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W
hen we walk to a shop in a
town, we want to get there
in the shortest time. How-
ever, finding the shortest

route in a big city is quite tricky, be-
cause there are countless possible routes
and the time taken for each segment of
a route is uncertain. This is a typical
problem of discrete optimal control,
which aims to find the optimal sequence
of actions to minimize the total cost
from any given state to the goal state.
The problems of optimal control are
ubiquitous, from animal foraging to na-
tional economic policy, and there have
been lots of theoretical studies on the
topic. However, solving an optimal con-
trol problem requires a huge amount of
computations except for limited cases.
In this issue of PNAS, Emanuel
Todorov (1) presents a refreshingly new
approach in optimal control based on a
novel insight as to the duality of optimal
control and statistical inference.

The standard strategy in optimal con-
trol is to identify the ‘‘cost-to-go’’ function
for each state, such as how much time you
need from a street corner to your office.
If such a cost-to-go function is available
for all of the states, we can find the best
route by simply following the nearest state
with the lowest cost-to-go. More specifi-
cally, we use the formulation

minimal cost-to-go from one state

� minimal (cost for one action

� cost-to-go from resulting state),

which is known as the ‘‘Bellman equa-
tion’’ (2). When there are n possible
states, like n corners in your town, we
have a system of n Bellman equations to
solve. One headache in solving Bellman
equations is the ‘‘minimal’’ operation.
When there are many possible resulting
states, because of randomness in state
transition or choices of many possible
actions, finding the minimal cost-to-go is
not a trivial job. An easy solution has
been known only for the case when the
state transition is linear and the cost is a
quadratic (second-order) function of the
action and the state (3).

What is remarkable in Todorov’s pro-
posal (1) is a wild reformulation of ‘‘ac-
tion’’ and its cost. He recognizes the
action as tweaking of the probability of
the subsequent state and defines the
action cost by the deviation of the
tweaked state probability distribution
from that with no action at all, called

‘‘passive dynamics.’’ Specifically, he
takes so-called Kullback–Leibler diver-
gence, which is the expected logarithmic
ratio between the state distributions
with an action and with passive dynam-
ics. And in this particular setting, the
minimization in the Bellman equation is
achieved by reweighting the state distri-
bution under the passive dynamics by
the exponential of the sign-flipped cost-
to-go function. This analytical form of
minimization dramatically reduces the
labor of solving the Bellman equation.
Indeed, when we define the exponential
of the sign-flipped cost-to-go function as
the ‘‘desirability function,’’ the Bellman
equation becomes

desirability of a state

� exponential sign-flipped state cost

� average desirability under

passive dynamics,

which is a linear equation. With the
knowledge of the cost at each state and

the transition probability between the
states under passive dynamics, the desir-
ability function is given as an eigenvec-
tor of a matrix, which can be readily
computed by common numerical soft-
ware. Once the desirability function is
derived, the optimal action is given by
reweighting the state transition probabil-
ity under passive dynamics in proportion
to their desirability. Fig. 1 shows exam-
ples for desirability function and optimal
actions in a simple shortest-time prob-
lem on a street grid.

One question is how widely this new
formulation of action and action costs
applies to real-world problems. In the
article in this issue of PNAS (1) and
related papers (4–6), Todorov has dem-
onstrated that this principle can be ex-
tended to continuous-state, continuous-
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Fig. 1. Examples of desirability function in a task of city block navigation. An agent gains a reward
(negative cost) of 1 by reaching to a particular corner (goal state), but pays a state cost of 0.1 for being
in a nongoal corner and an action cost for deviating from random walk to one of adjacent corners.
(Upper) Two examples of desirability functions with 2 different goal states. The desirability function has
a peak at the goal state and serves as a guiding signal for navigation. The red segments on each corner
show the optimal action, with the length proportional to the optimal probability of moving to that
direction. (Lower) Shown is the desirability function when the reward is given at either goal position.
In this case, the desirability function is simply the sum of the 2 desirability functions and the optimal
action probability is the average of the 2 optimal actions probabilities weighted by the levels of 2
desirability functions at a given state. This compositionality allows flexible combination and selection of
preacquired optimal actions depending on the given goal and the present state.
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time optimal control problems and can
be applied to a wide variety of tasks,
including finding the shortest path in
complex graphs, optimizing internet
packet routing, and driving up a steep
hill by an underpowered car.

Another issue is how to learn to act.
In the standard formulation of optimal
control, the cost or reward for being in
a state, the cost for performing an ac-
tion, and the probability of state transi-
tion depending on the action are explic-
itly given. However, in many realistic
problems, such costs and transitions are
not known a priori. Thus, we have to
identify them before applying optimal
control theory or take a short cut to
learn to act based on actual experiences
of costs and transitions. The latter way
is known as reinforcement learning (7,
8). In Todorov’s formulation (1), it is
also possible to directly learn the desir-
ability function without explicit knowl-
edge of the costs and transitions, which
he calls ‘‘Z-learning.’’ The simulation
result suggests that convergence Z-learn-
ing is considerably faster than the popu-
lar reinforcement learning algorithm
called Q-learning (9). However, one
problem with Z-learning is to find out
the actual method of tweaking the state
distribution as directed by the desirabil-
ity function. It may be trivial in tasks
like walking on grid-like streets, but may
require another level of learning, for ex-
ample, for shifting the body posture by
stimulating hundreds of muscles.

Having a linear form of Bellman
equation brings us another merit of
compositionality of optimal actions (5).
When there are two fairly good goals to
achieve, what will be your optimal ac-
tion? When the two goals are compati-
ble, it may be a good idea to mix the
actions for the two, but when they are
far apart, you should make a crisp
choice of which goal to aim at. For the
linear form of Bellman equation, the
boundary condition of the desirability
function is specified by the cost at the
goal states. Thus, once we calculate the
desirability functions from boundary

conditions for a number of standard
goals, we can derive the desirability
function for a new goal if its cost or re-
ward is expressed as a weighted combi-
nation of those for standard goals. The
optimal action for the new composite
goal takes an intuitive form: the optimal
actions for component goals are
weighted in proportion to the weights
for the goals and the desirability at the
present state as shown in Fig. 1 Lower.
This desirability-weighted combination
gives an elegant theoretical account of
when actions can be mixed or should be
crisply selected; it depends on the over-
lap of the desirability functions.

It is noteworthy that this new pro-
posal (1) came from a researcher who
has been working on the theory and ex-
periments of human movement control
(10, 11), where acting swiftly in the face
of the delay and noise in sensory feed-
back poses a major challenge. This new
formulation of optimal control is backed
by a new insight of the duality between
action and perception (6). In the world
with noisy or delayed sensory inputs,
finding the real present state of the
world is not a trivial task. In the contin-
uous domains, the Kalman filter (12)
has been known as an optimal state esti-
mator under linear dynamics, quadratic
cost, and Gaussian noise, called the
LQG setting. In the discrete domain,
under the framework of hidden Markov
models, many algorithms for state esti-
mation have been developed in the field
of machine learning research (13). It
was almost a half-century ago when Kal-
man (12) pointed out the similarity be-
tween the equation for optimal state
estimation by Kalman filter and the
Bellman equation for optimal action in
the LQG setting. Although this duality
has been recognized as sheer coinci-
dence or just theoretical beauty, studies
in the brain mechanisms for perception
and control led Todorov (6) to find the
general duality between the computa-
tions for optimal action and optimal
perception. The unusual definition of
action cost by Kullback–Leibler diver-

gence in the new control scheme turns
out to be quite natural when we recog-
nize its duality with optimal state esti-
mation in hidden Markov models.

With the favorable features of effi-
cient solution and flexible combination,
it is tempting to imagine if something
similar could be happening in our brain.
It has been proposed that human per-
ception can be recognized as the process
of Bayesian inference (14) and that they
could be carried out in the neural circuit
in the cerebral cortex (15, 16). By noting
the duality between the computations
for perception and action, it might be
possible that, while the optimal sensory
estimation is carried out in the sensory
cortex, optimal control is implemented
in the motor cortex or the frontal cor-
tex. Neural activities for expected re-
wards, related to the cost-to-go function,
have been found in the cerebral cortex
and the subcortical areas including the
striatum and the amygdala (8, 17–19). It
will be interesting to test whether any
neural representation of desirability
function can be found anywhere in the
brain. It is also interesting to think
about whether off-line solution, like iter-
ative computation of eigenvectors, and
on-line solution, like Z-learning, can be
implemented in the cortical or subcorti-
cal networks in the brain. There indeed
is evidence that motor learning has both
on-line and off-line components, the
latter of which develops during resting
or sleeping periods (20). It should also
be possible to test whether human sub-
jects or animals use desirability-weighted
mixture and selection of actions in
reaching for composite targets.

The series of works by Todorov (1,
4–6) is a prime example of a novel insight
gained in the crossing frontlines of multi-
disciplinary research. It will have a wide
impact on both theoretical and biological
studies of action and perception.
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