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Abstract—Recent work has led to an interesting new theory of
linearly solvable control, where the Bellman equation character-
izing the optimal value function is reduced to a linear equation.
Already, this work has shown promising results in planning and
control of nonlinear systems in high dimensional state spaces.
In this paper, we extend the class of linearly solvable problems
to include certain kinds of 2-player Markov Games. In terms
of modeling power, the new framework is more general than
previous work, and can apply to any noisy dynamical system.
Also, we obtain analytical solutions to continuous-state control
problems with linear dynamics and a very flexible class of cost
functions: Mixtures of Gaussians × Polynomials. The linearity
leads to many other useful properties: the ability to compose
solutions to simple control problems to obtain solutions to new
problems, a convex optimization formulation of inverse optimal
control etc. We demonstrate the usefulness of the framework
through examples of forward and inverse optimal control prob-
lems in continuous as well as discrete state spaces.

I. INTRODUCTION

Optimal Control is a conceptually appealing framework for
building solutions to complex control problems: One specifies
a high level cost-function encoding the desired goals of the
task, and the optimization process fills in all the details.
However, the huge computational costs of solving optimal con-
trol problems has severely limited the application of optimal
control to practical problems with nonlinear dynamics, high di-
mensional state/control spaces. Motivated by this, researchers
have tried to find restricted classes of control problems that
are easier to solve, yet general enough to model interesting
control problems. One class of interesting problems that are
easier are Linearly Solvable MDPs (LMDPs)[1] and related
path-integral control problems [2], for which the Bellman
Equation (BE) characterizing the optimal value function can be
made linear. This has several other interesting consequences:
the ability to build solutions to new control problems by
combining the solutions to simpler control problems[3], an
efficient unconstrained convex formulation of inverse optimal
control[4] etc. Already, this work has had encouraging success
in domains like character control for animation[5] and robotic
control[6].

In recent work [7], the framework of LMDPs was extended
to the risk sensitive setting where the controller optimizes a
risk-sensitive objective. This allows one to tune the controller
to trade-off risk and return: For example, a risk averse con-
troller will settle for a less energy-efficient control strategy if
it means that the probability of something going wrong (due
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to the noise in the system) is reduced. However, one limitation
of this framework is that the controls and noise are required
to act in the same subspace, that is, one cannot have actuation
in state dimensions where there is no noise, and conversely,
one cannot have noise in the state dimensions that are not
directly actuated. This is a serious limitation for many real
systems that we seek to overcome in this paper. We develop a
family of control problems (Linearly Solvable Markov Games
(LMGs)) formulated in a game theoretic setting, for which we
can obtain a linear BE without imposing this restriction. The
first player is the controller and the second player is adversarial
noise. Another advantage of this new formulation is that we get
a Bellman equation linear in the value function space, while
LMDPs need an exponential transformation to make the value
function linear. This leads to nicer numerical behavior and
other interesting properties. We call this new class of problems
Linearly Solvable Markov Games (LMGs).

We believe that the primary use of this framework is to
design robust control policies in a computatefficiently. The
game theoretic setting we consider falls within the standard
setting of Robust or H∞ control [8] that has been studied
extensively and shown to produce controllers robust to model
errors. We show experimentally that optimizing the new objec-
tive does produces sensible behaviors (section VII), and that
by adjusting the cost function slightly, one can even get exactly
the same behavior as a traditional MDP formulation.

II. BACKGROUND AND NOTATION

A. Notation

We use X to denote the state space, x to denote states,
v (x) for the optimal value function. Let U denote the space
of feasible control signals, P [U ] be the set of probability
distributions over U and UR+

be the set of positive functions
on U . For any p ∈ P [U ], let supp [p] = {u ∈ U : p(u) > 0}.
Define the KL-divergence between two members of P [U ]

by KL
(
Π ‖ Π0

)
=
∑
u∈U Π(u) log

(
Π(u)
Π0(u)

)
, which is well-

defined when supp [Π] ⊆ supp
[
Π0
]
. Let f be any real-valued

function on U . We denote the expectation of f under π as
Eπ [f ] =

∑
u π(u)f(u) and let Ψπ [f ] = log (Eπ [exp(f)]).

We denote an un-normalized Gaussian with mean µ and
covariance Σ as f(x) = Ñ (x;µ,Σ) and a normalized Gaus-
sian distribution as N (x;µ,Σ). We will work with discrete
time problem and in the finite horizon formulation for most
derivations, but all results extend to other formulations as well.

B. Markov Games

A zero-sum 2-player Markov game (aka Dynamic Game) [9]
is described by a state space X , control spaces for the 2 play-
ers: U ,Ua, a stochastic Markovian Dynamics P (x’|x,u,ua)



and a cost function `(x,u,ua). The objective of player 1
is to minimize expected cost under the stochastic dynamics,
while that of player 2 is to maximize it. As opposed to
MDPs, the best strategy for a player critically depends on the
strategy of the other player and hence there is no universally
optimal policy. However, game theory resolves this dilemma
by prescribing that a player choose actions so as to minimize
the worst-case cost, ie, the highest cost over all possible moves
of the second player. The optimal solution comes out of the
following Bellman-Issacs equation[9]:

vt (x) = min
u

max
ua

`t(x,u,ua) + E
x’∼P(·|x,u,ua)

[vt (x’)]

vT (x) = `f(x) (1)

The value function defined here is actually the upper value
function [9]. By switching the max and min, one can obtain
the lower value function. These two are not equal in general,
and in fact, the games we will consider in this paper have
different upper and lower value functions, but we will stick to
the upper value function. In the context of control, the upper
value function has the following nice interpretation: Since the
adversary acts second, he can choose actions that maximize
the future expected cost given the current action chosen by the
controller, hence behaving like worst-case noise and leading
to more robust control policies.

III. LINEARLY SOLVABLE MARKOV GAMES

In this section, we describe the restricted family of Markov
Games for which the Bellman Isaacs reduces to a linear equa-
tion (LMGs). We will consider noisy discrete time dynamical
systems defined by an equation of the form

x’ ∼ P (·|x,unet)

where unet is the control input to the system. In the game
theoretic setting we consider, this net control input unet is
probabilistic and its distribution is determined by the net
effect of the controller and adversary. In the absence of any
interference by the controller or the adversary, we assume that
there is a passive policy over control inputs Π0(x) ∈ P [U ].
For most control problems, one would pick Π0(x) so that
it places high probability on small (cheap) controls and low
probability on large (expensive) controls. If one has a control
cost `(x, u) in mind, a sensible way to choose Π0(x) is
Π0(x)[u] ∝ exp (− `(x, u)).

The controller and adversary work by modifying the passive
policy distribution to a new distribution. Mathematically, this
is formulated as a probability shift operator. Given two positive
functions p, q on some set S, define

(p⊗ q)(s) = (q⊗ p)(s) =
p(s)q(s)∑
s∈S p(s)q(s)

This is visualized in figure 1.
An LMG game proceeds as follows
• The system is in state x at time t.
• The controller picks u ∈ P [U ]
• The adversary picks ua ∈ P [U ]

−1 −0.5 0 0.5 1

(a) p

−1 −0.5 0 0.5 1

(b) q

−1 −0.5 0 0.5 1

(c) p⊗ q

Fig. 1. Probability Shift

• The system transitions to a new state x’ ∼
P (·|x,unet) ,unet ∼ Π0(x)⊗u⊗ua.

At each step, the controller incurs a cost equal to the sum of
a state and control cost:

`t(x,u,ua) = `t(x)︸ ︷︷ ︸
State Cost

+ KL
(
Π0(x) ‖ Π0(x)⊗u

)︸ ︷︷ ︸
Control Cost for Controller

−KL
(
Π0(x)⊗u⊗ua ‖ Π0(x)⊗u

)︸ ︷︷ ︸
Control Cost for Adversary

The adversary incurs the negative of this cost. The objective
of both players is to minimize the cost incurred to them
over time. Thus, the controller and adversary shift the passive
policy Π0(x) by picking u,ua to Π0(x)⊗u⊗ua. The net
effect of both shifts is the resulting distribution of control
inputs. The cost function is composed of 3 parts: an arbitrary
state cost `t(x) and a control cost KL

(
Π0(x) ‖ Π0(x)⊗u

)
for the controller, which measures how much u shifts the
passive policy, and KL

(
Π0(x)⊗u⊗ua ‖ Π0(x)⊗u

)
, the

control cost for the adversary, which measures how much
further the adversary shifts the passive policy beyond the
controller.

Definition 1. A Linearly Solvable Markov Game (LMG) is a
2-player zero-sum game parameterized by a state space X ,
a control space U , stochastic dynamics P (x,unet|∈)P [X ]
for each x,x’ ∈ X ,unet ∈ U , a passive policy Π0(x) ∈
P [U ]∀x ∈ X . The dynamics of the system are given by:
x’ ∼ P (x,unet) ,unet ∼ Π0(x)⊗u⊗ua

u,ua ∈ UR+

,x,x’ ∈ X ,unet ∈ U

and the cost function by:

`t(x,u,ua) = `t(x) + KL
(
Π0(x) ‖ Π0(x)⊗u

)
−KL

(
Π0(x)⊗u⊗ua ‖ Π0(x)⊗u

)
The first player is called the controller and the second

player the adversary. For the objective to be well defined,
we require that u > 0. The game can be formulated both in
finite and infinite horizon settings. The time-dependence of the
cost drops in infinite horizon cases.

Theorem 1. The BE for an LMG is linear. The BE for



different problem formulations is:

Finite-Horizon :vt (x) = `t(x) + E
unet∼Π0(x),P(x,unet)

[vt+1]

vT (x) = `f(x)

First-Exit :v (x) = `(x) + E
Π0(x),P

[v] ∀x ∈ N

v (x) = `f(x)∀x ∈ T
Average Cost :v (x) + c = `t(x) + E

Π0(x),P
[v]

Discounted Cost :v (x) = `(x) + γ E
Π0(x),P

[v] (2)

where T ,N are the terminal and non-terminal
states,respectively, for first-exit problems, c is the average
cost parameter for infinite-horizon average cost problems,
and γ is the discounted factor for infinite horizon discounted
problems.

Proof: We prove the result for the finite-horizon case. The
proof for other formulations is similar. Plugging the cost and
dynamics from Definition 1 into the Bellman-Issacs equation
(1), we get:

vt (x) = `t(x) + min
u

max
ua

KL
(
Π0(x) ‖ Π0(x)⊗u

)
−KL

(
Π0(x)⊗u⊗ua ‖ Π0(x)⊗u

)
+ E

Π0(x)⊗u⊗ua

E
P
vt+1

Since the first KL divergence doesn’t depend on ua, we can
bring the maxua inside. Letting p = Π0(x)⊗u, we get

max
ua

−KL (q⊗ua ‖ q) + E
unet∼q⊗ua

[
E

P(x,unet)
[vt+1]

]
= −min

ua

KL (q⊗ua ‖ q)− E
unet∼q⊗ua

[
E

P(x,unet)
[vt+1]

]
= Ψq [vt+1] = ΨΠ0(x)⊗u [vt+1]

where the last line follows from lemma (1). Thus the problem
reduces to

min
u

KL
(
Π0(x) ‖ Π0(x)⊗u

)
+ ΨΠ0(x)⊗u [vt+1]

= E
unet∼Π0(x)

[
E

P(x,unet)
[vt+1]

]
where the last lins follows from lemma (2). Thus, we get a
Linear Bellman Equation:

vt (x) = `t(x) + E
unet∼Π0(x),P(x,unet)

[vt+1]

vt (x) = `f(x)

Π* (x; t) = exp (−vt+1)

Π*
a (x; t) = exp (vt+1)

A. Interpretation of the Result

We can see that Π0(x)⊗Π* (x; t)⊗Π*
a (x; t) = Π0(x),

since Π* (x; t) Π*
a (x; t) = 1. Thus, the controller and ad-

versary effectively cancel each other, so that the optimally
controlled dynamics is just the dynamics under the passive

policy. This explains why the optimal value function is just
the value function corresponding to the passive dynamics with
only the state cost. However, the policy Π* (x; t) obtained for
the controller is still sensible and can be applied even in the
absence of an adversary: in fact, this policy has been optimized
to deal with a very powerful adversary, and should be robust
to a wide variety of perturbations.

B. Implications

We briefly summarize the major implications of this result,
many of which are discussed in detail in the upcoming
sections:
Solving Optimal Control Problems Efficiently: One can
leverage sparse linear solvers and methods like TD,LSTD [10]
for policy evaluation.
Modeling Power: This framework can be applied to any noisy
dynamical system x’ ∼ P (x,unet).
Analytical Solutions: We obtain analytical solutions for sys-
tems with linear dynamics x’ = Ax+B u and costs that are
mixtures of Gaussians × Quadratics (section IV-C).
Compositionality: Given the solutions to a set of control
problems with “simple” cost functions, we can construct
the optimal solution for any linear combination of the costs
analytically (section V).
Inverse Optimal Control: We have a tractable convex-
optimization based solution to the inverse optimal control
problem (section VI).

C. Relationship to Previous Work

The results here are most closely related to results in [7]. In
that paper, the LMDP framework was extended to the case
of risk-sensitive control, replacing the standard KL divergence
in LMDPs with a Rényi divergence Dα []. It was also
shown that the results in that paper can be re-interpreted
in a game theoretic setting very similar to the one here,
except that the control cost for the controller was replaced
by Dα

(
Π0(x) ‖ Π0(x)⊗u

)
and the dynamics were required

to be deterministic x’ = F(x,unet). It can be shown that
as α → 1, Dα (p ‖ q) → KL (p ‖ q) and thus we reduce
to the results of [7] with α = 1. However, this is only true
when the dynamics are deterministic. For general stochastic
dynamics, x’ ∼ P (x,unet), the results presented here are
more general and have no analog in previous work on linearly
solvable control. Thus, in general, the LMG framework has
greater modeling power, as it can handle arbitrary stochastic
dynamics, as opposed to LMDP, which requires the controls
and noise to act in the same subspace. This modeling power
could be very useful in practical applications. For example,
we can handle control-dependent noise, which has proved very
useful in modeling human movements [11].

IV. PROBLEMS WITH ANALYTICAL SOLUTIONS

In this section, we study special cases that admit closed-
form solutions to the linear Bellman equation. We first discuss
classical results on Linear-Quadratic Games and then show
how the new LMG results compare with them.



A. Deterministic Linear Quadratic Games

Consider a 2-player zero sum Markov Game with linear
dynamics affine in the controls of both players:

xt+1 = At xt +Bt u+Dt ua

with quadratic costs
1
2

[
xT Qt x+uT u−γ2 uTa ua

]
It can be shown [8] that this game admits a saddle point

solution under certain assumptions on D,B and the optimal
value function is quadratic vt (x) = 1

2 xT Vt x with the Vt
satisfying the generalized Ricatti equation:

Vt = Qt +ATt

(
V −1
t+1 +BTt Bt −

DT
t Dt

γ2

)−1

At

Π* (x; t) = −BTt
(
V −1
t+1 +BTt Bt −

DT
t Dt

γ2

)−1

Atx

B. Linear Quadratic Gaussian (LQG) Problems

Theorem 2. Consider LMGs with Linear dynamics, Gaus-
sian noise and quadratic state/costs:

xt+1 ∼ N (At xt +Bt unett, CtC
T
t )

`t(x) = 1
2 xT Qt x,Π

0(unet |x) = N (0, I)

It can be shown that the optimal value function is Quadratic,
and the Generalized Ricatti equations are given by:

vt (x) =
1

2
xT Vt x+ct, Vt = Qt +ATt Vt+1At

ct = ct+1 + tr
(
(BtB

T
t + CtC

T
t )Vt+1

)
(3)

1) Relationship to Deterministic LQ games: If Dt = γBt,
the Bellman equation for Deterministic LQ Games (section
IV-A) reduces to Vt = Qt + ATt Vt+1At, which basically
corresponds to the value of the null policy ut = wt = 0. What
actually happens is that the optimal controls for both players
cancel each other out in this case, leaving just the passive
uncontrolled system. This is the same as the generalized
Ricatti equation obtained above (except for constants).

C. Non-LQG Problems with Analytic Solutions

It turns out that if we have a (possibly time-varying) linear
dynamical system, any finite-horizon problem with costs of
the form
`t(x) =

∑
i Ñ (x;µi,t,Σi,t)Polyi,t(x)

where Poly denotes a polynomial, can be solved analytically
in LMG framework. This is a very powerful result, as almost
any cost can be approximated with a cost in the above form.
Also, this might allow us to even solve problems with non-
linear dynamics approximately, by having a linear dynamical
system but penalizing for the violations in the cost function.
In this section, we derive the solution for a special case (to
keep the math simple). We assume that there is no running
cost `t(x) = 0∀t < T , we have a noiseless system (Ct =
0,Π0(u|x) = N (0, I)) and the polynomial in the final cost is
a single Gaussian times quadratic. Define ÑQ(x;µ,Σ,m, S, s)

to be Ñ (x;µ,Σ)
(

(x−m)TS(x−m)
2 + s

)
. The Bellman equation

becomes vt (x) = Eunet
vt+1 (At x+Bt unet). If vt+1 is a

Gaussian × quadratic, its easy to see that vt (x) is also
a Gaussian × quadratic vt (x) = ÑQ(x;µt,Σt,mt, St, st).

With a little algebra, it is easy to show that the parameters
satisfy the Ricatti equations:

Let Mt =
(
Σ−1
t+1 +BtB

T
t

)
,Wt = I +BTt ΣtBt

St =
ATt St+1At
det(Wt)

, st =
st+1 + tr

(
W−1
t BTt St+1Bt

)
det(Wt)

mt = A−1
t ((I − Σ−1

t+1M
−1
t )(mt+1 − µt+1) +mt+1)

µt = A−1
t µt+1,Σt = ATt M

−1
t At (4)

Unfortunately, the optimal control law doesn’t have a closed
form expression in this case. However, once we compute the
value function, numerically approximating the optimal control
law shouldn’t be a big problem: one can even try finding the
mode of the optimal control policy Π* (x; t) using numerical
optimization:

Π* (x; t) = amin
u

uTu+ vt+1 (At x+Btu)

V. COMPOSITIONALITY OF OPTIMAL CONTROL LAWS

In this section, we discuss compositionality: the idea that
solutions to complex control problems can be constructed by
combining solutions to simpler control problems in certain
ways. Linearly Solvable Problems often offer nice composi-
tionality properties [3], which have been used to construct
solutions to complex control problems like walking [5]. We
have even nicer compositionality properties for LMGs:

Theorem 3. Suppose that v1,v2, . . . ,vk are the optimal
value functions corresponding to LMGs with cost functions
`t

1, `t
2, . . . , `t

m and dynamics P (x’|x,unet), then the optimal
value function for `t =

∑
i wi `t

i is
∑
i wiv

i. This result is
valid for all formulations: For the finite horizon and first-exit
formulations, both the running costs and final costs must be
combined with the same weights.

The above result follows directly from the Linear Bellman
equation (2). These results are more powerful than the ones
presented in [3], since they apply to all problem formulations
and allow composing running costs as well.

VI. INVERSE OPTIMAL CONTROL

Given trajectories sampled from an optimal controller, can
one infer the cost function with respect to which that controller
is optimal? This is the inverse optimal control problem. The
inverse optimal control problem also has an efficient solution
in the LMG framework. The problem can be stated as follows:
Given trajectories generated by an optimal controller and
the system dynamics P (x’|x,unet), estimate the cost/value
function of the controller. In the LMG framework, we solve
this problem assuming that we can do inverse dynamics, ie,
given that the system transitioned from x to x’, get a reliable
estimate of unet. We then propose a two-step process: First do
inverse dynamics to figure out unett given xt,xt+1 for every
pair of consecutive states along a trajectory to get a dataset
D = {xi,uneti}. Then, use maximum-likelihood estimation
on the (x,unet) pairs to infer the value/cost function:



max
θ

∑
i

E
P(xi,uneti)

[
vθ
]
−ΨΠ0(xi)

[
− E

P(xi,uneti)

[
vθ
]]

This is a convex optimization problem in θ if vθ = f(x)T θ,
ie , if v is parameterized linearly in θ. Also, like the work in
[4], this method is computationally more efficient than other
methods for inverse optimal control [12] [13] since it does not
require

VII. EXPERIMENTS

A. Car on a Hill Problem
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(a) Value Functions and Control Laws for the Car-on-the-Hill Problem.
X-axes represent position, Y-axes velocity and the colors represent the
value of the differential cost-to-go or the scalar control signal

LMDP Cost Function
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(b) Cost Functions in Both Frameworks that Produce the Same Control
Law

Fig. 2.

We consider one of the benchmark problems of Reinforce-
ment Learning first: The Car-on-a-Hill problem. We do this
mainly as a sanity check: To see that the new formulation
gives us sensible control policies. The state space is 2 dimen-
sional: position p and velocity v of the car moving on a hill
shaped like a Gaussian Curve y = exp(−0.5x2). The cost
function asks the car to oscillate between the desirable states
(−2, 1), (1,−2). We consider the infinite-horizon average-
cost formulation of the problem. We solve this problem by
discretizing the state space with a 400× 400 grid, in both the
traditional LMDP[1] and the new game-theoretic LMG(with
unrestricted actions) frameworks. The solver takes about 1.5
seconds to converge in both cases, on an Intel i7 2.93Ghz
CPU. The resulting value functions and optimal control laws
are plotted in figure 2(a). One can see from the figures that

the solution to both problems look very similar, demonstrating
that the LMGframework can model traditional optimal control
problems well. One can also ask the question: How should I
change my cost function for the LMG so that the resulting
control law matches the LMDP? Since the mapping between
the control law and the value function is identical in both
frameworks for the noiseless case, it is sufficient that the
value functions match. Given the optimal value function v
from the LMDP solution, we construct the cost function
`(x) = v (x)−EP(x,unet),unet∼Π0(x) [v] that makes v optimal
for the LMG(figure 2(b)).

B. Continuous State Problems with Analytical Solutions
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Fig. 3. LMGs with Analytical Solution

1) Randomly Generated Cost Function: We now consider
a non-LQG problem that has an analytical solution IV-C.
We consider a problem with a one dimensional continuous
state x ∈ R, so that the solution can be visualized, and
linear dynamics ẋ = −0.1x. The running cost is a randomly
generated mixture of inverted Gaussians and the final cost is
an Gaussian centered at 0. The point of this experiment is
mainly to demonstrate that we can handle fairly complicated
costs with this, and the value function generated has fairly
nontrivial structure. The time-varying value function for this
problem is plotted in figure 3(b). Trajectories sampled from the
optimal controller and the cost function are plotted in figure
3(a).

2) Obstacle Avoidance: We can model obstacles using
Gaussians centered at obstacles. Targets can be modeled
similarly using inverted Gaussians. If we have linear dynamics,
we can take advantage of the analytical solution available for

Fig. 4. Obstacle Avoidance ((Noisy) Obstacles in red, Target in green)



this case to solve this problem efficiently. Here, as a simple
example, we consider a 2d point mass trying to reach a target
at the origin, with 3 obstacles in between it needs to avoid. The
final cost is a negatively scaled Gaussian centered at the target
and the running cost is a scaled version of the final cost plus
a sum of Gaussians centered at the obstacles. The trajectories
from the resulting controller are plotted in figure 4. We plot
3 sets of trajectories: solid black (appropriate obstacle cost),
dashed green (low obstacle cost) and dotted red (high obstacle
cost), starting from various initial positions. This algorithm
could be potentially very useful in high dimensional path-
planning applications.

C. Inverse Optimal Control
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Fig. 5. Fitts’ Law: Ideal Trajectories- Red Solid Lines, Learned Controller-
Green Dashed Lines

We now present results evaluating the inverse optimal
control algorithm VI parameterizing the value function as a
mixture of Gaussians × Quadratics. The means Gaussians are
set by running k-means on the data, and the variances adjusted
to interpolate smoothly between the means. We consider the
problem of modeling pointing movements: Fitts’ law [14]
characterizes the time T required for the motion as a function
of the distance d to be moved and the size of the target
w: T = a + b log2(2d/w). Given the movement duration, it
has been shown [15] that the trajectory of the movement is
described well by a minimum-jerk model, ie, humans pick
the trajectory that minimizes the magnitude of change in
acceleration summed over time. We generate data from this
model (with fixed target size w = 1,a = 0, b = 0.1), and run
the inverse algorithm to infer a controller. We then sample
trajectories from this controller and compare them to the ideal
model: the results are shown in figure 5. We also fit the
coefficients a, b based on the data generated by the learned
controller. The resulting fit (figure 5) is also quite good, the
recovered coefficients â = 0.03, b̂ = 0.103 are very close to
those used to generate the data.

VIII. CONCLUSIONS

We have presented a new class of Markov Games for which
the Bellman-Isaacs equation can be made linear. This expands
the family of linearly solvable control problems beyond the
general class presented in [7]. The problems presented in this
paper can deal with arbitrary stochastic dynamics, which gives
it more modeling power than the previous framework. This
extra modeling power comes with the restriction that we’re
forced to work with a KL divergence control cost, as opposed

to the general Rényi divergence used in [7]. We have showed
through numerical examples though, that this restriction does
not seem particularly severe and we can model a variety of
interesting problems as LMGs. The results here show that
this is a promising direction of research and future work on
developing numerical approximation techniques for scaling
LMGs to high dimensional spaces will hopefully lead to
practical methods for solving hard and interesting real world
control problems.

IX. APPENDIX

To avoid measure-theoretic complications, we do the proof
only for the case when U is finite. Let Π0 ∈ P [U ], f be any
real-valued function over U .

Lemma 1. minu∈UR+

[
KL
(
Π0⊗u ‖ Π0

)
− Eπ[f ]

]
=

−ΨΠ0 [f ] with the min achieved at u∗ = exp (f).

Proof:

min
u

KL
(
u⊗Π0 ‖ Π0

)
− E

u⊗Π0
[f ]

= min
u

E
u⊗Π0

[
log

(
u⊗Π0

Π0 exp (f)

)]
= −ΨΠ0(x) [f ] + min

u
KL
(
Π0⊗u ‖ Π0⊗ exp (f)

)
Since the KL divergence is minimized when the distributions
are equal, choosing u = exp (f) gives us the optimal value
−ΨΠ0(x) [f ].

Lemma 2. minu∈UR+ ,u>0

[
KL
(
Π0 ‖ Π0⊗u

)
+ ΨΠ0⊗u [f ]

]
=

EΠ0 [f ] with the min achieved at u∗ = exp (−f).

Proof: ΨΠ0⊗u [f ] = log (EΠ0⊗u [exp (f)]) =

log
(

EΠ0

[
u exp(f)
EΠ0 [u]

])
≥ EΠ0

[
log
(

u exp(f)
EΠ0 [u]

)]
by Jensen’s

inequality. This last term is equal to EΠ0

[
log
(

u
EΠ0 [u]

)]
+

EΠ0 [f ] = −KL
(
Π0 ‖ Π0⊗u

)
+EΠ0 [f ]. Thus, the objective

is bounded below by EΠ0 [f ] and this bound is achieved when
u = exp (−f). Hence the result.
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