, H2 ∈ Ro×m be matrices whose columns are the top-level

representations produced by the deep models on the two views, for a training set of size m.

Let H̄1 = H1 − 1
m
H11 be the centered data matrix (resp. H̄2), and define Σ̂12 = 1

m−1
H̄1H̄

′
2,

and Σ̂11 = 1
m−1

H̄1H̄
′
1 + r1I for regularization constant r1 (resp. Σ̂22). Assume that r1, r2 > 0

so that Σ̂11, Σ̂22 are positive definite.

As discussed in section 4.3 for CCA, the total correlation of the top k components of H1

and H2 is the sum of the top k singular values of the matrix T = Σ̂
−1/2
11 Σ̂12Σ̂

−1/2
22 . If we take

k = o, then this is exactly the matrix trace norm of T , or3

corr(H1, H2) = ||T ||tr = tr(T ′T )1/2. (4.10)

The parameters W v
l and bvl of DCCA are trained to optimize this quantity using gradient-based

optimization. To compute the gradient of corr(H1, H2) with respect to all parameters W v
l

and bvl , we can compute its gradient with respect to H1 and H2 and then use backpropagation.

3Here we abuse notation slightly, writing corr(H1, H2) as the empirical correlation of the data represented
by the matrices H1 and H2.
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If the singular value decomposition of T is T = UDV ′, then

∂corr(H1, H2)

∂H1

=
1

m− 1

(
2∇11H̄1 +∇12H̄2

)
. (4.11)

where

∇12 = Σ̂
−1/2
11 UV ′Σ̂

−1/2
22 (4.12)

and

∇11 = −1

2
Σ̂
−1/2
11 UDU ′Σ̂

−1/2
11 , (4.13)

and ∂corr(H1, H2)/∂H2 has a symmetric expression. The derivation of the gradient is not

entirely straightforward (involving, for example, the gradient of the trace of the matrix

square-root, which we could not find in standard references such as Petersen and Pedersen

[142]) and is given in appendix B. We also regularize (4.10) by adding to it a quadratic

penalty with weight λb > 0 for all parameters.

Because the correlation objective is a function of the entire training set that does not

decompose into a sum over data points, it is not clear how to use a stochastic optimization

procedure that operates on data points one at a time. We experimented with a stochastic

method based on mini-batches, but obtained much better results with full-batch optimization

using the L-BFGS second-order optimization method [135] which has been found to be useful

for deep learning in other contexts [97].

As discussed in section 4.3.2 for deep models in general, the best results will in general

not be obtained if parameter optimization is started from random initialization—some form

of pretraining is necessary. In the experiments of this chapter, we initialize the parameters of

each layer with a denoising autoencoder [187]. Given centered input training data assembled

into a matrix X ∈ Rn×m, a distorted matrix X̃ is created by adding i.i.d. zero-mean Gaussian

noise with variance σ2
a. For parameters W ∈ Rc×n and b ∈ Rc, the reconstructed data

X̂ = W ′s(WX̃ + b1̄′) is formed.4 Then we use L-BFGS to find a local minimum of the total

4This is the so-called “tied-weights” version of the autoencoder network where the same weights W ,
transposed, are used for mapping to the hidden layer and mapping to the reconstruction layer.
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squared error from the reconstruction to the original data, plus a quadratic penalty:

la(W, b) = ||X̂ −X||2F + λa(||W ||2F + ||b||22), (4.14)

where || · ||F is the matrix Frobenius norm. The minimizing values W ∗ and b∗ are used

to initialize optimization of the DCCA objective, and to produce the representation for

pretraining the next layer. σ2
a and λa are treated as hyperparameters, and optimized on a

development set, as described in section 4.5.

4.4.1 Non-saturating nonlinearity

Any form of sigmoid nonlinearity could be used to determine the output of the nodes

in a DCCA network, but in our experiments we obtained the best results using a novel

non-saturating sigmoid function based on the cube root. If g : R 7→ R is the function

g(y) = y3/3 + y, then our function is s(x) = g−1(x). Like the more popular logistic (σ) and

tanh nonlinearities, s has sigmoid shape and has unit slope at x = 0. However, logistic and

tanh approach their asymptotic value very quickly, at which point the derivative drops to

essentially zero (i.e., they saturate). On the other hand, s is not bounded, and its derivative

falls off much more gradually with x. We hypothesize that these properties make s better-

suited for batch optimization with second-order methods which might otherwise get stuck on

a plateau early during optimization. In figure 4.2 we plot s alongside tanh for comparison.

Another property that our nonsaturating sigmoid function shares with logistic and tanh is

that its derivative is a simple function of its value. For example, σ′(x) = σ(x)(1− σ(x)), and

tanh′(x) = 1 − tanh2(x). This property is convenient for neural network implementations,

because it means the input to a unit can be overwritten by its output, which is used both for

forward propagation and for computing the derivative in the backpropagation phase. Also,

as it turns out, it is more efficient to compute the derivatives as a function of the value in

all of these cases (e.g., given y = tanh(x), 1 − y2 can be computed more efficiently than

1− tanh2(x)). In the case of s, we have s′(x) = (s2(x) + 1)−1 as is easily shown with implicit



55

Figure 4.2: Comparison of our modified cube-root sigmoid function (red) with the more

standard tanh (blue).
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differentiation. If y = s(x), then

x = y3/3 + y,

so,

dx

dy
= y2 + 1,

and,

dy

dx
=

1

y2 + 1
.

To compute s(x), we use Newton’s method. To solve for g(y)− x = 0, iterate

yn+1 = yn −
g(yn)− x
g′(yn)

= yn −
y3
n/3 + yn − x
y2
n + 1

=
2y3

n/3 + x

y2
n + 1

.

For positive x, initializing y0 = x, the iteration decreases monotonically, so convergence is

guaranteed.5 When x is negative, we use the property that s(x) = −s(−x). In the range of

values in our experiments, the iteration converges to machine precision in just a few iterations.

As a further optimization, we wrote a vectorized CPU implementation.

4.5 Experiments

We perform experiments on two datasets to demonstrate that DCCA learns transformations

that are not only dramatically more correlated than a linear CCA baseline, but also signifi-

cantly more correlated than well-tuned KCCA representations. We refer to a DCCA model

with an output size of o and d layers (including the output) as DCCA-o-d.

5Another reasonable initialization would be y0 = 3
√

3x which is a tighter upper bound for s(x) and so
would require fewer iterations, but the cube root evaluation may be expensive on some architectures.
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Because the total correlation of two transformed views grows with dimensionality, it is

important to compare only equal-dimensionality representations. In addition, in order to

compare the test correlation of the top k components of two representations of dimensionality

o1, o2 ≥ k, the components must be ordered by their correlation on the training data. In the

case of CCA and KCCA, the dimensions are always ordered in this way by default, but in

DCCA, there is no ordering to the output nodes. Therefore, we derive such an ordering by

performing a final (linear) CCA on the output layers of the two views on the training data.

This final CCA produces two projection matrices A1, A2, which are applied to the DCCA

test output before computing test set correlation. Another way would be to compute a new

DCCA representation at each target dimensionality; this is not done here for expediency but

should, if anything, improve performance.

Each of the DCCA models we tested has a fixed number of layers and output size, and

the parameters W v
l and bvl are trained as discussed in section 4.4. Several other values are

treated as hyperparameters. Specifically, for each view, we have σ2
a and λa for autoencoder

pretraining, c, the width of all hidden layers (a large integer parameter treated as a real value)

and r, the CCA regularization hyperparameter. Finally there is a single hyperparameter λb,

the fine-tuning regularization weight. These values were chosen to optimize total correlation

on a development set using a derivative-free optimization method.

4.5.1 MNIST handwritten digits

For our first experiments, we learn correlated representations of the left and right halves

of handwritten digit images, as shown in figure 4.3. While in this case the two views come

from the same sensory modality (vision), we would nevertheless expect that there exist more

highly correlated properties between abstract features like digit identity and stroke width

than simply linear combinations of pixel intensities. We use the MNIST handwritten image

dataset [98], which consists of 60,000 train images and 10,000 test images. We randomly

selected 10% (6,000) images from the training set to use for hyperparameter tuning. Each

image is a 28x28 matrix of pixels, each representing one of 256 grayscale values. The left and
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Figure 4.3: Examples of left and right views of split MNIST dataset.

right 14 columns are separated to form the two views, making 392 features in each view. For

KCCA, we use a radial basis function (RBF) kernel for both views: k1(xi, xj) = e−‖xi−xj‖
2/2σ2

1

and similarly for k2. The bandwidth parameters σ1, σ2 are tuned over the range [0.25, 64].

Regularization parameters r1, r2 for CCA and KCCA are tuned over the range [10−8, 10]. The

four parameters were jointly tuned to maximize correlation at k = 50 on the development

set. We use a scalable KCCA algorithm based on incremental SVD [8]. The selected widths

of the hidden layers for the DCCA-50-2 model were 2038 (left half-images) and 1608 (right

half-images). Table 4.1 compares the total correlation on the development and test sets

obtained for the 50 most correlated dimensions with linear CCA, KCCA, and DCCA. DCCA

is able to find far greater generalizable correlation between the two halves.

4.5.2 Articulatory speech data

In our next set of experiments, the two views come from completely different sensory

modalities, hence we would expect even more value from using deep representations. We

use speech data from the Wisconsin X-ray Microbeam Database (XRMB) of simultaneous

acoustic and articulatory recordings [196]. The articulatory data consist of horizontal and
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CCA KCCA DCCA

(RBF) (50-2)

Dev 28.1 33.5 39.4

Test 28.0 33.0 39.7

Table 4.1: Correlation captured in the 50 most correlated dimensions on the split MNIST

dataset.

vertical displacements of eight pellets on the speaker’s lips, tongue, and jaws, yielding a

16-dimensional vector at each time point. The baseline acoustic features consist of standard

13-dimensional mel-frequency cepstral coefficients (MFCCs) [44] and their first and second

derivatives computed every 10ms over a 25ms window. The articulatory measurements are

downsampled to match the MFCC frame rate.

The input features X1 and X2 to CCA/KCCA/DCCA are the acoustic and articulatory

features concatenated over a 7-frame window around each frame, giving acoustic vectors

X1 ∈ R273 and articulatory vectors X2 ∈ R112. We discard frames that are missing any of the

articulatory data (e.g., due to mistracked pellets), resulting in m ≈ 50, 000 frames for each

speaker. For KCCA, besides an RBF kernel (described in the previous section) we also use a

polynomial kernel of degree d, with k1(xi, xj) =
(
xTi xj + c

)d
and similarly for k2.

We run five independent experiments, each using 60% of the utterances for learning pro-

jections, 20% for tuning hyperparameters (regularization parameters and kernel bandwidths),

and 20% for final testing. For this set of experiments, kernel bandwidths for the RBF kernel

were fixed at σ1 = 4× 106, σ2 = 2× 104 to match the variance in the un-normalized data. For

the polynomial kernel we tuned the degree d over the set {2, 3} and the offset parameter c

over the range [0.25, 2] to optimize development set correlation at k = 110. Hyperparameter

optimization selected the number of hidden units per layer in the DCCA-50-2 model as 1641

and 1769 for the MFCC and XRMB views respectively. In the DCCA-112-3 model, 1811 and
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CCA KCCA KCCA DCCA

(RBF) (Poly) (50-2)

Fold 1 16.8 29.2 32.3 38.2

Fold 2 15.8 25.3 29.1 34.1

Fold 3 16.9 30.8 34.0 39.4

Fold 4 16.6 28.6 32.4 37.1

Fold 5 16.2 26.2 29.9 34.0

Table 4.2: Correlation captured in the 50 most correlated dimensions on the articulatory

dataset.

1280 units per layer, respectively, were chosen. The widths for the DCCA-112-8 model were

fixed at 781 and 552 as discussed in the last paragraph of this section.

Table 4.2 compares total correlation captured in the top 50 dimensions on the test data

for all five folds with CCA, KCCA with both kernels, and DCCA-50-2. The pattern of

performance across the folds is similar for all four models, and DCCA consistently uncovers a

greater amount of total correlation.

We next examine how the total correlation changes as the dimensionality of the output

representation increases. Figure 4.4 shows correlation obtained using linear CCA, KCCA

with RBF kernel, KCCA with a polynomial kernel (d = 2, c = 1), and various topologies of

deep CCA, on the test set of one of the folds as a function of number of dimensions. The

KCCA models tend to detect slightly more correlation in the first few components, after

which the deep CCA models outperform them by a large margin. Apparently after finding a

few correlated components, CCA and DCCA have difficulty identifying useful new features

that are uncorrelated (within each view) to the previous ones. DCCA, on the other hand, can

continue to uncover more and more abstract properties that are highly correlated. We note

that DCCA may particularly have an advantage when k is equal to the number of output
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layers (d) 3 4 5 6 7 8

Dev set 66.7 68.1 70.1 72.5 76.0 79.1

Test set 80.4 81.9 84.0 86.1 88.5 88.6

Table 4.3: Total correlation captured, on one of the folds, by DCCA-112-d, for d ranging

from three to eight.

units o. We found that DCCA models with only two or three output units can indeed find

more correlation than the top two or three components of KCCA (results not shown). This

is also consistent with the observation that DCCA-50-2 has the highest performance of any

model at k = 50.

Finally, we test the hypothesis that the advantage of DCCA comes from its ability to

induce more abstract features. Conceptually, CCA is a single-layer architecture, since its

features are formed as simple linear combinations of the input features. KCCA may be

considered to be a two-layer architecture, where the kernel computes the first layer features,

and the output features are a linear combination of those. In DCCA, however, model depth is

a tunable parameter. To determine the impact of model depth on performance, we conducted

an experiment in which we increased the number of layers from three to eight, while reducing

the number of hidden units in each layer in order to keep the total number of parameters

approximately constant. The output width was fixed at 112, and all hyperparameters other

than the number of hidden units were kept fixed at the values chosen for DCCA-112-3. Table

4.3 gives the total correlation on the first fold as a function of the number of layers. The total

correlation of both datasets increases monotonically with the depth of DCCA, indicating that

the multiple levels of nonlinear transformation afforded by deeper representation mappings

are indeed helpful.
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4.6 Conclusion

We have shown that deep CCA can obtain improved representations with respect to the

correlation objective measured on unseen data. Our experiments indicate that when the

two views of the data come from different sensory modalities, much of the latent correlation

lies in deeper, more abstract properties that are not available to the shallow representation

mappings used by CCA or KCCA. Another appealing feature of DCCA as a flexible non-linear

alternative to KCCA is that it does not require an inner product. As a parametric model,

representations of unseen datapoints can be computed without reference to the training set,

and training time should scale asymptotically at most linearly with the size of the training

set. We hope DCCA will prove to be another useful method in the toolkit of representation

learning methods when multiple views of a dataset are available.

In many applications of CCA, such as classification and regression, maximizing the

correlation is not the final goal and the correlated representations are used in the service

of another task. A natural next step is therefore to test the representations produced by

deep CCA in the context of prediction tasks and to compare against other nonlinear multi-

view representation learning approaches that optimize other objectives, e.g., Ngiam et al.

[134], Srivastava and Salakhutdinov [172]. Some work has already been done in this direction,

for example Wang et al. [193] demonstrate that DCCA features can improve performance of

an HMM-GMM phone recognizer.
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Chapter 5

LEARNING SPARSELY CONNECTED NEURAL
REPRESENTATION MODELS WITH L1-REGULARIZATION

5.1 Introduction

As the preceding two chapters demonstrate, representation transformations often take the

form of parametric functions xnew = kθ(xorig). For example, an autoencoder network (or one

layer of a deep autoencoder network) performs the mapping a′ = kθ(a) = σ(Wa+ b), where

σ is a nonlinear activation function and the parameters θ are (W, b). When the function is a

deep neural network, the parameters θ are all of the weights and biases of the network. The

parameters of such models are often trained to minimize an objective function

f(θ) = `(θ) + r(θ), (5.1)

where ` is a loss measure of the mapping on a (possibly labelled) training set, and r is a

regularization term that favors “simpler” models. Taking the autoencoder network again as

an example, a typical loss function over a dataset D would be the squared reconstruction

error, `(θ) =
∑

x∈D ||x −W ′kθ(x)||22, while the most common regularizer is probably the

weighted squared L2 norm, r(θ) = C||θ||22.1

It is well-known that the use of a non-trivial regularization term r(θ) is often necessary

to achieve a representation model that generalizes well to unseen data, particularly if the

number of parameters is very high relative to the amount of training data. Regularization

with a weighted penalty term is a convenient means to tune the complexity of the model to

balance flexibility and tendency to overfit (bias/variance). A choice of regularizer that has

1The work presented in this chapter was originally published as Andrew and Gao [6]
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received increasing attention in recent years is the weighted L1-norm of the parameters

r(θ) = C‖θ‖1 = C
∑
i

|θi|

for some constant C > 0. Popularized in the context of regression by Tibshirani [180] where

it is known as the LASSO estimator, the L1 regularizer enjoys several favorable properties

compared to other regularizers such as L2. It has been shown experimentally and theoretically

to be capable of learning good models when most features are irrelevant [133]. It also typically

produces sparse parameter vectors in which many of the parameters are exactly zero, which

makes for models that are more interpretable and computationally manageable [106].

An autoencoder or deep neural network with a sparse parameter vector has the intuitively

appealing property that each intermediate level feature (each hidden layer activation) depends

on a small number of input features. If one is constructing a hierarchy of feature representations

at different levels of abstraction (imagine detecting edges from pixels or objects from parts),

it seems reasonable that the presence of a feature at one level might only depend on the

presence of a few of the very high number of possible features at the previous level. To detect

the presence of an oriented edge at a particular location in an image, one may safely ignore

most of the pixels of the image outside of a small window.

The L1 regularizer tends to produce sparse parameters as a consequence of the fact that

its first partial derivative with respect to each variable is constant as the variable moves

toward zero, “pushing” the value all the way to zero if possible. The partial derivative

of the L2 regularizer, by contrast, diminishes as the parameter value moves toward zero,

producing parameters that are close to, but not exactly, zero. Unfortunately, this fact about

L1 also means that the partial derivative is discontinuous at zero, where it jumps from a

negative to a positive value, so the objective function cannot be minimized with general-

purpose gradient-based optimization algorithms for smooth functions such as the L-BFGS

quasi-Newton method [136], which has been shown to be superior at training large-scale

L2-regularized log-linear models by Malouf [113] and Minka [122].

Several special-purpose algorithms have been designed to overcome this difficulty. Perkins



66

and Theiler [141] propose an algorithm called grafting, in which variables are added one-at-a-

time, and then the weights are reoptimized with respect to the current set of variables. Good-

man [57] and Kazama and Tsujii [89] (independently) reframe the problem as a constrained

optimization, and solve it with a modification of generalized iterative scaling (GIS) [43] and

BLMVM [21], a quasi-Newton algorithm for problems with bound constraints, respectively.

Both of these algorithms require doubling the number of variables in the general case.

Lee et al. [105] propose the algorithm IRLS-LARS, inspired by Newton’s method, which

iteratively minimizes the function’s second order Taylor expansion, subject to linear constraints.

The quadratic program at each iteration is efficiently solved using the LARS algorithm

(LASSO variant) of Efron et al. [48]. They compare the approach to the other aforementioned

algorithms (except that of Kazama & Tsujii) on small- to medium-scale logistic regression

problems, and show that in most cases it is much faster. Unfortunately IRLS-LARS cannot

be used to train very large-scale log-linear models involving millions of variables and training

instances, such as are commonly encountered, for example, in vision, speech, and natural

language processing. Although worst-case bounds are not known, under charitable assumptions

the LASSO variant of LARS used in the inner loop of IRLS-LARS may require as many

as O(mn2) operations, where m is the number of variables and n is the number of training

instances. Indeed, the only test problems considered by Lee et al. [105] in which another

algorithm approached or surpassed IRLS-LARS were also the largest, with thousands of

variables.

In this chapter, we propose a new algorithm based on L-BFGS for training large-scale

representation mappings with L1 regularization, which we call orthant-wise limited-memory

quasi-Newton (OWL-QN). At each iteration, our algorithm computes a search direction by

moving toward the minimum of a quadratic function that models the objective over a set

containing the previous point and on which the objective is differentiable (an orthant). It

adjusts the search direction and the line search to ensure that it considers only points on the

set for which the quadratic approximation is valid. Unlike previous approaches, the algorithm

scales well to very high-dimensional training objectives. It is also quite easy to implement:
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starting from an implementation of standard L-BFGS, our version of OWL-QN required

changing only about 30 lines of code.

First we will develop the algorithm using the simplifying assumption that the loss function

`(θ) is convex, and discuss experiments on a large-scale parse reranking task with a convex

objective. Then (beginning in section 5.5) we will show how the basic algorithm can be

modified to find a local minimum of the regularized objective even for non-convex loss

functions such as deep neural networks.

5.1.1 Notation

Let us establish some notation and a few definitions that will be used in the remainder of the

chapter. Suppose f(θ) = `(θ) + C‖θ‖1 where ` : Rn 7→ R is a smooth function and C > 0.

We will let ∂+
i f(θ) denote the right partial derivative of f at θ with respect to θi:

∂+
i f(θ) = lim

α↓0

f(θ + αei)− f(θ)

α
,

where ei is the ith standard basis vector, with the analogous left variant

∂−i f(θ) = lim
α↓0

f(θ)− f(θ − αei)
α

.

Since ‖ · ‖1 is convex, ∂−i f(θ) ≤ ∂+
i f(θ), for any θ and i. The directional derivative of f at θ

in direction d ∈ Rn is denoted f ′(θ; d), and is defined as

f ′(θ; d) = lim
α↓0

f(θ + αd)− f(θ)

α
.

A vector d is referred to as a descent direction at θ if f ′(θ; d) < 0.

We will also find it convenient to define a few special functions. The signum function

sgn : R 7→ R is defined as

sgn(t) ,


−1 if t < 0,

0 if t = 0,

1 if t > 0.
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The function π : Rn 7→ Rn is parameterized by ξ ∈ {−1, 0, 1}n, where

πi(θ; ξ) ,

θi if sgn(θi) = sgn(ξi),

0 otherwise,

.

and can be interpreted as the orthogonal projection of θ onto an orthant defined by ξ. We

will use the word orthant to refer to any set Ωξ for which there exists a sign vector ξ such that

Ωξ = {θ : π(θ; ξ) = θ}.

Note that our definition of orthant is slightly more general than the standard definition,

which is what would be obtained if we restricted ξi ∈ ±1. With our definition, if ξi = 0 then

θi = 0 for all θ ∈ Ωξ.

5.2 Quasi-Newton algorithms and L-BFGS

We begin our discussion of OWL-QN with a description of its parent, the L-BFGS quasi-

Newton algorithm for unconstrained optimization of a smooth function.

Like Newton’s method, quasi-Newton algorithms iteratively construct a local quadratic

approximation to a function, and then conduct a line search in the direction of the point

that minimizes the approximation. If Hk is the (perhaps approximated) Hessian matrix of a

smooth function f at the point θk, and gk is the gradient of f at θk, the function is locally

modelled by

Q(θ) = f(θk) + (θ − θk)>gk +
1

2
(θ − θk)>Hk(θ − θk).

If Hk is positive definite, the value θ∗ that minimizes Q can be computed analytically

according to

θ∗ = θk −H−1
k gk. (5.2)

A quasi-Newton method will then explore along the ray φ(α) = θk − αH−1
k gk for α ∈ (0,∞)

to obtain the next point θk+1.

While pure Newton’s method uses the exact second-order Taylor expansion at each point,

quasi-Newton algorithms approximate the Hessian using first-order information gathered from
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previously explored points. L-BFGS, as a limited-memory quasi-Newton algorithm, maintains

only curvature information from the most recent m points. Specifically, at step k, it records

the displacement sk , θk − θk−1 and the change in gradient yk , gk − gk−1, discarding the

corresponding vectors from iteration k −m. It then uses {si} and {yi} to estimate Hk, or

more precisely, to estimate the search direction −H−1
k gk, since the full Hessian matrix (which

may be unmanageably large) is not explicitly computed or inverted. The time and memory

requirements of the computation are linear in the number of variables. The details of this

process are not important for the purposes of this paper, and we refer the interested reader

to Nocedal and Wright [136].

5.3 Orthant-wise limited-memory quasi-Newton (OWL-QN) for convex ob-
jectives

Our algorithm is motivated by the following observation about the L1 norm: when restricted

to any given orthant, it is differentiable, and in fact is a linear function of its argument. Hence

the second-order behavior of the regularized objective f on a given orthant is determined by

the loss component alone. This consideration suggests the following strategy: construct a

quadratic approximation that is valid for some orthant containing the current point using the

inverse Hessian estimated from the loss component alone, then search in the direction of the

minimum of the quadratic, restricting the search to the orthant on which the approximation

is valid.

5.3.1 Choosing an orthant and search direction

We propose that a natural choice of orthant to explore is the one containing the current point

θk, and into which the direction of steepest descent of f leads. The complete characterization

of the direction of steepest descent and the chosen orthant is as follows. First, the left and
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right partial derivatives of f are given by

∂±i f(θ) =
∂

∂θi
`(θ) +

C sgn(θi) if θi 6= 0,

±C if θi = 0.

The subdifferential at θ is the Cartesian product of intervals ∂f(θ) = ×ni=1Ji(θ), where

Ji(θ) = [∂−i f(θ), ∂+
i f(θ)]. (When θi 6= 0, ∂−i f(θ) = ∂+

i f(θ), so Ji(θ) contains a single point.)

For any direction d, the directional derivative is2

f ′(θ; d) = sup
g∈∂f(θ)

g′d =
∑
i


∂−i f(θ)vi if vi < 0,

∂+
i f(θ)vi if vi > 0,

0 if vi = 0.

The direction of steepest descent at θ, which we will denote as ♦f(θ), is then

♦if(θ) =


−∂−i f(θ) if ∂−i f(θ) > 0,

−∂+
i f(θ) if ∂+

i f(θ) < 0,

0 if ∂−f(θ) ≤ 0 ≤ ∂+f(θ) .

(5.3)

Note that ♦f(θ) = 0 if and only if 0 ∈ Ji(θ) for all i, hence 0 ∈ ∂f(θ), which means that θ

is the global optimum. Now supposing ♦f(θk) 6= 0, define the sign vector ξk ∈ {−1, 0, 1}n

according to

ξki =


−1 if θki < 0, or θki = 0 and ♦if(θk) < 0,

1 if θki > 0, or θki = 0 and ♦if(θk) > 0,

0 if θki = 0 and vki = 0.

Then the set of points explored by OWL-QN at iteration k is the orthant

Ωk , {θ ∈ Rn : π(θ; ξk) = θ}.

For all θ ∈ Ωk, f(θ) = `(θ) + Cθ′ξk. Furthermore, this definition of Ωk means that for all

directions qk within Ωk (i.e., such that θk+αqk ∈ Ωk for some α > 0) the directional derivative

2This formula for the directional derivative of a convex function comes from Boyd et al. [29].
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is given by f ′(θk; qk) = −(qk)′♦f(θk). So ♦f(θk) plays precisely the role of the negative

gradient of a differentiable function. Now using H−1
k , the L-BFGS approximation to the

inverse Hessian of the loss, and ♦f(θk), the direction of steepest descent of f at θk, we can

approximate f on Ωk with a quadratic function Qk as in (5.2), and search in the direction of

the minimum of Qk, which is given by pk = H−1
k ♦f(θk).

5.3.2 Constrained line search for convex functions

During the line search, in order to ensure that we do not leave the region on which Qk is

valid, we project each explored point orthogonally back on to the set Ωk. That is, we explore

points

θk+1 = π(θk + αpk; ξk),

which amounts to setting to zero any coordinate that moves from positive to negative or

vice-versa. While our line search does not allow any coordinate to cross zero, note that it is

still possible for a coordinate to change sign in two iterations, by moving first from a negative

value (say) to zero, and then moving to a positive value on a subsequent iteration.

Any number of methods could be used to choose α, but for convex loss functions it is

sufficient to use a simple backtracking line search designed to satisfy the a variant of the

Armijo condition. For fixed constants β, γ ∈ (0, 1) and for n = 0, 1, 2, . . ., we accept the first

step size α = βn such that

f(θk+1) ≤ f(θk)− γ(θk+1 − θk)′♦f(θk). (5.4)

This line search exactly generalizes the familiar Armijio condition for a differentiable objective

f(θk+1) ≤ f(θk) + γα∇f(θk)′pk

in the following way. Defining the effective direction qk = 1
α

(θk+1−θk) so that θk+1 = θk+αqk,

our condition can be rewritten as

f(θk+1) ≤ f(θk)− γα(qk)′♦f(θk).
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Choose initial point θ0

S ⇐ {}, Y ⇐ {}
for k = 0 to MaxIters do

Compute steepest descent direction ♦f(θk) (1)

Compute pk ⇐ H−1
k ♦f(θk) using S and Y

Find θk+1 with constrained line search (2)

if termination condition satisfied then

Stop with θ∗ = θk+1

end if

Update S with sk = θk+1 − θk

Update Y with yk = ∇`(θk+1)−∇`(θk) (3)

end for

Figure 5.1: Algorithmic description of OWL-QN

In the standard Armijo condition for a true line search on a differentiable function,∇f(θk)′pk =

f ′(θk; pk) is the directional derivative at θk in the search direction pk, while in ours−(qk)′♦f(θk) =

f ′(θk; qk) is the directional derivative at θk in the effective search direction qk. In appendix C

we prove that this line search is guaranteed to terminate in a finite number of steps.

L-BFGS requires that at every step k, it holds that

(sk)′yk = (θk+1 − θk)′(∇`(θk+1)−∇`(θk)) > 0

in order to ensure that the update is stable and the Hessian approximation Hk is positive

definite. This is known as the curvature condition. For strongly convex objectives, this

condition is always satisfied when sk and yk are generated by any two points θk, θk+1. In

section 5.5 we will discuss how a more sophisticated line search can ensure the curvature

condition holds for non-convex objectives.

A pseudo-code description of OWL-QN is given in Algorithm (5.1). In fact, only a few
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steps of the standard L-BFGS algorithm have been changed. The only differences have been

marked in the figure:

1. The steepest descent vector ♦f(θk) of the regularized objective is used in place of the

negative gradient in (5.2).

2. During the line search, each search point is projected onto the chosen orthant, by

zeroing out coordinates that change sign.

3. The gradient of the unregularized loss alone is used to construct the vectors yk used to

approximate the Hessian.

Starting with an implementation of L-BFGS, altering it to implement OWL-QN requires

changing only about 30 lines of code.

5.4 Experiments with convex loss

We evaluated the algorithm OWL-QN on the task of training conditional log-linear model for

parse reranking. Following Collins [40], the setup is as follows. We are given:

• a procedure GEN that generates a nonempty set of candidate parses GEN(x) ⊆ Y for

each sentence x ∈ X.

• training samples (xi, yi) for i = 1 . . .m, where xi ∈ X is a sentence, and yi ∈ GEN(xi) is

the gold-standard parse for that sentence, and

• a feature mapping Φ : X × Y 7→ Rn, which maps each pair (x, y) to a vector of feature

values.

For any parameter vector w ∈ Rn and sentence x, we define a distribution over parses in

GEN(x) according to the log-linear model

Pw(y|x) =
expw′Φ(x, y)∑

y′∈GEN(x) expw′Φ(x, y′)
.
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Our task is to minimize

`(w) + C||w||1,

where the loss term `(w) is the negative conditional log-likelihood of the training data:

`(w) = −
∑
i

P (yi|xi).

We follow the experimental paradigm of parse reranking outlined by Charniak and Johnson

[32]. We use the same generative baseline model for generating candidate parses, and nearly

the same feature set, which includes the log probability of the parse according to the baseline

model plus 1,219,272 additional features. We optimized the model parameters on sections

2-19 of the Penn Treebank, used sections 20-21 to select the regularization weight C, and

finally evaluated the models on section 22.3 The training set contains 36K sentences, while

the held-out set and the test set have 4K and 1.7K, respectively.

We compared OWL-QN to a fast implementation of the only other special-purpose

algorithm for L1 regularized minimization of which we are aware that can feasibly run at

this scale: that of Kazama and Tsujii [89], hereafter called “K&T”. In K&T, each weight

wi is represented as the difference of two values: wi = w+
i − w−i , with w+

i ≥ 0, w−i ≥ 0. The

L1 penalty term then becomes simply ||w||1 =
∑

iw
+
i + w−i . Thus, at the cost of doubling

the number of parameters, we have a constrained optimization problem with a differentiable

objective that can be solved with general-purpose numerical optimization software. In our

experiments, we used the AlgLib implementation of the L-BFGS-B algorithm of Byrd et al.

[30], which is a C++ port of the FORTRAN code by Zhu et al. [202].4 We also ran two

implementations of L-BFGS (AlgLib’s and our own, on which our implementation of OWL-

QN is based) on the L2-regularized problem, to show that they are compatible in terms of

performance.

3Since we are not interested in parsing performance per se, we did not evaluate on the standard test corpus
used in the parsing literature (section 23).

4The original FORTRAN implementation can be found at
http://users.iems.northwestern.edu/~nocedal/lbfgsb.html, while the AlgLib C++ port is available
at www.alglib.net.
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We used the memory parameter m = 5 for all four algorithms. For the timing results,

we first ran each algorithm until the relative change in the function value, averaged over the

previous five iterations, dropped below τ = 10−5. We report the CPU time and the number

of function evaluations required for each algorithm to reach within 1% of the smallest value

found by either of the two algorithms. We also report the number of function evaluations so

that the algorithms can be compared in an implementation-independent way, as typically

function evaluation is by far the most expensive operation.

Although we are primarily interested in the efficiency of training, we first report the

performance of the learned parse models, to demonstrate that the models are competitive.

Performance is measured with the PARSEVAL metric, i.e., the F-score over labeled brackets.

These results are summarized in Table 5.1. In the table, “Baseline” refers to the generative

model used by GEN. “Oracle” shows the topline of ideal performance if the best parse from

GEN (according to F-score) were always selected by the re-ranking model. Both types of model

performed significantly better than the baseline, and may indeed be considered close to the

state-of-the-art. For comparison, the model of Charniak and Johnson [32] also achieved 91.6%

F-score on the same test set.5 Interestingly, the two regularizers performed almost identically.

However, as we will see, the trained L1 model was much sparser and in fact trained more

quickly.

Figure 5.2 shows the F-scores of the the trained models as the regularization constant

C is varied by an order of magnitude. Both types of regularizer have a fairly broad region

of near optimal performance on this task, although it seems L2 is slightly more forgiving of

deviations from the maximum.

The results of CPU timing experiments using the same values of C are shown in Table

5.2. We stopped K&T after 946 iterations when it had reached the value 7.34 × 104, still

5.7% higher than the best value found by OWL-QN. The difference in both runtime and

number of function evaluations between K&T and OWL-QN is quite dramatic. Perhaps

5Mark Johnson, personal communication, May 2007.
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C dev test

Baseline 0.8925 0.8986

Oracle 0.9632 0.9687

L2 (L-BFGS) 13.0 0.9103 0.9163

L1 (OWL-QN) 3.2 0.9101 0.9165

Table 5.1: Chosen value of C and F-scores of the models used in the study.

func evals func eval time L-BFGS dir time other time total time

OWL-QN 54 707 (97.7) 10.4 (1.4) 6.9 (1.0) 724

K&T (AlgLib) >946 16043 (91.2) 1555 (8.8) >17598

L-BFGS (our impl.) 109 1400 (97.7) 22.4 (1.5) 10 (0.7) 1433

L-BFGS (AlgLib) 107 1384 (83.4) 276 (16.6) 1660

Table 5.2: CPU time and function evaluations to reach within 1% of the best value found

by any algorithm. All times are in seconds. Values in parentheses show percentages of total

time.
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Figure 5.2: Dev set performance of L1- and L2-regularized models on parse reranking task as

a function of regularization weight C.
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surprisingly, OWL-QN converges even faster than our implementation of L-BFGS run on

the L2-regularized objective. Note also that the runtime of all algorithms is dominated by

evaluations of the objective function, and that otherwise the most expensive step of OWL-QN

is the computation of the L-BFGS direction, an operation that is shared with L-BFGS. The

operations that are unique to OWL-QN, specifically the orthant projection and computation

of the steepest descent direction, took an almost negligible amount of time.

A more complete picture of the training efficiency of the two models can be gleaned by

plotting the value of the objective as a function of the number of function calls, shown in

figure 5.3. Comparing OWL-QN to K&T in figure 5.3b to 5.3a we see that OWL-QN reaches

a near optimal solution very quickly while K&T does not appear to have converged after

being allowed far greater run time.

Since our experiments on OWL-QN and K&T are based on different implementations of

L-BFGS, it is important to establish that the observed differences in performance are due

to the algorithms themselves and not to their differing implementations. We can do this by

comparing the performance of the two implementations on the L2-regularized version of the

objective to ensure they are comparable, shown in figure 5.4. Comparing figures 5.4b and

5.4a, we see that our own implementation of L-BFGS is very closely comparable to AlgLib’s

implementation. Therefore the differences between 5.3b amd 5.3a can safely be attributed to

the algorithmic differences between OWL-QN and K&T, not to significant differences in the

efficiency of our own L-BFGS implementation compared to AlgLib’s.

Since its ability to learn a sparse parameter vector is an important advantage of the L1

regularizer, we examine how the number of non-zero weights changes during the course of

optimization in figure 5.5. Again, note the change in x-axis. Both algorithms start with a

significant fraction of features (5%-12%) and prune them away as the algorithm progresses,

with OWL-QN producing a sparse model rather more quickly. It is clear from this figure that

OWL-QN not only finds a near optimal solution very quickly, but it also prunes away the

vast majority of unneeded features.

Although here we have focused on the runtime behavior of OWL-QN for a single convex
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Table 1: Chosen value of C and F-scores of the models
used in the study.

C dev test
Baseline 0.8925 0.8986
Oracle 0.9632 0.9687
L2 (l-bfgs) 13.0 0.9103 0.9163
L1 (owl-qn) 3.2 0.9101 0.9165

We used the memory parameter m = 5 for all four al-
gorithms. For the timing results, we first ran each al-
gorithm until the relative change in the function value,
averaged over the previous five iterations, dropped be-
low τ = 10−5. We report the CPU time and the num-
ber of function evaluations required for each algorithm
to reach within 1% of the smallest value found by ei-
ther of the two algorithms. We also report the number
of function evaluations so that the algorithms can be
compared in an implementation-independent way.

4.1. Results

Although we are primarily interested in the efficiency
of training, we first report the performance of the
learned parse models. Performance is measured with
the PARSEVAL metric, i.e., the F-score over labelled
brackets. These results are summarized in Table 1.
“Baseline” refers to the generative model used by GEN.
“Oracle” shows ideal performance if the best parse
from GEN (according to F-score) were always selected
by the re-ranking model. Both types of model per-
formed significantly better than the baseline, and may
indeed be considered state-of-the-art. (For compari-
son, the model of Charniak and Johnson (2005) also
achieved 91.6% F-score on the same test set.5) Inter-
estingly, the two regularizers performed almost iden-
tically: the Wilcoxon paired signed-rank test did not
find the difference statistically significant.

The results of CPU timing experiments using the same
values of C are shown in Table 2. We stopped K&T
after 946 iterations when it had reached the value
7.34× 104, still 5.7% higher than the best value found
by owl-qn. The difference in both runtime and num-
ber of function evaluations between K&T and owl-
qn is quite dramatic. Surprisingly, owl-qn converges
even faster than our implementation of l-bfgs run on
the L2-regularized objective. Note also that the run-
time of all algorithms is dominated by evaluations of
the objective function, and that otherwise the most
expensive step of owl-qn is the computation of the
l-bfgs direction.

5Mark Johnson, personal communication, May 2007.
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Figure 1: L1-regularized objective value during the course
of optimization with owl-qn
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Figure 2: L1-regularized objective value during the course
of optimization with K&T

A more complete picture of the training efficiency of
the two models can be gleaned by plotting the value
of the objective as a function of the number function
calls, shown in Figures 1 through 4. (Note the differ-
ences in scale of the x-axis.)

Since its ability to learn a sparse parameter vector is an
important advantage of the L1 regularizer, we exam-
ine how the number of non-zero weights changes during
the course of optimization in Figures 5 and 6. Both
algorithms start with a significant fraction of features
(5%-12%) and prune them away as the algorithm pro-
gresses, with owl-qn producing a sparse model rather
more quickly. Interestingly, owl-qn interrupts this
pattern with a single sharp valley at the start of the
second iteration (which is actually the sixth function
evaluation, due to the line search). We believe the
cause of this is that the model gives a large weight

(a) K&TScalable Training of L1-Regularized Log-Linear Models

Table 1: Chosen value of C and F-scores of the models
used in the study.

C dev test
Baseline 0.8925 0.8986
Oracle 0.9632 0.9687
L2 (l-bfgs) 13.0 0.9103 0.9163
L1 (owl-qn) 3.2 0.9101 0.9165

We used the memory parameter m = 5 for all four al-
gorithms. For the timing results, we first ran each al-
gorithm until the relative change in the function value,
averaged over the previous five iterations, dropped be-
low τ = 10−5. We report the CPU time and the num-
ber of function evaluations required for each algorithm
to reach within 1% of the smallest value found by ei-
ther of the two algorithms. We also report the number
of function evaluations so that the algorithms can be
compared in an implementation-independent way.

4.1. Results

Although we are primarily interested in the efficiency
of training, we first report the performance of the
learned parse models. Performance is measured with
the PARSEVAL metric, i.e., the F-score over labelled
brackets. These results are summarized in Table 1.
“Baseline” refers to the generative model used by GEN.
“Oracle” shows ideal performance if the best parse
from GEN (according to F-score) were always selected
by the re-ranking model. Both types of model per-
formed significantly better than the baseline, and may
indeed be considered state-of-the-art. (For compari-
son, the model of Charniak and Johnson (2005) also
achieved 91.6% F-score on the same test set.5) Inter-
estingly, the two regularizers performed almost iden-
tically: the Wilcoxon paired signed-rank test did not
find the difference statistically significant.

The results of CPU timing experiments using the same
values of C are shown in Table 2. We stopped K&T
after 946 iterations when it had reached the value
7.34× 104, still 5.7% higher than the best value found
by owl-qn. The difference in both runtime and num-
ber of function evaluations between K&T and owl-
qn is quite dramatic. Surprisingly, owl-qn converges
even faster than our implementation of l-bfgs run on
the L2-regularized objective. Note also that the run-
time of all algorithms is dominated by evaluations of
the objective function, and that otherwise the most
expensive step of owl-qn is the computation of the
l-bfgs direction.

5Mark Johnson, personal communication, May 2007.
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of optimization with K&T

A more complete picture of the training efficiency of
the two models can be gleaned by plotting the value
of the objective as a function of the number function
calls, shown in Figures 1 through 4. (Note the differ-
ences in scale of the x-axis.)

Since its ability to learn a sparse parameter vector is an
important advantage of the L1 regularizer, we exam-
ine how the number of non-zero weights changes during
the course of optimization in Figures 5 and 6. Both
algorithms start with a significant fraction of features
(5%-12%) and prune them away as the algorithm pro-
gresses, with owl-qn producing a sparse model rather
more quickly. Interestingly, owl-qn interrupts this
pattern with a single sharp valley at the start of the
second iteration (which is actually the sixth function
evaluation, due to the line search). We believe the
cause of this is that the model gives a large weight

(b) OWL-QN

Figure 5.3: L1-regularized objective value during optimization with K&T and OWL-QN for

various values of regularization weight C. Note the difference in scale of the x-axis.
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Table 2: Time and function evaluations to reach within 1% of the best value found. All times are in seconds. Figures in
parentheses show percentages of total time.

func evals func eval time l-bfgs dir time other time total time
owl-qn 54 707 (97.7) 10.4 (1.4) 6.9 (1.0) 724
K&T (AlgLib) > 946 16043 (91.2) 1555 (8.8) > 17598
l-bfgs (our impl.) 109 1400 (97.7) 22.4 (1.5) 10 (0.7) 1433
l-bfgs (AlgLib) 107 1384 (83.4) 276 (16.6) 1660
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Figure 3: L2-regularized objective value during the course
of optimization with our l-bfgs implementation
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Figure 4: L2-regularized objective value during the course
of optimization with AlgLib’s l-bfgs

to many features on the first iteration, only to send
most of them back toward zero on the second. On the
third iteration some of those features receive weights
of the opposite sign, and from there the set of non-zero
weights is more stable.6

6Many thanks to Mark Johnson for suggesting this ex-
planation.
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Figure 5: Number of non-zero weights during the course of
optimization with owl-qn
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Figure 6: Number of non-zero weights during the course of
optimization with K&T

Although here we have focused on the runtime behav-
ior of owl-qn for a single problem, we have also used
it to train L1-regularized models with up to ten million
variables for a variety of other problems in NLP, in-
cluding part-of-speech tagging, Chinese word segmen-
tation and language modeling. This work is described
in Gao et al. (2007).

(a) L-BFGS (AlgLib’s implementation)
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parentheses show percentages of total time.

func evals func eval time l-bfgs dir time other time total time
owl-qn 54 707 (97.7) 10.4 (1.4) 6.9 (1.0) 724
K&T (AlgLib) > 946 16043 (91.2) 1555 (8.8) > 17598
l-bfgs (our impl.) 109 1400 (97.7) 22.4 (1.5) 10 (0.7) 1433
l-bfgs (AlgLib) 107 1384 (83.4) 276 (16.6) 1660
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to many features on the first iteration, only to send
most of them back toward zero on the second. On the
third iteration some of those features receive weights
of the opposite sign, and from there the set of non-zero
weights is more stable.6

6Many thanks to Mark Johnson for suggesting this ex-
planation.
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Although here we have focused on the runtime behav-
ior of owl-qn for a single problem, we have also used
it to train L1-regularized models with up to ten million
variables for a variety of other problems in NLP, in-
cluding part-of-speech tagging, Chinese word segmen-
tation and language modeling. This work is described
in Gao et al. (2007).

(b) L-BFGS (our own implementation)

Figure 5.4: L2-regularized objective value during optimization with L-BFGS, comparing our

own implementation to AlgLib’s.
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Table 2: Time and function evaluations to reach within 1% of the best value found. All times are in seconds. Figures in
parentheses show percentages of total time.

func evals func eval time l-bfgs dir time other time total time
owl-qn 54 707 (97.7) 10.4 (1.4) 6.9 (1.0) 724
K&T (AlgLib) > 946 16043 (91.2) 1555 (8.8) > 17598
l-bfgs (our impl.) 109 1400 (97.7) 22.4 (1.5) 10 (0.7) 1433
l-bfgs (AlgLib) 107 1384 (83.4) 276 (16.6) 1660
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to many features on the first iteration, only to send
most of them back toward zero on the second. On the
third iteration some of those features receive weights
of the opposite sign, and from there the set of non-zero
weights is more stable.6

6Many thanks to Mark Johnson for suggesting this ex-
planation.
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Although here we have focused on the runtime behav-
ior of owl-qn for a single problem, we have also used
it to train L1-regularized models with up to ten million
variables for a variety of other problems in NLP, in-
cluding part-of-speech tagging, Chinese word segmen-
tation and language modeling. This work is described
in Gao et al. (2007).

(a) K&T
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Table 2: Time and function evaluations to reach within 1% of the best value found. All times are in seconds. Figures in
parentheses show percentages of total time.

func evals func eval time l-bfgs dir time other time total time
owl-qn 54 707 (97.7) 10.4 (1.4) 6.9 (1.0) 724
K&T (AlgLib) > 946 16043 (91.2) 1555 (8.8) > 17598
l-bfgs (our impl.) 109 1400 (97.7) 22.4 (1.5) 10 (0.7) 1433
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to many features on the first iteration, only to send
most of them back toward zero on the second. On the
third iteration some of those features receive weights
of the opposite sign, and from there the set of non-zero
weights is more stable.6

6Many thanks to Mark Johnson for suggesting this ex-
planation.

0 50 100 150
0

2

4

6

8

10

12
x 10

4

Number of function evaluations

N
um

be
r 

of
 n

on
−

ze
ro

 w
ei

gh
ts

 

 
C = 3.0
C = 3.2
C = 3.5
C = 4.0
C = 5.0

Figure 5: Number of non-zero weights during the course of
optimization with owl-qn

0 100 200 300 400 500 600 700
0

2

4

6

8

10

12
x 10

4

Number of function evaluations

N
um

be
r 

of
 n

on
−

ze
ro

 w
ei

gh
ts

 

 
C = 3.0
C = 3.2
C = 3.5
C = 4.0
C = 5.0

Figure 6: Number of non-zero weights during the course of
optimization with K&T

Although here we have focused on the runtime behav-
ior of owl-qn for a single problem, we have also used
it to train L1-regularized models with up to ten million
variables for a variety of other problems in NLP, in-
cluding part-of-speech tagging, Chinese word segmen-
tation and language modeling. This work is described
in Gao et al. (2007).

(b) OWL-QN

Figure 5.5: Number of non-zero weights during optimization with K&T vs. OWL-QN for

various values of regularization weight C. Note the difference in scale of the x-axis.
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problem, we have also used it to train L1-regularized log-linear models with up to ten million

variables for a variety of other problems in NLP. In Gao et al. [53] we applied OWL-QN to

the problems of part-of-speech tagging, Chinese word segmentation and language modeling.

In all cases, OWL-QN trained faster than L-BFGS on the L2-regularized problem, ended up

with only a small fraction of the available features, and achieved nearly identical evaluation

performance.

5.5 OWL-QN for non-convex loss functions

Many loss functions of interest in representation learning, in particular the error of a deep

neural network, are very far from convex. However an extension of the basic OWL-QN

algorithm allows it to run on instances where the loss function ` is non-convex. The issue, as

discussed in section 5.3.1, is that in order for the L-BFGS update to be stable and produce a

positive-definite Hessian approximation Hk, it must be the case at every iteration that

(sk)′yk = (θk+1 − θk)′(∇`(θk+1)−∇`(θk)) > 0. (5.5)

This holds trivially when ` is strongly convex, but if ` is non-convex we must perform a more

careful line search to ensure that it holds.

Whereas our backtracking line search guaranteed only the sufficient decrease condition (5.6)

below, we will now seek a point θk+1 that also satisfies the curvature condition (5.7):

f(θk+1) ≤ f(θk)− γ1α(qk)′♦f(θk) (5.6)

|(qk)′(∇`(θk+1) + Cξk)| ≤ γ2(qk)′♦f(θk), (5.7)

where again qk = 1
α

(θk+1 − θk) is the “effective search direction”, and γ1 ∈ (0, 1) and

γ2 ∈ (γ1, 1) are constants. Since qk is a descent direction within Ωk, (5.7) implies that

(qk)′(∇`(θk+1) + Cξk) ≥ γ2(qk)′(∇`(θk) + Cξk)

> (qk)′(∇`(θk) + Cξk),
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and therefore (qk)′∇`(θk+1) > (qk)′∇`(θk), implying (5.5). Conditions (5.6) and (5.7) are

analogous to the strong Wolfe conditions for smooth optimization. Nocedal and Wright

[136] describe a line search for the Wolfe conditions that can be used to satisfy our modified

conditions. The algorithm is somewhat involved so we will not reproduce it here. To use it, it

is only necessary to substitute −(qk)′♦f(θk) in place of (pk)′∇f(θk), and (qk)′(∇`(θk+1)+Cξk)

in place of (pk)′∇f(θk+1).

5.6 Experiments with non-convex loss

We demonstrate the effectiveness of OWL-QN on a non-convex objective by optimizing the

loss of a deep feedforward neural network. The network is trained on the MNIST dataset

to minimize the softmax error. We use three hidden layers with 1024 hidden units each.

The activation function of all hidden units is the modified cube-root function described in

section 4.4.1. Both L2 and L1 regularization were applied by adding the squared L2 penalty

to the loss ` and treating the L1 penalty with OWL-QN.6 The network was pretrained with

a denoising autoencoder, including dropout noise in the encoding layer, using stochastic

gradient descent over minibatches of size 64 for ten epochs. After fine-tuning, the error of the

resulting classifier was surprisingly insensitive to the weights of the regularizers within a range

of two orders of magnitude. Therefore our results are based on the values that produced the

maximal parameter sparsity.

In figure 5.6 we show the number of errors on the test set during training. Our purpose is

to demonstrate that OWL-QN can optimize a highly non-convex function, not to achieve

state-of-the-art results on MNIST. Nevertheless our simple multilayer perceptron trained

with OWL-QN achieves a final error rate of around 2%, which is reasonable for a baseline

classifier.

More interesting is the degree of sparsity shown to be achievable. Although classification

performance remains essentially constant after about 200 epochs, the number of active

6The sum of squared-L2 and L1 penalties is known as the “elastic net” regularizer [203].
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Figure 5.6: MNIST test set errors during training with OWL-QN.

synapses is reduced dramatically as training continues. Ultimately the algorithm learns a

competitive classifier that uses only about 0.4% of the available connections. Astonishingly,

this means that each unit only receives input from about four others, on average. Figure 5.7

shows the number of non-zero weights during training, with linear- and log-scaled y-axes to

illustrate performance both at the beginning and in the tail. After 1000 epochs, only 10% of

the connections remain, and by 3000 only 1% remain. Further gains are slow, but possible

given enough training time. The sparsity bottoms out at 0.36% after around 12000 function

evaluations.

Although the L1 regularization did not appear to yield gains in classification accuracy on

this task, the remarkable degree of sparsity may be useful in its own right. The resulting model

has been compressed to a tiny fraction of the original size, which may be of significant utility

when storage space is an issue as in with mobile devices. Also, if a sparse representation of the

MLP weight matrices were employed, classification could be performed with significantly less

computation. This property could be important to enable such networks to run on low-power
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Figure 5.7: Number of non-zero weights during training of classifier for MNIST. Plots with

both linear and logarithmic y-axes are shown to observe behavior early in optimization as

well as in the tail.
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portable devices.

5.7 Conclusions

We have presented an algorithm OWL-QN for efficiently training L1-regularized representation

learning models with up to millions of variables. We tested the algorithm on several very

large-scale NLP tasks, and found that it was considerably faster than an alternative algorithm

for L1 regularization, and even somewhat faster than L-BFGS on the analogous L2-regularized

problem. An extension of the algorithm allows it to run when the objective is non-convex.

Our experiments with a multilayer perceptron classifier showed that it can find a competitive

parameter vector that uses only a miniscule fraction of the weights.

Since its publication [6], OWL-QN has been widely verified as among the fastest exist-

ing algorithms for large-scale L1-regularized convex optimization [53, 156, 157, 200]. New

algorithms have also been developed that may rival OWL-QN on very large problems. In

particular, accelerated gradient algorithms for non-smooth optimization [132] seem very

promising, as well as proximal quasi-Newton algorithms [17, 103]. For an overview of some of

these methods (including many others that probably would not scale to very large problems,

like coordinate-descent-type algorithms), see Bach et al. [13]. Becker and Fadili [17] do con-

duct an empirical comparison with OWL-QN on two medium-scale (thousands of variables)

problems and find their algorithm to be faster than OWL-QN on one of them. However,

an empirical comparison using large-scale (millions of variables) objectives has not yet been

performed. Also we are not aware of any newer algorithms that have been used to find a

local minimum of a large scale non-convex objective with L1 regularization, as we have done

with OWL-QN.

In future work, it would be valuable to perform a careful empirical comparison of OWL-QN

to newer algorithms on real large-scale problems of practical interest. Another important

contribution would be to prove asymptotic convergence of the non-convex formulation of

OWL-QN to a local minimum. Unfortunately we are not optimistic that any useful result can

be proved regarding the rate of convergence of OWL-QN, since even L-BFGS, a thirty-five
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year old algorithm, is not known to converge any faster than gradient descent, although in

practice it is much more efficient.
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Chapter 6

CONCLUSIONS

The past decade (spanning 2006–2016) has seen an explosion in the number of proposed

variations on deep neural network architectures and training methods, starting with the first

effective greedy layerwise generative pretraining methods in 2006, and continuing through

the development of specialized architectures for images, audio, and text, as well as minor

modifications that can dramatically improve performance, such as dropout training and the

use of rectified linear units. In this thesis I have attempted to contribute to this research

agenda by describing and justifying several novel techniques to advance the state of the art

in deep representation learning.

In the conclusions to chapters 3–5, I discussed some possible extensions and future research

directions. Meanwhile, other researchers have already begun to extend the work presented

here and apply it in novel scenarios. DCCA was recently used to learn word embeddings of

multilingual data [111], and applied to images with captions (including convolutional layers

for the images) for caption ranking [198]. Wang et al. [193] describe an extension of DCCA

called deep canonically correlated autoencoder that attempts to learn representations of two

views that are not only correlated, but also retain information about their input, via an

autoencoder term in the training objective. This may make the learned representations more

useful for some tasks. A stochastic optimization procedure for DCCA, alleviating its large

memory requirements, was recently described [194].

Orthant-wise quasi-Newton optimization has been widely verified as among the fastest

existing algorithms for large-scale L1-regularized convex optimization [53, 156, 157, 200] and

used to learn sparse representation models for many different tasks (although not as yet for

models with non-convex objectives like the MLP used in chapter 5, since the published paper
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describing OWL-QN presented only the version for convex objectives) [139, 155, 143, 54, 184].

It has also been extended to Lp pseudo-norm regularization for p < 1 [93].

6.1 The future of representation learning

It is my intention and hope that the work described here will continue to be tested on

new tasks and in combination with other advancements in the field and perhaps inspire

new directions toward more effective deep representations for hard AI tasks. At the same

time, I believe that the most important developments in the near future of representation

learning will come from an area that I did not have the opportunity to address in this thesis:

reinforcement learning.

The majority of work in the resurgence of neural networks of the last decade has focused

on static tasks, where data such as images or sentences are presented to the learning algorithm

in discrete, disconnected units. Even networks operating on data with a temporal component,

such as audio, typically operate on an entire clip at once (like our SDNN) rather than

processing audio continuously in real time. In contrast, humans presumably maintain an

evolving representation through time. The major exception is game playing, whether video

game playing [123, 124, 61] or board games like go [162], in which deep reinforcement learning

is already effectively used to determine actions in sequence. Very recently, similar approaches

have been extended to continuous control tasks [108, 15, 67]. Part of what makes processing in

continuous time difficult is that it is not sufficient to make decisions independently: one must

also take into account the effect of current decisions on future outcomes. Two problems that

are considered difficult for classical reinforcement learning are credit assignment (determining

which of all past decisions is responsible for the current reward) and the exploration vs.

exploitation tradeoff (should I do what worked well before, or try something new that may be

better?). Similar issues confront a representation learning module that is expected to operate

in real time. Which aspects of past representations could have predicted the current reward

or informed the current choice of action? Is my current representation mapping sufficient

to make optimal decisions, or should I attempt to model other aspects of the situation that
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might turn out to be useful?

Reinforcement learning has a rich history and current developments are occurring at a

rapid pace; I could not possibly hope to give an adequate survey of the area in this conclusion.

Instead I would like to argue at a high level why I believe neural systems operating in real

time are the future of deep representation learning.

It is clear that real-time decision making systems are necessary to solve real-time tasks

like robot control and game playing. But it is my belief that even tasks that have so far

been addressed as static, such as image and speech recognition, will be ultimately solved

by real-time systems that make sequential decisions with an evolving representation. Steps

in this direction have already been taken, for example the machine translation system of

Bahdanau et al. [14] (described earlier in section 2.2), which makes sequential decisions about

which tokens of the target language to generate based on an attentional mechanism that

is allowed to skip around the source sentence. Humans performing almost any complex

task to which machine learning has been applied certainly employ a temporally evolving

representation.

Take for example image recognition: upon presentation, a human will scan around the

image, focusing on various salient areas, where earlier impressions impact the trajectory taken

by the attentional mechanism in service of the goal to understand and describe the scene. If

something about the scene is confusing, further processing is directed toward resolution of the

ambiguity. If we imagine the task to be labeling the image, the final answer might be given

when some threshold of confidence has been reached or further scanning is not revealing any

helpful changes to the representation. This is all in strong contrast to current state-of-the-art

static convolutional neural networks for image recognition, which compute a precisely defined

function in a constant amount of time mapping the image to a label.

It is true that regarding some tasks with a temporal component that have so far been

addressed with static methods, like speech recognition, directed attentional scanning may not

be as important for humans. Even so, it is clear that chopping the input into discrete units

(utterances, in the case of speech) that have no relationship to each other misses important
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dependencies that must be incorporated for optimal results. Humans understand speech or

video in a continuous way, with earlier representations having a major influence on later

representations, via attention, or association, or otherwise. Removing long-term temporal

dependencies from consideration is a major simplifying assumption. It is clear that at some

point systems for such tasks must add time back into consideration for machine learning

systems to rival human abilities.

What would a representation learning module that operates in real-time look like? Some

contenders have already been proposed, for example recurrent neural networks, or elaborations

like the long short-term memory RNN. Sutskever et al. [176] use RNNs to generate text,

maintaining an evolving neural representation, although the model cannot truly be said

to operate in continuous time as it reads and generates one character of text per frame.

Spiking neural models, which can be trained using spike-timing-dependent plasticity, a model

of learning in biological neurons [165] are another candidate. Representation models using

spiking neurons are already beginning to show promise for tasks like image recognition where

static deep networks are currently the best performing models [137, 179, 24]. In any case,

following the success of generative pretraining strategies for learning static representations,

I believe the most promising general approach for learning dynamic representations would

involve generatively modeling the input stream, producing representations that better enable

the model to predict upcoming values. In the case of a hierarchical representation, this

would mean having higher level representations that are useful in predicting future values of

the lower level representation. In a reinforcement learning context, there may be a tradeoff

between representations that help to predict the input and those that help to choose optimal

actions. It could also be the case that a generative approach alone will yield a sufficiently

rich representation to make good decisions, particularly if the reward signal and the agent’s

own action sequence are also generatively modeled along with the observations.

In my emphasis on real-time learning systems for the future I don’t mean to imply that

there is no need for further research on static models. First of all, given the great difficulty

of reinforcement learning on complex tasks and many other challenges ahead, it may be
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many years before true temporally evolving representation learning models outperform static

models, and so the latter will continue to be useful in the interim. Also methods developed

for static learning tasks may still be useful as a component in time-dynamic systems. For

example, DeepMind’s champion AlphaGo go playing system uses static deep neural networks

to evaluate board position and propose moves [162].

To summarize, I believe further research into static deep representation learning systems

is necessary to improve on recent breakthroughs, to develop better-performing systems for

use in the short term, and perhaps to create methods and techniques that will be used as

components of temporally embodied representation learning systems of the future. I see my

contributions as described in this thesis as a strand in that agenda. At the same time, I

believe the most important directions for high-impact research are toward deep reinforcement

learning and temporally evolving representation learning modules. Such systems will form the

backbone of machine learning systems of the future that will surpass human-level performance

at the most difficult tasks.



93

Bibliography

[1] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, Li Deng, Gerald Penn, and

Dong Yu. Convolutional neural networks for speech recognition. Audio, Speech, and

Language Processing, IEEE/ACM Transactions on, 22(10):1533–1545, 2014.

[2] S. Akaho. A kernel method for canonical correlation analysis. In Proc. Int’l Meeting on

Psychometric Society, 2001.

[3] T. W. Anderson. An Introduction to Multivariate Statistical Analysis (2nd edition).

John Wiley and Sons, 1984.

[4] Galen Andrew and Jeff Bilmes. Sequential deep belief networks. In International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4265–4268.

IEEE, 2012.

[5] Galen Andrew and Jeff Bilmes. Backpropagation in sequential deep neural networks.

In NIPS, 2013.

[6] Galen Andrew and Jianfeng Gao. Scalable training of l1-regularized log-linear models.

In Proceedings of the 24th international conference on Machine learning, pages 33–40.

ACM, 2007.

[7] Galen Andrew, Raman Arora, Jeff Bilmes, and Karen Livescu. Deep canonical correla-

tion analysis. In Proceedings of the 30th International Conference on Machine Learning,

pages 1247–1255, 2013.

[8] R. Arora and K. Livescu. Kernel CCA for multi-view learning of acoustic features using

articulatory measurements. In Symp. on Machine Learning in Speech and Language

Processing, 2012.



94

[9] R. Arora and K. Livescu. Multi-view CCA-based acoustic features for phonetic recog-

nition across speakers and domains. In Int. Conf. on Acoustics, Speech, and Signal

Processing, 2013.

[10] Hideki Asoh and Osamu Takechi. An approximation of nonlinear canonical correlation

analysis by multilayer perceptrons. In ICANN94, pages 713–716. Springer, 1994.

[11] F. R. Bach. Consistency of trace norm minimization. J. Mach. Learn. Res., 9:1019–1048,

June 2008.

[12] F. R. Bach and M. I. Jordan. Kernel independent component analysis. J. Mach. Learn.

Res., 3:1–48, 2002.

[13] Francis Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozinski. Optimiza-

tion with sparsity-inducing penalties. Foundations and Trends R© in Machine Learning,

4(1):1–106, 2012.

[14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation

by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[15] David Balduzzi and Muhammad Ghifary. Compatible value gradients for reinforcement

learning of continuous deep policies. arXiv preprint arXiv:1509.03005, 2015.

[16] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian Goodfellow,

Arnaud Bergeron, Nicolas Bouchard, David Warde-Farley, and Yoshua Bengio. Theano:

new features and speed improvements. arXiv preprint arXiv:1211.5590, 2012.

[17] Stephen Becker and Jalal Fadili. A quasi-newton proximal splitting method. In Advances

in Neural Information Processing Systems, pages 2618–2626, 2012.

[18] Y. Bengio and O. Delalleau. Justifying and generalizing contrastive divergence. Neural

Computation, 21(6):1601–1621, 2009.



95

[19] Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, Universit De Montral,

and Montral Qubec. Greedy layer-wise training of deep networks. In In NIPS. MIT

Press, 2007.

[20] Yoshua Bengio, Aaron Courville, and Pierre Vincent. Representation learning: A review

and new perspectives. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 35(8):1798–1828, 2013.

[21] J. S. Benson and J. J. More. A limited memory variable metric method for bound

constraint minimization, 2001.

[22] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.

The Journal of Machine Learning Research, 13(1):281–305, 2012.

[23] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,

Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano:

a cpu and gpu math expression compiler. In Proceedings of the Python for scientific

computing conference (SciPy), volume 4, page 3. Austin, TX, 2010.

[24] Olivier Bichler, Damien Querlioz, Simon J Thorpe, Jean-Philippe Bourgoin, and

Christian Gamrat. Extraction of temporally correlated features from dynamic vision

sensors with spike-timing-dependent plasticity. Neural Networks, 32:339–348, 2012.

[25] M. B. Blaschko and C. H. Lampert. Correlational spectral clustering. In CVPR, 2008.

[26] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. the

Journal of machine Learning research, 3:993–1022, 2003.

[27] Ondrej Bojar, Rajen Chatterjee, Christian Federman, Barry Haddow, Matthias Huck,

Chris Hokamp, Philipp Koehn, Varvara Logacheva, Christof Monz, Matteo Negri, Matt

Post, Carolina Scarton, Lucia Specia, and Marco Turchi. Findings of the 2015 workshop

on statistical machine translation. In Proceedings of the Tenth Workshop on Statistical

Machine Translation, pages 1–46. Association for Computational Linguistics, 2015.



96
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Appendix A

PROOF OF CLAIM IN DERIVATION OF SDNN GRADIENT

Proposition 1. If A,B, and C are ±1-valued random variables with A independent of C

given B, then

Cov(A,C) =
Cov(A,B) Cov(B,C)

VarB
.

Proof. The following parameterization of the joint distribution over A,B, and C will simplify

the proof. Let b = Pr(B = 1) and,

a+ = E [A|B = 1] , c+ = E [C|B = 1] ,

a− = E [A|B = −1] , c− = E [C|B = −1] .

Now we can derive

E [B] = 2b− 1,

E [A] = ba+ + (1− b)a−,

E [C] = bc+ + (1− b)c−,

and

E [AB] = ba+ − (1− b)a−,

E [AC] = ba+c+ + (1− b)a−c−,

and

Var(B) = 4b(1− b).
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So

Cov(A,B) = E [AB]− E [A]E [B]

= ba+ − (1− b)a− − (ba+ + (1− b)a−)(2b− 1)

= 2b(1− b)(a+ − a−),

and

Cov(A,C) = E [AC]− E [A]E [C]

= ba+c+ + (1− b)a−c− − (ba+ + (1− b)a−)(bc+ + (1− b)c−)

= b(1− b)(a+ − a−)(c+ − c−).

Therefore

Cov(A,B) Cov(B,C) = 2b(1− b)(a+ − a−) · 2b(1− b)(c+ − c−)

= 4b(1− b) · b(1− b)(a+ − a−)(c+ − c−)

= Var(B) Cov(A,C).
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Appendix B

DERIVATION OF DCCA GRADIENT

To perform backpropagation, we must be able to compute the gradient of f = corr(H1, H2)

defined in Equation (4.10). Denote by ∇ij the matrix of partial derivatives of f with respect

to the entries of Σ̂ij . Let the singular value decomposition of T = Σ̂
−1/2
11 Σ̂12Σ̂

−1/2
22 be given as

T = UDV ′. First we will show that

∇12 = Σ̂
−1/2
11 UV ′Σ̂

−1/2
22 (B.1)

and

∇11 = −1

2
Σ̂
−1/2
11 UDU ′Σ̂

−1/2
11 (B.2)

(resp. ∇22). To prove (B.1), we use the fact that for a matrix X, ∇||X||tr = UV ′, where

X = UDV ′ is the singular value decomposition of X [11]. Using the chain rule:

(∇12)ab =
∂f

∂(Σ̂12)ab

=
∑
cd

∂f

∂Tcd
· ∂Tcd

∂(Σ̂12)ab

=
∑
cd

(UV ′)cd · (Σ̂−1/2
11 )ca(Σ̂

−1/2
22 )bd

= (Σ̂
−1/2
11 UV ′Σ̂

−1/2
22 )ab

For (B.2) we use the identity ∇ trX1/2 = 1
2
X−1/2. This is easily derived from Theorem 1

of Lewis [107]:

Theorem 1. A matrix function f is called a spectral function if it depends only on the set

of eigenvalues of its argument. That is, for any positive definite matrix X and any unitary

matrix V , f(X) = f(V XV ′). If f is a spectral function, and X is positive definite with
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eigendecomposition X = UDU ′, then

∂f(X)

∂X
= U diag

∂f(D)

∂D
U ′. (B.3)

Now we can proceed

(∇11)ab =
∂f

∂(Σ̂11)ab

=
∑
cd

∂f

∂(T ′T )cd

∂(T ′T )cd

∂(Σ̂11)ab
(B.4)

=
∑
cd

(
1

2
(T ′T )−1/2

)
cd

∂(T ′T )cd

∂(Σ̂11)ab

Since T ′T = Σ̂
−1/2
22 Σ̂21Σ̂−1

11 Σ̂12Σ̂
−1/2
22 , and using Eq. 60 from Petersen and Pedersen [142] for

the derivative of an inverse,

∂(T ′T )cd

∂(Σ̂11)ab
=
∑
ij

∂(T ′T )cd

∂(Σ̂−1
11 )ij

∂(Σ̂−1
11 )ij

∂(Σ̂11)ab

= −
∑
ij

(Σ̂
−1/2
22 Σ̂21)ci(Σ̂12Σ̂

−1/2
22 )jd(Σ̂

−1
11 )ia(Σ̂

−1
11 )bj

= −(Σ̂
−1/2
22 Σ̂21Σ̂−1

11 )ca(Σ̂
−1
11 Σ̂12Σ̂

−1/2
22 )bd

= −(T ′Σ̂
−1/2
11 )ca(Σ̂

−1/2
11 T )bd

So continuing from (B.4),

(∇11)ab = −1

2

∑
cd

(T ′Σ̂
−1/2
11 )ca(T

′T )
−1/2
cd (Σ̂

−1/2
11 T )bd

= −1

2

∑
cd

(Σ̂
−1/2
11 T )ac(T

′T )
−1/2
cd (T ′Σ̂

−1/2
11 )db

= −1

2

(
Σ̂
−1/2
11 T (T ′T )−1/2T ′Σ̂

−1/2
11

)
ab

= −1

2

(
Σ̂
−1/2
11 UDV ′(V D−1V ′)V DU ′Σ̂

−1/2
11

)
ab

= −1

2

(
Σ̂
−1/2
11 UDU ′Σ̂

−1/2
11

)
ab
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Using ∇12 and ∇11, we are ready to compute ∂f/∂H1. First (temporarily moving subscripts

on H1 and Σ̂11 to superscripts so subscripts can index into matrices)

∂Σ̂11
ab

∂H1
ij

=



2
m−1

(
H1
ij − 1

m

∑
kH

1
ik

)
if a = i, b = i

1
m−1

(
H1
bj − 1

m

∑
kH

1
bk

)
if a = i, b 6= i

1
m−1

(
H1
aj − 1

m

∑
kH

1
ak

)
if a 6= i, b = i

0 if a 6= i, b 6= i

=
1

m− 1

(
1{a=i}H̄

1
bj + 1{b=i}H̄

1
aj

)
.

Also,

∂Σ̂12
ab

∂H1
ij

=
1

m− 1
1{a=i}

(
H2
bj −

1

m

∑
k

H2
bk

)
=

1

m− 1
1{a=i}H̄

2
bj.

Putting this together, we obtain

∂f

∂H1
ij

=
∑
ab

∇11
ab

∂Σ̂11
ab

∂H1
ij

+
∑
ab

∇12
ab

∂Σ̂12
ab

∂H1
ij

=
1

m− 1

(∑
b

∇11
ib H̄

1
bj +

∑
a

∇11
ai H̄

1
aj +

∑
b

∇12
ib H̄

2
bj

)
=

1

m− 1

((
∇11H̄1

)
ij

+
(
∇′11H̄1

)
ij

+
(
∇12H̄2

)
ij

)
.

Using the fact that ∇11 is symmetric, this can be written more compactly as

∂f

∂H1

=
1

m− 1

(
2∇11H̄1 +∇12H̄2

)
.
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Appendix C

TERMINATION OF OWL-QN PROJECTED LINE SEARCH

Proposition 2. If xk is not a critical point, then there exists a step size α > 0 such that

π(xk + αpk; ξk) 6= xk.

Proof. Since xk is not a critical point, ♦f(xk) 6= 0. The only way for the line search to make

no progress would be if for all i, either pki = 0, or xki = 0 and pki♦if(xk) < 0, in which case

the ith coordinate would be constrained to zero. But then

(♦f(xk))′H−1
k ♦f(xk) = (pk)′♦f(xk) =

∑
i

pki♦if(xk) ≤ 0,

which is impossible because Hk is positive definite.

Proposition 3. If xk is not a critical point, the line search described in 5.3.2 will terminate

in a finite number of steps.

Proof. Let φ be the function φ(α) = f(π(xk + αpk; ξk)) for α ≥ 0. Let P k be the set of

coordinates that are not constrained at step k. Prop. 2 guarantees us that P k 6= ∅. For each

i ∈ P k, define

α∗i =

−x
k
i /p

k
i if xki p

k
i < 0,

1 otherwise,

and let α∗ = mini α
∗
i . Thus for steps smaller than α∗, none of the coordinates of P k are

projected, so φ is continuously differentiable in [0, α∗). If the backtracking line search gets to

this region, it becomes the standard backtracking line search for the Armijo condition on a

smooth function, which is guaranteed to terminate.
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