
Development of Clinician-Friendly Software for
Musculoskeletal Modeling and Control

R. Davoodi, C. Urata, E. Todorov, and G. E. Loeb
A.E. Mann Institute and Biomedical Engineering Department, University of Southern California

Los Angeles, CA 90089, USA, http://ami.usc.edu

Abstract: Research and development in various fields
dealing with human movement has been hampered by the
lack of adequate software tools. We have formed a core
development team to organize a collective effort by the
research community to develop musculoskeletal modeling
software that satisfies the requirements of both researchers
and clinicians. We have identified initial requirements and
have developed some of the basic components. We are
developing common standards to facilitate sharing and
reuse of musculoskeletal models and their component parts.
Free distribution of the software and its source code will
allow users to contribute to further development of the
software as new models and data become available in the
future.

I. INTRODUCTION

Both scientists and clinicians desire to understand normal
and pathological movement in animals and human subjects in
order to advance basic science and to devise and implement
methods to treat and repair dysfunction. Studies of
sensorimotor control of movement require measurements
from neurons, muscles, and limbs in moving subjects, but
these measurements are difficult and limited to only a subset
of movement variables. Researchers are forced to make
assumptions and inferences about what is happening in the
unmeasured parts of the system. Mathematical models of the
individual components and their interactions can provide an
objective basis for these inferences. Their formal structure
makes it easier to see what is really known and how
accurately it is known rather than relying on subjective and
perhaps erroneous assumptions. This benefit, however,
usually requires many models of many components to be
tested systematically in many different combinations in an
integrating environment. Computerized models of
neuromusculoskeletal systems can provide such an
integrating environment. They can extend and complement
experimental studies and provide a big picture view of the
system while allowing the user to inspect and modify any
model parameter to understand its role in the control of

movement.

Developing realistic musculoskeletal models with the
currently available tools is a difficult task requiring a great
deal of effort and expertise not possessed by most researchers.
The currently available software packages for
musculoskeletal modeling have limited functionality, their
use require high-level programming expertise, and they are
expensive [1]. To overcome these limitations, many
researchers have expended great effort to develop their own
models for specific applications. But these models are
usually developed in programming and simulation
environments most familiar to the developer and are often
difficult to share or reuse in other modeling studies even in
the same laboratory.

In our laboratory, we have a tradition of developing generic
musculoskeletal modeling software and sharing it freely with
the research community. For example, we developed generic
add-on software to complement and get around limitations of
SIMM (the only commercial software for musculoskeletal
modeling; available from Motion Analysis Corp., USA), but
the combined package is still expensive, limited in speed and
functionality and difficult to maintain.[1;2]. We believe that
the availability of affordable and easy to use musculoskeletal
modeling software is essential for advancement of research
in control of human movement and its clinical applications,
but this market is too small to attract commercial entities.
Therefore, such software must be developed by the collective
effort of the research community.

We have decided to organize this collective effort from our
laboratory at Alfred Mann Institute (AMI) of the University
of Southern California. We are motivated to lead this effort
because AMI has pioneered the development and clinical
application of BIONs™ [3;4]. This technology platform of
wireless injectable stimulators and sensors can be applied to a
wide range of sensorimotor disabilities, but only if clinicians
have accessible and reliable software tools to fit them
systematically to individual patients. Here, we will describe
the procedures for specification of requirements and

http://ami.usc.edu/

development and testing of the musculoskeletal modeling
software (MSMS). We will then report on the progress to date
and discuss ways in which the research community can get
involved in this effort.

II. STATEMENT OF REQUIREMENTS

Specification of requirements is an important first step in
which all the required capabilities and features of MSMS are
discussed and documented before writing a single line of
code. A series of meetings among the software developers
and researchers from different fields has produced
documents that describe the MSMS requirements in different
levels of detail.

The first is the vision document, which is a high-level
analysis of the key features that are needed to address the
most critical problems. This high-level analysis justified the
decision to develop MSMS because it showed there are no
products on the market that satisfy the key requirements. It
identified the main users (e.g. model builders, basic
researchers and clinicians) and their key requirements such
as the need for anatomically accurate models of individual
patients, interfaces to models of feedback control systems,
fast simulations for controller optimization, and real-time
simulation for human-in-the-loop simulations and training
exercises. We also collected examples of model components,
user interfaces and description languages in order to learn
from best current practices. It was concluded that MSMS
must be open source to promote its adoption by the research
community and ensure its continued evolution and growth in
the future as the new models and data become available.

The next step in analysis of requirements is the use case
analysis. Here, different scenarios such as “building a
model” or “forward dynamic simulation” are analyzed. Each
use case analysis identifies the preconditions, the primary
users and stakeholders, and the goal of the analysis. It then
describes the step-by-step sequence of actions for the main
success scenario and provides remedies for all alternate
scenarios such as failures.

In the last stage of the requirement analysis, important
decisions on the software architecture are made based on the
key requirements and use cases. The architectural block
diagram of the MSMS is shown in Fig. 1. It has three
top-level blocks: graphic user interface (GUI), Modeling and

Simulation, and Database. Application program interfaces
(API) are interleaved allowing any package to be replaced
without requiring rewriting of the other packages. For
example, multiple GUIs may be written to address various
requirements of the users such as clinicians and other power
users such as researchers.

III. DEVELOPMENT AND TESTING

We are using a method known as iterative development to
develop and test MSMS according to the requirements. We
use consecutive three-week iterations to add incremental
functionality to the MSMS until all requirements are met. We
test as we go, not in one push at the end as was the case in
traditional software development. Each iteration produces an
executable program that enables us to test the developed
components for functionality and integration. As a result, we
can discover design and integration problems early in the
process, which are then easier to remedy.

Both manual and automated test methods are used to test and
validate MSMS during and after development. In each
iteration lower-level unit tests and system-level integration
tests are performed. The repeated iterations thereby test each
component’s functionality and integration several times.

Database API

Database

Modeling
Unit

Simulation
Unit

Modeling Control
API

Simulation
Control API

Simulation
I/O API

Component
API

New
Component

3rd Party
Application

3rd Party
Application

External
Sensors

Modeling
and

Simulation

Database

Model
Imp/Exp API

3D Graphics

View Controller
GUI

Figure 1. Architectural diagram of MSMS. Standard APIs, flexibility to add

new components, interface to 3rd party applications and devices are among

the main features.

Another test-bed during the development is provided by
ongoing musculoskeletal modeling projects in our laboratory
that enable us to test the critical features of the MSMS on
realistic problems. As the MSMS is developed, a diverse
group of researchers who are consulting on the project (see
Acknowledgement below) will test different features of
MSMS by applying it to realistic problems in their own
fields.

We are using Java as the main programming language to
develop the GUI, the modeling unit and the database, but the
computationally intensive simulation unit will be developed
using more efficient environments. MSMS will allow the
users to simulate their models within MSMS or export them
to standalone simulation models in C or Simulink. Different
simulation environments will serve the demands of different
applications and user groups. For example, simulations in C
will target applications requiring fast and real-time
simulations and users with higher levels of programming
expertise while simulations in Simulink will target academic
researchers and applications that are not time-critical. To
facilitate sharing and reuse of the MSMS models, we are
using the eXtensible Markup Language (XML) to define the
standard formats for MSMS models. These standard formats
will be reviewed and refined by the research community.

Figure 2. The graphic user interface of MSMS under development. Muscle

wrapping around cylindrical surfaces are shown.

IV. PROGRESS TO DATE

The implementation effort to date has resulted in a basic
graphic user interface that can load and visualize
musculoskeletal models developed in SIMM (Fig. 2). The
loaded model can be graphically manipulated or animated by
motion data from a saved file such as those produced by
SIMM or streamed in real-time from a motion capture system.
The main components now available include bones and
muscle paths. Muscle wrapping around bony surfaces is
currently modeled by cylindrical objects. We have also
developed Matlab programs to test other wrapping objects
based on the algorithms in [5], which are now being
implemented in MSMS. In previous work, we have
developed a library of highly realistic mathematical models
of muscle excitation and contraction, tendon elasticity, and
proprioceptive transduction; these and other components will
be gradually added to the XML library.

We have performed a comprehensive test to select dynamic
engines for dynamic simulations of the MSMS models [6].

Sample models with open- and closed-loop topologies were
used to benchmark the speed and accuracy of several free and
commercial dynamic engines. The main criteria for selection
were the speed and accuracy but features such as support for
closed-loop topologies that are important in musculoskeletal
systems, and implementation concerns such as ease of
integration with MSMS code were also considered. The
results showed that SD-Fast (Parametric Technology Corp.,
USA) is the best choice for fast and real-time simulations in
C because it produces the most efficient code, provides many
additional utilities and features, has a good collection of joint
types, and could handle different constraints encountered in
musculoskeletal systems. SD-Fast is also used by SIMM, but
it is expensive and may not be the best choice for all users.
Therefore, we are designing MSMS so that it can interface
with other dynamics engines, such as the free Dynamechs [7]
and the SimMechanics toolbox (Mathworks Inc., USA),
which is designed specifically to work with the Simulink
suite of numerical integrators.

V. CONTRIBUTIONS BY THE RESEARCH
COMMUNITY

MSMS is a collective effort to develop a software tool that is
essential for research and development in musculoskeletal
modeling and control of movement. As such, community
participation is essential for the success of the MSMS.
Therefore, our number one priority is to involve the research
community in all stages of MSMS development. To organize
such a large effort, we have formed a core team of researchers
and developers in our laboratory. This team is using the latest
software engineering practices to organize the collective
effort and to make sure that the completed software satisfies
the requirements and is easy to use and maintain.

During the development, the core development team consults
with a group of thirteen prominent researchers in different
musculoskeletal modeling fields in their area of expertise.
These researchers were drawn from the attendees of two
preparatory conferences sponsored by the Mann Institute to
define the need for and requirements of MSMS. These
consultants define standards for musculoskeletal models and
will test the alpha releases of the MSMS in their own
applications.

The larger community will be involved in the development
through a central web page. They will provide feedback on
the standards for musculoskeletal modeling drafted by the
development team and consultants and test the beta releases
of the MSMS.

Once developed, the MSMS will be distributed freely to the
public. The distribution will include the MSMS executable,
its source code and the documentation. Procedures and
guidelines will be provided to enable end users to expand the
MSMS with new features as new models, methods and data
become available. We think this is essential because rapid
advances in movement science and software algorithms
produce new models and data that must be incorporated into
pre-existing models with minimal effort.

For the latest news and to participate in MSMS development,
please visit MSMS web page at: http://ami.usc.edu/msms/

ACKNOWLEDGEMENT

We acknowledge the enthusiastic advice and support from

the MSMS consulting team: Behzad Dariush, Francisco
Valero, Garry Yamaguchi, Ian Brown, Marcus Pandy, Robert
Kirsch, Scott Delp, Stefan Schaal, Steven Arms, Scott Selbie,
and Victor Ng-Thow-Hing. Funded by Alfred E. Mann
Institute for Biomedical Engineering, University of Southern
California.

REFERENCES

 [1] R. Davoodi and G. E. Loeb, "A Software Tool for Faster

Development of Complex Models of Musculoskeletal Systems and

Sensorimotor Controllers in Simulink," Journal of Applied

Biomechanics, vol. 18, pp. 357-365, 2002.

 [2] R. Davoodi, I. E. Brown, and G. E. Loeb, "Advanced modeling

environment for developing and testing FES control systems," Med

Eng Phys, vol. 25, pp. 3-9, 2003.

 [3] G. E. Loeb, C. J. Zamin, J. H. Schulman, and P. R. Troyk, "Injectable

microstimulator for functional electrical stimulation," Med. Biol.

Eng Comput., vol. 29, pp. NS13-NS19, 1991.

 [4] G. E. Loeb, R. A. Peck, W. H. Moore, and K. Hood, "BION system

for distributed neural prosthetic interfaces," Med. Eng Phys., vol. 23,

pp. 9-18, 2001.

 [5] B. A. Garner and M. G. Pandy, "The Obstacle-Set Method for

Representing Muscle Paths in Musculoskeletal Models," Comput.

Methods Biomech. Biomed. Engin., vol. 3, pp. 1-30, 2000.

 [6] Montazemi, P. T., Davoodi, R., and Loeb, G. E. Comparison of

dynamic engines for musculoskeletal modeling software MSMS.

Proceedings of the American Society of Biomechanics Conference.

2004.

 [7] S. McMillan, D. E. Orin, and R. B. McGhee, "A Computational

Framework for Simulation of Underwater Robotic Vehicle

Systems," Journal of Autonomous Robots on Autonomous

Underwater Robots, vol. 3, pp. 253-268, 1996.

http://ami.usc.edu/msms/

	Musculoskeletal Modeling and Control
	R. Davoodi, C. Urata, E. Todorov, and G. E. Loeb

	code: 0-7803-8439-3/04/$20.00©2004 IEEE
	01: 4622
	header: Proceedings of the 26th Annual International Conference of the IEEE EMBS San Francisco, CA, USA • September 1-5, 2004
	02: 4623
	03: 4624
	04: 4625

