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6.1 ABSTRACT

We summarize the recentlydeveloped framework of linearlysolvable stochastic op
timal control. Using an exponential transformation, the (HamiltonJacobi) Bellman
equation for such problems can be made linear, giving rise to efficient numerical meth
ods. Extensions to game theory are also possible and lead to linear Isaacs equations.
The key restriction that makes a stochastic optimal control problem linearlysolvable
is that the noise and the controls must act in the same subspace. Apart from being
linearly solvable, problems in this class have a number of unique properties including:
pathintegral interpretation of the exponentiated value function; compositionality of
optimal control laws; duality with Bayesian inference; trajectorybased Maximum
Principle for stochastic control. Development of a general class of more easily solv
able problems tends to accelerate progress – as linear systems theory has done. The
new framework may have similar impact in fields where stochastic optimal control
is relevant.
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6.2 INTRODUCTION

Optimal control is of interest in many fields of science and engineering [4, 21], and is
arguably at the core of robustyetefficient animal behavior [23, 26]. Apart from the
fact that “optimal” tends to be good even when it is not exactly optimal, this approach
to control engineering is appealing because one can in principle define a highlevel
cost function specifying the task goal, and leave the hard work of synthesizing
a controller to numerical optimization software. This leads to better automation,
especially when compared to the manual designs often used in engineering practice.
Yet optimizing controllers for realworld tasks is very challenging even numerically,
and the present book explores the stateoftheart approaches to overcoming this
challenge.

One of the most productive lines of attack when it comes to solving hard problems
is to identify restricted problem formulations that can be solved efficiently, and use
these restricted formulations to approximate (perhaps iteratively) the harder problem.
An example is the field of numerical optimization, where the only multivariate
function we know how to optimize analytically is the quadratic – and so we model
every other function as being locally quadratic. This is the key idea behind all
secondorder methods. The situation is similar in optimal control and control theory
in general, where the only systems we truly understand are linear – and so we
often approximate many other systems as being linear, either locally or globally.
An example of an optimal control method relying on iterative linearizations of the
dynamics (and quadratizations of the cost) is the iterative LQG method [34].

This general approach to solving hard problems relies on having restricted problem
formulations that are computationally tractable. For too long, linear systems theory
has remained pretty much the only item on the menu. Recently, we and others have
developed a restricted class of stochastic optimal control problems that are linearly
solvable [14, 27]. The dynamics in such problems can be nonlinear (and even
nonsmooth), the costs can be nonquadratic, and the noise can be nonGaussian.
Yet the problem reduces to solving a linear equation – which is a minimized and
exponentiallytransformed Bellman equation. To be sure, this is not nearly as tractable
as an LQG problem, because the linear equation is question is a functional equation
characterizing a scalar function (the exponent of the value function) over a high
dimensional continuous state space. Nevertheless solving such problems is much
easier computationally than solving generic optimal control problems.

The key restriction that makes a stochastic optimal control problem linearly
solvable is that the noise and the controls are interchangeable, i.e. anything that the
control law can accomplish could also happen by chance (however small the proba
bility may be) and vice versa. The control cost associated with a given outcome is in
versely related to the probability of the same outcome under the passive/uncontrolled
dynamics. The form of this control cost is fixed, while the state cost can be arbitrary.

Apart from being linearlysolvable, problems in this class have unique properties
that enable specialized numerical algorithms. These can be summarized as follows:
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• The solution can be expressed as an expectation/pathintegral, which enables
sampling approximations. This yields a modelfree reinforcement learning
method which only estimates the value function, as opposed to the much larger
Qfunction estimated in Qlearning;

• The most likely trajectory under the optimallycontrolled stochastic dynamics
coincides with the optimal trajectory in a related deterministic problem, giving
rise to the first trajectorybased Maximum Principle for stochastic control;

• The state density under the optimal controls coincides with the Bayesian pos
terior in a related inference problem, giving rise to a general duality between
Bayesian inference and stochastic optimal control;

• The optimal solutions to firstexit and finitehorizon problems with identical
dynamics and running cost, but different final costs, can be used as control
primitives: they can be combined analytically so as to yield provablyoptimal
solutions to new problems;

• Bellman residual minimization reduces to a linear algebraic equation;

• Natural policy gradient for linearlyparameterized policies is possible by esti
mating only the value function, as opposed to the Qfunction;

• Inverse optimal control, i.e. the problem of inferring the cost from state space
trajectories of the optimally controlled system, reduces to an unconstrained
convex optimization problem and does not require solving the forward problem;

• Extensions to risksensitive and game theoretic control yield linear Isaacs
equations.

6.2.1 Notation

Before we proceed, we summarize notational conventions that will be used throughout
this chapter. Let S be a set, P [S] the set of probability distributions over S, and
SR+

the set of positive realvalued functions on S. For any p ∈ P [S], let H [p] =
Ep [− log(p)] denote the entropy. If f is a realvalued function on S, the expectation
of f under p is denoted Ep [f ] =

∑
s p(s)f(s). Define the function

Ψα
p [f ] = α−1 log

(
E
p
[exp(αf)]

)
,Ψp [f ] = Ψ1

p [f ] .

One can prove that in the limit α → 0 this is just the expectation, so we define
Ψ0

π [f ] = Eπ [f ]. Given two positive functions p, q ∈ SR+

, define the distribution

(p⊗ q)(s) = (q⊗ p)(s) =
p(s)q(s)∑
s∈S p(s)q(s)

.

We will use the shorthand notation Pol for policy, Dyn for dynamics, Co for cost
and OP for optimal policy. In general, we will use boldface for vectors or discrete
symbols, and italics for scalar valued functions.
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6.2.2 Markov Decision Processes ( MDPs)

Markov Decision Processes ( MDPs) are a widely used framework for specifying and
solving optimal control problems. MDPs are formally defined by specifying:

• A state space X . We use x to denote states, x ∈ X . This could be continuous
(subset of ℜn), discrete (set of nodes in a graph) or a mixture of both.

• An action space U(x) for each state. Actions are denoted by u. We denote
policies by the same letter u(x) ∈ U(x).

• A stochastic dynamics P (x,u), which is the probability distribution over the
next state given the current state x and action u ∈ U(x).

• An immediate cost function ℓt(x,u).

At any time t, an action u is chosen depending on the current state and the system
transitions into a new state sampled from the stochastic dynamics. The objective
of the control is to minimize the expected cost accumulated over time. The precise
notion of accumulation can vary, giving rise to different problem formulations as
follows. Finite Horizon (FH) problems are specified by a horizon T , a running cost
ℓt(x,u) and a terminal cost ℓf(x,u). First exit (FE) problems are specified by a set
of terminal states T , a running cost ℓ(x,u) and a terminal cost ℓf : T → ℜ. Infinite
Horizon Average Cost (IH) problems are specified just by a running cost ℓ(x,u), and
Infinite Horizon Discounted Cost problems are specified by a running cost ℓ(x,u)
and a discount factor γ. Discounted cost problems are very popular in Reinforcement
Learning [23], however we do not consider them here as they do not lead to linear
Bellman equations. All other problem formulations lead to linear Bellman equations.

The optimal costtogo function (or optimal value function) vt (x) is defined as
the expected cumulative cost for starting at state x at time t and acting optimally
thereafter. This function is characterized by the Bellman equation ( BE):

vt (x) = min
u

ℓt(x,u) + E
P(x,u)

[vt+1] (6.1)

u∗ (x; t) = argmin
u

ℓt(x,u) + E
P(x,u)

[vt+1]

u∗ (·; t) is called the optimal policy.

For most control problems of practical interest, solving the Bellman equation is
computationally intractable. This is because one needs to store the value function at
each state x and the number of states could be very large (infinite if X is a continuous
domain). This has led to a variety of approximation schemes. Many of these rely
on solving the BE approximately. However, getting such schemes to work often
requires a lot of problemspecific tuning, and even then may not scale to genuinely
hard problems. Part of the difficulty is the highly nonlinear nature of the BE which is
a result of the minu term. A key advantage of linearlysolvable MDPs (see below) is
that the minimization over actions can be done analytically given the value function.
The minimized Bellman equation can then be made linear by exponentiating the
value function.
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6.3 LINEARLY SOLVABLE OPTIMAL CONTROL PROBLEMS

6.3.1 Probability shift: A an alternative view of control

Conventionally, we think of control signals as quantities that modify the system
behavior in some prespecified manner. In our framework it is more convenient
to work with a somewhat different notion of control, which is nevertheless largely
equivalent to the conventional notion, allowing us to model problems of practical
interest. To motivate this alternative view, consider a controlaffine diffusion:

dx = (a(x) + B(x)u) dt+ C(x)dω

This is a stochastic differential equation specifying the infinitesimal change in the
state x, caused by a passive/uncontrolled drift term a(x), a control input u scaled by
a control gain B(x), and Brownian motion noise with amplitude C(x). Subject to
this system dynamics, the controller seeks to minimize a cost function of the form

ℓ(x) +
1

2
uT u

In terms of MDPs, the transition probability may be written as

P (x,u) = N (x+δ(a(x) + B(x)u),Σ)

where we have discretized time using a time step δ. Thus, one way of thinking
of the effect of control is that it changes the distribution of the next state from
N (x+δa(x),Σ) to N (x+δ(a(x) + B(x)u),Σ). In other words, the controller
shifts probability mass from one region of the state space to another. More generally,
we can think of the system as having an uncontrolled dynamics which gives a
distribution p over future states. The controller acts by modifying this distribution by
probability shift to get a new distribution: u⊗ p = pu

Ep[u]
. This causes the probability

mass in p to shift towards areas where u is large (figure 6.3.1). The controllers in our
framework will act on the system dynamics by performing such probability shifts.
The control signals will be positive scalar functions over the state space, rather than
vectors or discrete symbols.

6.3.2 Linearlysolvable Markov Decision Processes ( LMDPs)

Here we introduce the framework of linearlysolvable optimal control in discrete time.
Such problems, called LMDPs, can be viewed in two mathematically equivalent
ways. We shall describe both, since they both offer useful perspectives and illustrate
the relationship to traditional MDPs in complementary ways.

In traditional MDPs the controller chooses a control signal or action u which
determines the distribution of the next state x’ ∼ P (x,u). In LMDPs, we assume
that there is an uncontrolled or passive dynamics Π0(x) for each state x that gives the
distribution of the next state. The controller can change this distribution by picking
a probability shift u ∈ XR+

. This causes the distribution of the next state to change:
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Figure 6.1 Probability Shift

x’ ∼ u ⊗Π0(x). However, the controller must pay a price for doing so, given by the
KL divergence between the controlled distribution u ⊗Π0(x) and the uncontrolled
distribution Π0(x), which is a measure of the amount of change in the dynamics
due to the controller. The Bellman equation for LMDPs is nonlinear in terms of
the value function, but using an exponential transformation z t = exp (−vt) yields
a linear equation in z . We call this the desirability function, since it is inversely
related to the costtogo. The desirability function also gives the optimal shift policy
u∗ (x; t) = z t+1, so the optimal controller is always trying to shift the uncontrolled
dynamics towards more desirable states. The key results and their analogs for
traditional MDPs are summarized in the following table:

MDPs LMDPs
Pol u : X → U u : X → XR+

Dyn x
u−→ x’ ∼ P (x,u(x)) x

u−→ x’ ∼ u(x)⊗Π0(x)

Co ℓt(x,u(x)) ℓt(x)+
KL

(
u(x)⊗Π0(x) ∥ Π0(x)

)
BE

vt (x) = min
u

ℓt(x,u) + E
P(x,u(x))

[vt+1] z t (x) = exp (− ℓt(x)) E
Π0(x)

[z t+1]

OP
u∗ (x; t) = u∗ (x; t) = z t+1

argmin
u

ℓt(x,u) + E
P(x,u(x))

[vt+1]

6.3.3 An alternate view of LMDPs

In the alternate view, LMDPs are almost the same as traditional MDPs with deter
ministic dynamics and stochastic policies, except for two differences: we impose an
additional cost that encourages policies with high entropy, and we compute the cost
based not on the action that happened to be sampled from the stochastic policy, but
by taking an expectation over all actions that could have been sampled. In this view,
the relation between traditional deterministic MDPs and LMDPs is summarized as:
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Deterministic MDPs LMDPs
with Stochastic Policies

Pol u : X → P [U ] u : X → P [U ]

Dyn u ∼ u(x) u ∼ u(x)
x’ = f(x,u) x’ = f(x,u)

Co ℓt(x,u) E
u∼u(x)

[ℓt(x,u)]−H(u(x))

BE
vt (x) = z t (x) =

min
u(x)

E
u(x)

[ℓt(x,u) + vt+1 (f(x,u))]
∑
u

exp (− ℓt(x,u)) z t+1 (f(x,u))

OP
u∗ (x; t) = δ(u∗) u∗ (x; t) = z t+1

u∗ =
argmin

u
ℓt(x,u) + vt+1 (f(x,u))

We can rewrite the BE for LMDPs in this interpretation as:

vt (x) = − log

(∑
u

exp (− ℓt(x,u)− vt+1 (f(x,u)))

)

The relationships between MDPs and LMDPs is now clear: the hard minimum
in the Bellman equation for MDPs is replaced by a soft minimum for LMDPs,
namely − log(

∑
(exp(− . . .))). If we replace the cost ℓt(x,u) by a scaled version

γ ℓt(x,u), as γ increases we move closer and closer to the hard minimum, and in the
limit γ → ∞ we recover the Bellman equation for MDPs. Thus any deterministic
MDP can be obtained as a limit of LMDPs.

The relationship between the two interpretations can be understood as follows.
Define a passive dynamics with support only on the states immediately reachable
from x under some action u:

Π0(f(x,u)|x) ∝ exp (− ℓt(x,u))

For states not immediately reachable from x, the probability under the passive dy
namics is 0. Given any control (probability shift) u ∈ XR+

, we have:

KL
(
u ⊗Π0(x) ∥ Π0(x)

)
= −H

[
u ⊗Π0(x)

]
+ E

u ⊗Π0(x)

[
− log

(
Π0(x)

)]
= −H

[
u ⊗Π0(x)

]
+ E

u ⊗Π0(x)
[ℓt(x,u)]− ℓt(x)

where ℓt(x) = − log (
∑

u exp (− ℓt(x,u))). Thus, the alternate interpretation
is equivalent to the original interpretation with passive dynamics proportional to
exp (− ℓt(x,u)) and cost function − log (

∑
u exp (− ℓt(x,u))).
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6.3.4 Other Problem Formulations

Thus far we focused on the FH problem formulation. We can obtain linearlysolvable
problems with other problem formulations as well. The corresponding BEs are

FE z (x) = exp (− ℓ(x)) E
Π0(x)

[z ] if x ̸∈ T

z (x) = exp (− ℓf(x)) if x ∈ T

IH z (x) = exp (c− ℓ(x)) E
Π0(x)

[z ], c is the Optimal Average Cost

In the IH case the linear BE becomes an eigenvalue problem, with eigenvalue
exp(−c) where c is the average cost. It can be shown that the solution to the optimal
control problem corresponds to the principal eigenpair.

6.3.5 Applications

We now give some examples of how commonly occurring control problems can be
modeled as LMDPs.

Shortest paths: Consider the shortest path problem defined on a graph. We can
view this as an MDP with nodes corresponding to states and edges corresponding to
actions. A stochastic version of this problem is one where the action does not take
you directly where you intend, but possibly to the end of one of the other outgoing
edges from that node. We can define an LMDP with passive dynamics at a node to be
the uniform distribution over all nodes reachable in one step. The cost is a constant
cost per unit time and the problem is a FE problem with the goal state as the state to
which the shortest path is being computed. By scaling up the constant cost by ρ, in
the limit as ρ → ∞ we recover the traditional deterministic shortest paths problem.
This yields an efficient approximation algorithm for the shortest paths problem, by
solving an LMDPs with sufficiently large ρ, see [30].

Discretizing continuous problems: We can construct efficient solutions to prob
lems with continuous state spaces and continuous time, provided the state space can
be discretized to a reasonable size (LMDPs can easily handle problems with millions
of discrete states). We consider a simple problem that has been a standard benchmark
in the Reinforcement Learning literature, the mountaincar problem. In this problem,
the task is to get a car to drive down from a hill into a valley and park on another
hill on the other side of the valley. The control variable is the acceleration of the car,
and the state consists of the position and velocity of the car. We impose limits on all
these quantities and discretize the state space to within those limits. The dynamics is
completely determined by gravity and the shape of the hill. We plot results in figure
6.2 comparing the LMDP discretization and a iterative solution of the LMDP to a
standard MDP discretization and using policy/value iteration to solve that. It can be
seen that the LMDP solution converges faster to the optimal policy. See [30].
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6.3.6 Linearlysolvable controlled diffusions ( LDs)

Although the focus of this chapter is on discretetime problems (i.e. LMDPs), here we
summarize related results in continuous time. The linearlysolvable optimal control
problems in continuous time are controlaffine diffusions with dynamics

dx = a(x) d t+ B(x)u d t+ σ B(x) dω

and cost rate
ℓt(x) +

1

2σ2
∥u∥2

The unusual aspects of this problem are that: (i) the noise and the control act in the
same subspace spanned by the columns of B(x); (ii) the control cost is scaled by
σ−2, thus increasing the noise in the dynamics makes the controls cheaper.

For problems in this class one can show that the optimal control law is

u∗ (x; t) =
σ2

z t (x)
B(x)T

∂z t (x)

∂x

and the HamiltonJacobiBellman (HJB) equation expressed in terms of z becomes
linear and is given by

∂z t (x)

∂t
= ℓt(x) z t (x)− L [z t] (x) (6.2)

HereL is a 2ndorder linear differential operator known as the generator of the passive
dynamics:

L [f ] (x) = a(x)T
∂f(x)

∂x
+

σ2

2
tr

(
∂2f(x)

∂x∂xT
B(x)B(x)T

)
(6.3)

This operator computes expected directional derivatives of functions along trajec
tories of the passive dynamics. We call problems of this kind linearly solvable
controlled diffusions ( LDs).

6.3.7 Relationship between discrete and continuoustime problems

If we take the first view of LMDPs that uses the notion of a stochastic passive
dynamics, we can interpret the above linearly solvable diffusion as a continuoustime
limit of LMDPs. This can be done by discretizing the time axis of the diffusion
process with time step h using the Euler approximation:

x(t+ h) = x(t) + h a(x) + hB(x)u+ϵ

where ϵ ∼ N
(
0, hσ2 B(x)B(x)T

)
. The covariance is scaled by h since for Brown

ian noise the standard deviation grows as the square root of time. The discretetime
cost becomes h ℓt(x)+h 1

2σ2u
T u. We will now construct an LMDP that resembles
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Figure 6.2 Continuous problems. Comparison of our MDP approximation and a traditional
MDP approximation on a continuous caronahill problem. (A) Terrain, (B) Z iteration (ZI)
(blue), policy iteration (PI) (red), and value iteration (VI) (black) converge to control laws with
identical performance; ZI is 10 times faster than PI and 100 times faster than VI. Horizontal
axis is on logscale. (C) Optimal costtogo for our approximation. Blue is small, red is large.
The two black curves are stochastic trajectories resulting from the optimal control law. The
thick magenta curve is the most likely trajectory of the optimally controlled stochastic system.
(D) The optimal costtogo is inferred from observed state transitions by using our algorithm
for inverse optimal control. Figure taken from [30].

this timediscretized LD. To do this, we define the passive dynamics at state x to be
the Euler approximation of the distribution of x(t+ h) given x(t) = x:

Π0(x) = N
(
x+h a(x), hσ2 B(x)B(x)T

)
.

This converges to the continuous time LD dynamics with u = 0 as h → 0. Now,
consider a family of probability shifts uu parameterized by u such that

uu ⊗Π0(x) = N
(
x+h a(x) + hB(x)u, hσ2 B(x)B(x)T

)
.

This distribution is the Euler discretization of the LD dynamics under control u. It
can be shown that KL

(
uu ⊗Π0(x) ∥ Π0(x)

)
= h 1

2σ2u
T u. Thus, for every u, there

is a probability shift uu that matches the Euler approximation of the LD dynamics
under control u and also matches the timediscretized control cost. We define the
state cost to be h ℓt(x). This LMDP is very close to the MDP corresponding to the
time discretized LD, the only difference being that we allow probability shifts that
are not equal to uu for any u. However, it turns out that this extra freedom does not
change the optimal control law, at least in the limit h → 0. The BE corresponding
to this LMDP is:

z t (x) = exp (−h ℓt(x)) E
N(x+h a(x),hσ2 B(x)B(x)T )

[z t+h]

It can be shown that after some algebra and taking the limit h → 0, we recover the
linear HJB equation (6.2).
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6.3.8 Historical perspective

Linearlysolvable optimal control is a rich mathematical framework that has recently
received a lot of attention, following Kappen’s work on controlaffine diffusions in
continuous time [14], and our work on Markov decision processes in discrete time
[27]. Both groups have since then obtained many additional results: see [36, 17, 6, 5]
and [28, 31, 30, 29, 8, 32, 33, 9, 38, 39] respectively. Other groups have also started
to use and further develop this framework [35, 7, 24, 25].

The initial studies [14, 27] were done independently, yet they both built upon the
same earlier results which we discuss here. For over 30 years these earlier results had
remained a curious mathematical fact, that was never actually used to solve control
problems – which, unfortunately, is not uncommon in control theory.

In continuous time, the trick that makes the HJB equation linear is

vxx − vxv
T
x = −zxx

z
, where z = exp (−v)

Applying this exponential (or logarithmic) transformation to 2ndorder PDEs has a
long history in Physics [12, 11]. Its first application to control was due to Fleming
and Mitter, who showed that nonlinear filtering corresponds to a stochastic optimal
control problem whose HJB equation can be made linear [10]. Kappen generalized
this idea, and noted that the solution to the resulting linear PDE is also a path integral
– which yields sampling approximations to the optimal value function [14].

Our work [27] was motivated by the same earlier results but in a more abstract way:
we asked, are there classes of linearlysolvable optimal control problems involving
arbitrary dynamics? This led to the LMDP framework summarized here. In discrete
time, the trick that makes the Bellman equation linear is

min
q

{KL (q ∥ p) + E
q
[v ]} = − log E

p
[exp (−v)]

where the minimum is achieved at q∗ = exp (−v)⊗ p. We introduced this trick
in [27], although it turned out to have been used earlier to derive a variational
characterization of the Bayesian posterior [18]. Indeed if p is a prior and v is a
negative loglikelihood, then the above q∗ is a Bayesian posterior.

6.4 EXTENSION TO RISKSENSITIVE CONTROL AND GAME THEORY

6.4.1 Game Theoretic Control : Competitive Games

Here we briefly introduce the notion of game theoretic control or robust control [3].
In this setting, the system can be influenced by another agent (adversary) in addition
to the controller. The controller needs to design a strategy that achieves the control
objective in spite of the adversarial disturbances. We shall focus on the simplest case
of twoplayer zerosum dynamic games, where the adversary is trying to maximize
the same cost that the controller is trying to minimize. The game proceeds as follows:
1) The adversary and controller pick actions ua,uc respectively. 2) The controller
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pays cost ℓt(x,uc,ua) and adversary pays − ℓt(x,uc,ua). 3) The system transitions
to state x’ ∼ P (x’|x,uc,ua). The solution to such a game can be formulated using
the BellmanIsaacs equations:

vt (x) = max
ua∈Ua(x,uc)

min
uc∈U(x)

ℓt(x,uc,ua) + E
P(x,uc,ua)

[vt+1]

We call such problems Markov Games or MGs. If the min,max can be interchanged
without changing the optimal policies for either the controller or the adversary, we
say that the game has a saddlepoint equilibrium. If not, then it matters which player
plays first and we have corresponding upper and lower value functions.

We have recently discovered a class of linearlysolvable Markov games ( LMGs),
where the BellmanIsaacs equation can be made linear as explained below. But first,
we need to introduce a class of divergence measures between probability distributions
that will play a key role in LMGs.

6.4.2 Rényi divergence

Rényi divergences are a generalization of the KL divergence. For distributions
p, q ∈ P [X ], the Rényi divergence of order α is defined as

Dα (p ∥ q) =
sign(α)

α− 1
log

(
E
p

[(
q

p

)1−α
])

For any fixed p, q, it is known that Dα is always nonnegative, decreasing for α < 0,
and increasing for α > 0. It is also known that limα→1 Dα (p ∥ q) = KL (p ∥ q).

6.4.3 Linearly Solvable Markov Games ( LMGs)

An LMG proceeds as follows:

The system in state x at time t.

The adversary picks controls ua ∈ XR+

.

The controller picks controls uc ∈ XR+

.

The system transitions into a state x’ ∼ uc ⊗ ua ⊗Π0(x)

The cost function is

ℓt(x, uc, ua) = ℓt(x)
+KL

(
uc ⊗ ua ⊗Π0(x) ∥ ua ⊗Π0(x)

)
(Control Cost)

−D 1
α

(
Π0(x) ∥ ua ⊗Π0(x)

)
(Control Cost for Adversary)

We focus on competitive games and require thatα > 0, α ̸= 1. Also, the dynamics
of the game is such that the adversary plays first, so the controller has a chance to
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respond to the adversarial disturbance. Thus, it is a maximin problem where we work
with the lower value function. Later, we describe the case α < 0 which leads to
cooperative games.

The differences between standard MGs and LMGs can be summarized as follows:

MGs LMGs
Pol uc : X × Ua → U uc : X × XR+

→ XR+

ua : X → Ua ua : X → XR+

Dyn ua = ua(x),uc = uc(x,ua) ua = ua(x), uc = uc(x, ua)

x
uc,ua−−−→ x’ ∼ P (x’|x,uc,ua) x

uc,ua−−−→ x’ ∼ uc ⊗ ua ⊗Π0(x)

Co ℓt(x,uc,ua) ℓt(x)− D 1
α

(
Π0(x) ∥ ua ⊗Π0(x)

)
+KL

(
uc ⊗ ua ⊗Π0(x) ∥ ua ⊗Π0(x)

)
BE

vt (x) = max
ua

min
uc

ℓt(x,uc,ua) z t (x) = Qt(x) E
Π0(x)

[z t+1]

+EP(x,uc,ua) [vt+1]
z t (x) = exp ((α− 1)vt (x))
Qt(x) = exp ((α− 1) ℓt(x))

OP
uc

∗ (x,ua; t) = argmin
uc

ℓt(x,uc,ua) uc
∗ (x, ua; t) = z

1
1−α
t+1

+EP(x,uc,ua) [vt+1]

6.4.3.1 LMDPs as a special case of LMGs: As α → 0, we recover the
LMDP Bellman equation. We can explain this by looking at the cost function. It is
known that limα→0 D1/α (p ∥ q) → log (supx p(x)/q(x)). For this cost, the optimal
strategy for the adversary is to always leave the passive dynamics unchanged, that is
ua

∗ (x; t) = 1. Intuitively, this says that the control cost for the adversary is high
enough and the optimal strategy for him is to do nothing. Thus the problem reduces
to the LMDP setting.

6.4.3.2 Effect of α : As α increases, the relative control cost of the controller
with respect to the adversary increases, so, effectively, the adversary becomes more
powerful. This makes the controller more conservative (or riskaverse), since it is
fighting a stronger adversary.

6.4.3.3 Cooperative LMGs: We have also derived a cooperative LMG where
two agents collaborate to accomplish the same control task. The game proceeds
similar to a competitive game, however now both agents pay the same cost and are
trying to minimize it in collaboration. The cost function for cooperative LMGs (for
both agents) is:

ℓt(x) + D1/α

(
ua ⊗Π0(x) ∥ Π0(x)

)
+KL

(
uc ⊗ ua ⊗Π0(x) ∥ ua ⊗Π0(x)

)
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where α < 0. As |α| gets bigger, the control cost for the helper gets smaller and the
helper contributes more towards accomplishing the control task while the controller
contributes less. The resulting BE is similar to the competitive case:

z t (x) = exp ((α− 1) ℓt(x)) E
Π0(x)

[z t+1]

z t (x) = exp ((α− 1)vt (x))

In this case, again we can recover LMDPs by taking α → 0 and making the control
cost for the helper effectively large enough that he always chooses not to change the
passive dynamics.
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Figure 6.3 Terrain and Cost Function for LMG example
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Figure 6.4 Logarithm of Stationary Distribution under Optimal Control vs α

6.4.3.4 Examples: We illustrate the effect of α with a simple control problem
that requires one to drive up as high as possible on a hilly terrain. The cost function
encourages one to drive up to the highest point, but the highest point is the peak of a
steep hill, so that even a small perturbation from the adversary can push one downhill
quickly. On the other hand, there is a shorter but less steep hill, where the adversary
cannot have as much of an effect. The problem is formulated in the IH setting,
so we are looking for a control strategy that achieves low average cost over a very
long horizon. The terrain and cost function are plotted in figure 6.3. The stationary
distributions over X under optimal control for different values of α are plotted in
6.4. It can be seen that when α < 0 (cooperative case), the controller places more
probability on the riskier but more rewarding option (steeper/higher hill) but when
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α > 0, the controller is more conservative and chooses the safer but less rewarding
option (shorter/less steep hill). In the LMDP case, the solution splits its probability
more or less evenly between the two options.

6.4.4 Linearly Solvable Differential Games ( LDGs)

In this section we consider differential games ( DGs) which are continuoustime
versions of MGs. A differential game is described by a stochastic differential equation

dx =
(
a(x) + B(x)uc +

√
αB(x)ua

)
d t+ σ B(x) dω

The infinitesimal generator L [·] for the uncontrolled process (uc,ua = 0) can be
defined similarly to (6.3). We also define a cost rate

ℓt(x,uc,ua) = ℓt(x)︸ ︷︷ ︸
State Cost

+
1

2σ2
uc

T uc︸ ︷︷ ︸
Control Cost for Controller

− 1

2σ2
ua

T ua︸ ︷︷ ︸
Control Cost for Adversary

Like LMGs, these are twoplayer zerosum games, where the controller is trying
to minimize the cost function while the adversary tries to maximize the same cost.
It can be shown that the optimal solution to differential games based on diffusion
processes is characterized by a nonlinear PDE known as the Isaacs equation [3].
However, for the kinds of differential games we described here, the Isaacs equation
expressed in terms of z t = exp ((α− 1)vt) becomes linear and is given by:

∂z t (x)

∂t
= (1− α) ℓt(x) z t (x)− L [z t] (x)

uc
∗ (x; t) =

σ2

(α− 1) z t (x)
B(x)T

∂ z t (x)

∂ x

ua
∗ (x; t) =

−
√
ασ2

(α− 1) z t (x)
B(x)T

∂ z t (x)

∂ x

When α = 0, the adversarial control ua has no effect and we recover LDs. As
α increases, the adversary’s power increases and the control policy becomes more
conservative.

There is a relationship between LDGs and LMGs. LDGs can be derived as the
continuous time limit of LMGs that solve timediscretized versions of differential
games. This relationship is analogous to the one between LMDPs and LDs.

6.4.4.1 Connection to RiskSensitive Control Both LMGs and LDGs can
be interpreted in an alternate manner, as solving a sequential decision making problem
with an alternate objective: Instead of minimizing expected total cost, we minimize
the expectation of the exponential of the total cost:

E
xt+1∼uc(xt)⊗Π0(xt)

[
exp

(
T∑

t=0

α ℓt(xt) + Dα

(
uc(xt)⊗Π0(xt) ∥ Π0(xt)

))]
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This kind of objective is used in risksensitive control [16] and it has been shown that
this problem can also be solved using dynamic programming giving rise to a risk
sensitive Bellman equation. It turns out that for this objective, the Bellman equation
is exactly the same as that of an LMG. The relationship between risksensitive control
and game theoretic or robust control has been studied extensively in the literature [3],
and it also shows up in the context of linearly solvable control problems.

6.4.5 Relationships among the different formulations

Linearly Solvable Markov Games ( LMGs) are the most general class of linearly
solvable control problems, to the best of our knowledge. As the adversarial cost
increases (α → 0), we recover Linearly Solvable MDPs ( LMDPs) as a special case
of LMGs. When we view LMGs as arising from the timediscretization of Linearly
Solvable Differential Games ( LDGs), we recover LDGs as a continuous time limit
(d t → 0). Linearly Solvable Controlled Diffusions( LDs) can be recovered either
as the continuous time limit of an LMDP , or as the nonadversarial limit (α → 0)
of LDGs. The overall relationships between the various classes of linearly solvable
control problems is summarized in the figure below:

LMGs
α→0

//

dt→0

��

LMDPs

dt→0

��
LDGs

α→0 // LDs

6.5 PROPERTIES AND ALGORITHMS

6.5.1 Sampling approximations and pathintegral control

For LMDPs , it can be shown that the FH desirability function equals the expectation

z 0 (x0) = E
xt+1∼Π0(xt)

[
exp

(
− ℓf (xT )−

∑T−1

t=1
ℓt (xt)

)]
over trajectories x1 · · ·xT sampled from the passive dynamics starting at x0. This
is also known as a pathintegral. It was first used in the context of linearlysolvable
controlled diffusions [14] to motivate sampling approximations. This is a modelfree
method for Reinforcement Learning [23], however unlike Qlearning (the classic
modelfree method) which learns a Qfunction over the stateaction space, here we
only learn a function over the state space. This makes modelfree learning in the
LMDP setting much more efficient [30].

One could sample directly from the passive dynamics, however the passive dy
namics are very different from the optimallycontrolled dynamics that we are trying
to learn. Faster convergence can be obtained using importance sampling:

z 0 (x0) = E
xt+1∼Π1(xt)

[
exp

(
− ℓf (xT )−

∑T−1

t=1
ℓt (xt)

)
p0 (x1 · · ·xT |x0)

p1 (x1 · · ·xT |x0)

]
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Here Π1 (xt+1 |xt) is a proposal distribution and p0, p1 denote the trajectory proba
bilities under Π0,Π1. The proposal distribution would ideally be Π∗, the optimally
controlled distribution, but since we do not have access to it, we use the approxima
tion based on our latest estimate of the function z . We have observed that importance
sampling speeds up convergence substantially [30]. Note however that in order to
evaluate the importance weights p0/p1, one needs a model of the passive dynamics.

6.5.2 Residual minimization via function approximation

A general class of methods for approximate dynamic programming is to represent the
value function with a function approximator, and tune its parameters by minimizing
the Bellman residual. In the LMDP setting such methods reduce to linear algebraic
equations. Consider the function approximator

ẑ (x;w, θ) =
∑

i
wifi (x; θ) (6.4)

where w are linear weights while θ are location and shape parameters of the bases f .
The reason for separating the linear and nonlinear parameters is that the former can
be computed efficiently by linear solvers. Choose a set of "collocation" states {xn}
where the residual will be evaluated. Defining the matrices F and G with elements

Fni = fi (xn)

Gni = exp (−ℓ (xn)) E
Π0(xn)

[fi]

the linear Bellman equation (in the IH case) reduces to

λF (θ)w = G (θ)w

One can either fix θ and only optimize λ,w using a linear solver, or alternatively
implement an outer loop in which θ is also optimized – using a generalpurpose
method such as Newton’s method or conjugate gradient descent. When the bases are
localized (e.g. Gaussians), the matrices F,G are sparse and diagonallydominant,
which speeds up the computation [31]. This approach can be easily extended to the
LMG case.

6.5.3 Natural policy gradient

The residual in the Bellman equation is not monotonically related to the performance
of the corresponding control law. Thus many researchers have focused on policy
gradient methods that optimize control performance directly [37, 22, 13]. The re
markable finding in this literature is that, if the policy is parameterized linearly and
the Qfunction for the current policy can be approximated, then the gradient of the
average cost is easy to compute.

Within the LMDP framework, we have shown [32] that the same gradient can be
computed by estimating only the value function. This yields a significant improve
ment in terms of computational efficiency. The result can be summarized as follows.
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Let g (x) denote a vector of bases, and define the control law

u(s)(x) = exp
(
−sTg(x)

)
This coincides with the optimal control law when sTg (x) equals the optimal value
function v (x). Now let v (s) (x) denote the value function corresponding to control
law u(s), and let v (x) = rTg (x) be an approximation to v (x), obtained by sam
pling from the optimally controlled dynamics u(s) ⊗Π0 and following a procedure
described in [32]. Then it can be shown that the natural gradient [2] of the average
cost with respect to the Fisher information metric is simply s − r. Note that these
results do not extend to the LMG case since the policyspecific Bellman equation is
nonlinear in this case.

6.5.4 Compositionality of optimal control laws

One way to solve hard control problems is to use suitable primitives [20, 15]. The
only previously known primitives that preserve optimality were Options [20], which
provide temporal abstraction. However what makes optimal control hard is space
rather than time, i.e. the curse of dimensionality. The LMDP framework for the
first time provided a way to construct spatial primitives, and combine them into
provablyoptimal control laws [29, 7]. This result is specific to FE and FH formu
lations. Consider a set of LMDPs (indexed by k) which have the same dynamics
and running cost, and differ only by their final costs ℓf (k) (x). Let the corresponding
desirability functions be z (k) (x). These will serve as our primitives. Now define a
new (composite) problem whose final cost can be represented as

ℓf (x) = − log
(∑

k
wk exp

(
− ℓf

(k) (x)
))

for some constants wk. Then the composite desirability function is

z (x) =
∑

k
wk z

(k) (x)

and composite optimal control law is

u∗ (x) =
∑

k
wk u

∗(k) (x)

One application of these results is to use LQG primitives – which can be con
structed very efficiently by solving Riccati equations. The composite problem has
linear dynamics, Gaussian noise and quadratic cost rate, however the final cost
no longer has to be quadratic. Instead it can be the log of any Gaussian mix
ture. This represents a substantial extension to the LQG framework. These re
sults can also be applied in infinitehorizon problems where they are no longer
guaranteed to yield optimal solutions, but nevertheless may yield good approxima
tions in challenging tasks such as those studied in Computer Graphics [7]. These
results extend to the LMG case as well, by simply defining the final cost as
ℓf(x) =

1
α−1 log

(∑
k wk exp

(
(α− 1)ℓf

(k)(x)
))

.
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6.5.5 Stochastic Maximum Principle

Pontryagin’s Maximum Principle is one of the two pillars of optimal control theory
(the other being dynamic programming and the Bellman equation). It applies to
deterministic problems, and characterizes locallyoptimal trajectories as solutions
to an ODE. In stochastic problems it seemed impossible to characterize isolated
trajectories, because noise makes every trajectory dependent on its neighbors. There
exist results called stochastic maximum principles, however they are PDEs that
characterize global solutions, and in our view are closer to the Bellman equation than
the Maximum Principle.

The LMDP framework provided the first trajectorybased maximum principle for
stochastic control. In particular, it can be shown that the probability of a trajectory
x1 · · ·xT starting from x0 under the optimal control law is

p∗ (x1, · · ·xT |x0) =
exp (− ℓf (xT ))

z 0 (x0)
exp

(
−
∑T−1

t=1
ℓt (xt)

)
p0 (x1 · · ·xT |x0)

Note that z 0 (x0) acts as a partition function. Computing z 0 for all x0 would be
equivalent to solving the problem globally. However in FH formulations where x0

is known, z 0 (x0) is merely a normalization constant. Thus we can characterize the
most likely trajectory under the optimal control law, without actually knowing what
the optimal control law is. In terms of negative logprobabilities, the most likely
trajectory is the minimizer of

J (x1, · · ·xT |x0) = ℓf (xT ) +
∑T−1

t=0
ℓt (xt)− log Π0 (xt+1 |xt)

Interpreting − log Π0 (xt+1 |xt) as a control cost, J becomes the total cost for a
deterministic optimal control problem [33].

Similar results are also obtained in continuous time, where the relation between the
stochastic and deterministic problems is particularly simple. Consider a FH problem
with dynamics and cost rate

dx = a (x) d t+ B (x) (u d t+ σ dω)

ℓ (x, u) = ℓ (x) +
1

2σ2
∥u∥2

It can be shown that the most likely trajectory under the optimallycontrolled stochas
tic dynamics coincides with the optimal trajectory for the deterministic problem

ẋ = a (x) + B (x) u (6.5)

ℓ (x, u) = ℓ (x) +
1

2σ2
∥u∥2 + 1

2
div a (x)

The extra divergence cost pushes the deterministic dynamics away from states where
the drift a (x) is unstable. Note that the latter cost still depends on σ, and so the
solution to the deterministic problem reflects the noise amplitude in the stochastic
problem [33]. The maximum principle does extend to the LMG case and it
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characterizes the mostly likely trajectory of the closed loop system that includes
both the controller and the adversary. For the discretetime problem, the maximum
principle reduces to minimizing

Jα (x1, · · ·xT |x0) = (1−α)ℓf (xT )+
∑T−1

t=0
(1−α)ℓt (xt)− log Π0 (xt+1 |xt)

Thus, when α < 1, the most likely trajectory is trying to minimize accumulated state
costs, while when α > 1, the most likely trajectory is trying to maximize state costs.
This gives us the interpretation that the controller “wins” the game for α < 1 while
the adversary “wins” the game for α > 1.

6.5.6 Inverse optimal control

Consider the problem of getting a robot to perform locomotion or manipulation.
Designing optimal controllers for these tasks is a computationally daunting task but
biological systems accomplish these tasks with ease. Given this, a promising ap
proach to designing controllers is to learn from biological systems and apply the
same principles to robotic systems. There are reasons to believe that biological sys
tems are optimal or near optimal, having been shaped by the processes of evolution
and learning [26]. This motivates the problem of inverse optimal control, that is, in
ferring the control law and cost function given state space trajectories of the optimally
controlled system. Traditionally, this has been done [1, 19, 40] by guessing a cost
function, solving the (forward) optimal control problem and adjusting the cost func
tion so that the resulting optimal behavior matches the observed behavior. However
this approach defeats one of the main motivations of studying inverse optimal control
– which is to leverage observed behavior of biological systems to design controllers
without having to solve optimal control problems from scratch. We present an effi
cient algorithm that circumvents this problem, by using the framework of LMDPs to
infer state cost functions given the passive dynamics Π0 and state trajectories of the
optimallycontrolled system. Given a set of observed state transitions {(xn,x’n)},
the loglikelihood of the data up to a constant offset is∑

n

−v (x’n; θ)− log

(
E

Π0(xn)
[exp (−v (·; θ))]

)
where v (x; θ) is a parameterized value function. We choose θ by maximizing the
above loglikelihood, yielding an optimal estimate v (·; θ∗) of the value function
within our parametric family. Once we have inferred the value function, we can
recover the cost function using ℓ(x) = v (x; θ∗) + log

(
EΠ0(x) [exp (−v (·; θ∗))]

)
.

When we use a linear parametrization, v (x; θ) = θT f(x), the likelihood maxi
mization problem is a convex optimization problem and can be solved efficiently.
However, in order to cope with high dimensional continuous state spaces, one needs
to be able to adapt the features f(x) as well, and we describe a non convex opti
mization approach to do this in [8]. Provided we know the risk parameter α, we can
extend these results in a straightforward manner to LMGs.
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6.6 CONCLUSIONS AND FUTURE WORK

Linearlysolvable optimal control is an exciting new development in control theory
and has been the subject of many papers over the past few years. In this chapter we
have attempted to provide a unified treatment of the developments in this area. The
work so far has been mostly aimed at understanding the framework and its properties.
We are now at a stage where the framework is mature and well understood and can
lead to the development of algorithms that scale to hard realworld control problems
from various application domains. Impressive results in robotics [24] and character
animation [7] have recently been obtained. We feel that the surface has barely been
scratched in terms of developing more efficient numerical methods for stochastic
optimal control.
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