
Inverse Optimal Control with Linearly-Solvable MDPs

Krishnamurthy Dvijotham dvij@cs.washington.edu
Emanuel Todorov todorov@cs.washington.edu

Computer Science & Engineering and Applied Mathematics, University of Washington, Seattle - 98105, USA

Abstract

We present new algorithms for inverse opti-
mal control (or inverse reinforcement learn-
ing, IRL) within the framework of linearly-
solvable MDPs (LMDPs). Unlike most prior
IRL algorithms which recover only the con-
trol policy of the expert, we recover the pol-
icy, the value function and the cost function.
This is possible because here the cost and
value functions are uniquely defined given the
policy. Despite these special properties, we
can handle a wide variety of problems such as
the grid worlds popular in RL and most of the
nonlinear problems arising in robotics and
control engineering. Direct comparisons to
prior IRL algorithms show that our new algo-
rithms provide more information and are or-
ders of magnitude faster. Indeed our fastest
algorithm is the first inverse algorithm which
does not require solving the forward prob-
lem; instead it performs unconstrained op-
timization of a convex and easy-to-compute
log-likelihood. Our work also sheds light on
the recent Maximum Entropy (MaxEntIRL)
algorithm, which was defined in terms of den-
sity estimation and the corresponding for-
ward problem was left unspecified. We show
that MaxEntIRL is inverting an LMDP, us-
ing the less efficient of the algorithms derived
here. Unlike all prior IRL algorithms which
assume pre-existing features, we study fea-
ture adaptation and show that such adapta-
tion is essential in continuous state spaces.

1. Introduction

Inverse optimality has attracted considerable attention
in both control engineering and machine learning. Un-

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

like the forward problem of optimal control which is
well-defined, the inverse problem can be posed in mul-
tiple ways serving different purposes.

Inverse optimality was first studied for control-
theoretic purposes in relation to stability (Kalman,
1964). This idea later inspired a constructive ap-
proach (e.g. (Deng & Krstic, 1997)) where one designs
a control-Lyapunov function, treats it as an optimal
value function (and derives the corresponding control
law) and finds the cost for which this value function
is optimal. Apart from the guesswork involved in de-
signing control-Lyapunov functions, this is easier than
solving the forward problem because for many non-
linear systems (see Section 3) the Hamilton-Jacobi-
Bellman (HJB) equation gives an explicit formula for
the cost once the value function is known. The LMDPs
we will be working with (Todorov, 2007; 2009b) also
have this property, and it will play a key role here.

It is notable that the above control-theoretic approach
does not actually use data. In contrast, IRL meth-
ods in machine learning rely on data in the form of
state transitions (and possibly actions) obtained from
an expert performing some task. In general there are
two things that one could do with such data: infer the
costs/values of the expert, or build a controller which
mimics the expert. The former is relevant to cogni-
tive and neural science, where researches are interested
in ”theories of mind” (Baker et al., 2007) as well as
in identifying the cost functions being optimized by
the sensorimotor system (Todorov, 2004; Körding &
Wolpert, 2004). While many existing IRL algorithms
(Ng & Russell, 2000; Abbeel & Ng, 2004; Syed et al.,
2008) use cost features and infer weights for those fea-
tures, they do not actually aim to recover the cost
or value function but only the control law. Indeed in
generic MDPs there is a continuum of cost and value
functions for which a given control law is optimal (Ng
& Russell, 2000). This ill-posedness is removed in the
LMDP framework, making our algorithms much more
applicable to cognitive and neural science.

Now consider the task of building a control law from

Inverse optimal control with Linearly-Solvable MDPs

data – which is what the above IRL methods do. One
reason to use data (instead of solving the forward
problem directly) is that an appropriate cost function
which captures the control objectives may be hard to
design. But we believe this difficulty is negligible com-
pared to the second reason – which is that we lack
algorithms capable of solving forward optimal control
problems for complex systems. Take for example the
control domain where data has been used most exten-
sively, namely locomotion and other full-body move-
ments seen in movies and games. A sensible cost func-
tion for locomotion is not hard to design: it should
require the center of mass to remain a certain distance
above ground (to prevent falling), move at a certain
speed towards the goal, and at the same time con-
serve energy. Indeed open-loop optimization of similar
costs for simplified models can predict various features
of human walking and running (Srinivasan & Ruina,
2005). If we could find feedback control laws which
optimize such costs for realistic systems, this would
constitute a major breakthrough both in animation
and in robotics. Unfortunately this is not yet pos-
sible, and thus many researchers are exploring ways
to build controllers using motion capture data (e.g.
(Treuille et al., 2007)). We emphasize this point here
because all prior IRL methods we are aware of, includ-
ing the MaxEntIRL method discussed later (Ziebart
et al., 2008), end up solving the forward problem re-
peatedly in an inner loop. While one can construct
problems with moderate numbers of discrete states
where such an approach is feasible, scaling it to control
problems that involve interesting physical systems is
unlikely. A case in point is the elegant work of Abbeel
and colleagues on aerobatic helicopter flight (Abbeel
et al., 2007). After trying to apply their apprentice-
ship learning framework (Abbeel & Ng, 2004) to this
problem, they eventually gave up and simply recorded
reference trajectories from human radio-pilots. If fu-
ture IRL algorithms are to avoid this fate, they should
avoid solving the forward problem. Here we develop
the first inverse method which avoids solving the for-
ward problem. This is done by parameterizing and
inferring the value function rather than the cost func-
tion, and then computing the cost function using an
explicit formula.

Finally, all IRL methods including ours use linear com-
binations of features to represent the costs (or values in
our case). However, previous work has left the choice
of features to manual design. This is arguably one of
the biggest unsolved problems not only in IRL but in
AI and machine learning in general. Here we consider
automatic methods for initializing the parameterized
features and methods for adapting their parameters.

When the number of features is small relative to the
size of the state space (which is always the case in
high dimensional problems), feature adaptation turns
out to be essential. While the problem of feature adap-
tation in IRL is far from being solved in its generality,
the present work is an important first step in this di-
rection.

2. Discrete problems

We consider problems with discrete state space in this
section, and problems with continuous state space in
the next section. In both cases we derive IRL al-
gorithms from the recently-developed framework of
linearly-solvable stochastic optimal control (Todorov,
2007; 2009b; Kappen, 2005). Below we first summa-
rize this framework from the viewpoint of the forward
problem, and then present our results regarding the
inverse problem.

2.1. Linearly-solvable MDPs

The MDP is defined by a state cost q (x) ≥ 0, and pas-
sive dynamics x′ ∼ p (·|x) characterizing the behavior
of the system in the absence of controls. The con-
troller can impose any dynamics x′ ∼ π (·|x) it wishes,
however it pays a price (control cost) which is the KL
divergence between π and p. We further require that
π (x′|x) = 0 whenever p (x′|x) = 0 so that KL diver-
gence is well-defined. Thus the cost function is

` (x, π (·|x)) = q (x) +KL (π (·|x) ||p (·|x)) (1)

Define the desirability function z (x) = exp (−v (x))
where v (x) is the optimal value function (or the dif-
ferential value function in average-cost settings). It
can now be shown that the optimal control law is

π∗ (x′|x) =
p (x′|x) z (x′)

G [z (·)] (x)
(2)

where the normalizing term G is a linear operator
which computes next-state expectations under p:

G [z (·)] (x) =
∑
x′p (x′|x) z (x′) (3)

The minimized Bellman equation is linear in z:

λz (x) = exp (−q (x))G [z (·)] (x) (4)

In infinite-horizon average-cost problems the solution
corresponds to the principal eigen-pair, and the aver-
age cost is − log (λ). In first-exit problems we have
λ = 1 and (4) becomes a linear algebraic equation,
whose solution in vector notation is

zN = (diag (exp(qN))− PNN)
−1
PNT exp(−qT)

(5)

Inverse optimal control with Linearly-Solvable MDPs

Here N and T are the sets of non-terminal and termi-
nal states. Infinite-horizon discounted-cost problems
(with discount factor α) can also be handled by defin-
ing z (x) = exp (−αv (x)). In that case (2, 3) re-
main the same while (4) becomes nonlinear, namely
z (x)

−α
= exp (−q (x))G [z (·)] (x).

In first-exit problems, the probability that the passive
dynamics generate trajectory ς = (x1, x2, · · · , xT ∈ T)

given initial state x0 is p (ς|x0) =
∏T
t=1P (xt|xt−1).

The probability that the same trajectory is generated
by the optimal control law is

p∗ (ς|x0) =
p (ς|x0) exp

(
−
∑T
t=0q (xt)

)
z (x0)

(6)

This formulation is different from traditional MDPs,
and a critic might argue that IRL algorithms based
on it do not solve the problem one wants to solve.
We have two responses to this criticism. First, this
formulation should not be considered less natural just
because it is more recent. Indeed MDPs are often used
to model the physical world which has continuous ac-
tions and non-trivial passive dynamics. Second, tradi-
tional MDPs can be embedded in this problem class
(Todorov, 2007; 2009b) in a way reminiscent of lin-
ear programming relaxation in integer programming:
it is not guaranteed to yield the same result but often
yields very similar results much faster.

2.2. Inverse optimal control (OptV)

We now turn to the inverse problem. Unlike prior
IRL algorithms which require trajectory data, our
algorithms work with any dataset of transitions
{xn, x′n}n=1···N sampled from the optimal control law:

x′n ∼ π∗ (·|xn) (7)

We are also given the passive dynamics p. Our objec-
tive is to estimate the cost q, the desirability function
z, the optimal value function v and the optimal con-
trol law π∗. Conveniently we have explicit formulas
relating these quantities, thus it is sufficient to infer
one of them. For reasons explained below it is most
efficient to infer v. Once we have an estimate v̂, we
can obtain ẑ = exp(−v̂) , π̂∗ from (2), and q̂ from (4).

The inference method is maximum likelihood. Think
of the optimal control law π∗ (·|·) as being parameter-
ized by the desirability function z (·) as given by (2).
Then the negative log-likelihood is

L [z (·)] = −
∑
n log z (x′n) + (8)∑

n log
∑
x′p (x′|xn) z (x′)

We have omitted the term
∑
n log p (x′n|xn) because

it does not depend on z, although this term could be
used in future work attempting to learn p under some
regularizing assumptions. Now L could be minimized
w.r.t. z, however it is not a convex function of z. We
have experimented with such minimization and found
it to be slower as well as prone to local minima.

If however we write L in terms of v it becomes convex
– because it is a positive sum of log-sum-exp functions
plus a linear function. One additional improvement,
which enables us to compute L faster when the num-
ber of data points exceeds the number of states, is to
write L in terms of the visitation counts a (x′) and b (x)
defined as the number of times x′n = x′ and xn = x re-
spectively. It is interesting that the likelihood depends
only on these counts and not on the specific pairings
of states in the dataset. We now have

L [v (·)] =
∑
x′a (x′) v (x′) + (9)∑

xb (x) log
∑
x′p (x′|x) exp (−v (x′))

Thus inverse optimal control in the linearly-solvable
MDP framework reduces to unconstrained convex op-
timization of an easily-computed function. We will call
the resulting algorithm OptV. In our current imple-
mentation we compute the gradient and Hessian of (9)
analytically and apply Newton’s method with back-
tracking linesearch.

We did not distinguish between first-exit, average-cost
and discounted problems because the algorithm is the
same in all three cases; the only differences are in how
the data are sampled and how q̂ is subsequently com-
puted from v̂. This is an advantage over other IRL
methods which are usually derived for a single prob-
lem formulation.

Finally, the above discussion implied lookup-table rep-
resentations, however it is easy to use features as well.
Consider a linear function approximator in v-space:

v (x) =
∑
iwifi (x) (10)

where fi (x) are given features and wi are unknown
weights. Then L (w) is again convex and can be opti-
mized efficiently. Later in the paper we consider meth-
ods for initializing and adapting the features automat-
ically when the state space is continuous.

2.3. Learning the cost directly (OptQ)

We can also express L as a function of q and infer q
directly (algorithm OptQ). When using lookup-table
representations the two algorithms yield identical re-
sults, however the results are generally different when

Inverse optimal control with Linearly-Solvable MDPs

using features. This is because the transformation be-
tween v and q given by (4) is nonlinear, thus a linear
function approximator in v-space does not correspond
to a linear function approximator in q-space. A second
reason to explore direct inference of q is because this
turns out to reveal an interesting relationship to the
MaxEntIRL algorithm (Ziebart et al., 2008).

For simplicity we focus on first-exit problems where
we have the explicit formula (5) relating z and q. This
formula enables us to express L as a function of q and
compute the gradient analytically – which is cumber-
some due to the matrix inverse, but doable. Comput-
ing the Hessian however is too cumbersome, so we use
a BFGS method which approximates the Hessian. L
turns out to be convex in q (see Appendix). Never-
theless the OptQ algorithm is much slower than the
OptV algorithm. This is because computing L [q (·)]
requires solving the forward problem at every step of
the minimization. Therefore learning q directly is not
a good idea. If one wants to use features in q-space,
it may be better to do the learning in v-space (per-
haps with a different set of features) and then fit the
function approximator for q using linear regression.

The function L [q (·)] can be written in an alternative
form using the trajectory probabilities (6). Suppose
the transitions are sampled along trajectories ς(k) with

lengths T (k), and let x
(k)
t denote the state at time

t along trajectory k. Using (6) and omitting the p-
dependent term which does not involve q, we have

L [q (·)] =
∑
k

(
log z

(
x
(k)
0

)
+
∑T (k)
t=0 q

(
x
(k)
t

))
(11)

Again we see that computing L [q (·)] requires z (·).

2.4. Relationship with MaxEntIRL

The MaxEntIRL algorithm (Ziebart et al., 2008) is
derived using features (which can also be done in
OptV and OptQ) but for simplicity we discuss the
lookup-table case with one delta function ”feature”
per state. MaxEntIRL is a density estimation al-
gorithm: it looks for the maximum-entropy distri-
bution consistent with the observed state visitation
counts (or feature counts more generally). It is
known that the maximum-entropy distribution un-
der moment-matching constraints is in the exponen-
tial family. Thus MaxEntIRL comes down to finding
q (·) which maximizes the probability of the observed
trajectories within the family

pMaxEnt (ς|x0) ∝ exp
(
−
∑T
t=0q (xt)

)
(12)

The bottleneck is in computing the partition function
at each step of the optimization, which is done using
a recursive procedure.

Intuitively MaxEntIRL resembles an IRL method.
However until now it was unclear what forward op-
timal control problem is being inverted by MaxEn-
tIRL, and whether such a problem exists in the first
place. We can now answer these questions. Com-
paring (12) to (6), we see that the trajectory prob-
abilities are identical when the passive dynamics are
uniform. Therefore MaxEntIRL is an inverse method
for LMDPs with uniform passive dynamics. Indeed
the recursion used in (Ziebart et al., 2008) to com-
pute the partition function is very similar to the itera-
tive method for computing the desirability function in
(Todorov, 2007; 2009b). Both recursions are compu-
tationally equivalent to solving the forward problem.
As a result both MaxEntIRL and OptQ are slower
than OptV, and furthermore MaxEntIRL is a special
case of OptQ. MaxEntIRL’s restriction to uniform pas-
sive dynamics is particularly problematic in modeling
physical systems, which often have interesting passive
dynamics that can be exploited for control purposes
(Collins et al., 2005).

2.5. Embedding Arbitrary IRL Problems

In this section we show how an IRL problem for a tra-
ditional MDP can be embedded in the LMDP frame-
work. This is almost the same as the embedding de-
scribed in (Todorov, 2009b), except that here we do
not know the cost function during the embedding, thus
we need some additional assumptions. We assume that
the MDP cost is in the form l(x)+r(a) where r(a) is a
known action cost while l(x) is an unknown state cost.
Let p(x′|x, a) be the (known) transition probabilities in
the MDP, and assume that the number of actions per
state equals the number of possible next states. Let
q(x) and p(x′|x) be the unknown state cost and passive
dynamics in the corresponding LMDP. The embedding
(Todorov, 2009b) comes down to matching the costs
for all x, a:

l(x) + r(a) = q(x) +
∑
x′

p(x′|x, a) log

(
p(x′|x, a)

p(x′|x)

)
These equations are linear in log(p(x′|x)). Let us fix x
and suppose k states are reachable from x in one step.
Then p(x′|x) has at most k non-zeros (to ensure finite
KL divergence). Let the non-zeros be stacked into the
vector px. Thus we have k linear equations in k + 1
variables log(px), l(x)− q(x). The additional degree of
freedom is removed using 1T px = 1. We can then solve
the LMDP IRL problem, and use the solution as an
approximation to the MDP IRL problem. There are no
guarantees on the quality of the recovered solution, but
we observe that it gives good results experimentally in
section 2.6.

Inverse optimal control with Linearly-Solvable MDPs

Figure 1. Comparison of OptV and prior IRL algorithms
on a grid-world problem. Black rectangles are obstacles.

2.6. Numerical results

We compared OptV to three prior IRL algorithms la-
beled in Figure 1 according to the name of their first
author: Syed (Syed et al., 2008), Abbeel (Abbeel &
Ng, 2004), and Ng (Ng & Russell, 2000). The for-
ward problem is a traditional MDP: a grid world with
obstacles (black rectangles), a state-action cost which
only depends on the state, and discrete actions caus-
ing transitions to the immediate neighbors (including
diagonals). There is one action per neighbor and it
causes a transition to that neighbor with probability
0.9. The rest of the probability mass is divided equally
among the remaining neighbors. The problem is in a
discounted-cost setting with discount factor 0.5.

All four IRL methods were implemented in Matlab in
the most efficient way we could think of. Rather than
sampling data from the optimal control policy, we gave
them access to the true visitation frequencies under
the optimal policy of the traditional MDP (equivalent
to infinite sample size). Using the embedding from
section 2.5, we get an embedded LMDP IRL problem
with passive dynamics that is uniform over possible
next states and run OptV on this.

As expected, OptV was substantially faster than all
other algorithms for all grid sizes we tested. Even
though the forward problem which generated the data
is a traditional MDP while OptV is trying to invert an
LMDP, it infers a value function very similar to the

solution to the forward problem. Since the passive dy-
namics here are uniform, MaxEntIRL/OptQ produce
the same result but about 20 times slower. Although
such close similarity is not guaranteed, it is common
in our experience. (Ng & Russell, 2000) proposes a
heuristic to select a cost function – which we then
translated into a value function by solving the forward
problem, while the other algorithms only recover a pol-
icy, not a cost function. As shown in the figure, the
result is quite different from the correct value function.

Two of the prior IRL algorithms (Syed and Abbeel)
are guaranteed to recover the control policy given the
true visitation counts, and indeed they do. Since OptV
is solving a different problem it does not recover the
control policy exactly (which it would if the forward
problem was an LMDP). Nevertheless the result is very
close, and actually improves when the grid size in-
creases. The expected cost achieved by the inferred
policy was 6% above optimal for the 9-size grid, and
only 0.3% above optimal for the 40-size grid. Thus
we pay a small penalty in terms of performance of the
inferred policy, but we recover costs/values and do so
faster than any other algorithm.

3. Continuous problems

We now focus on optimal control problems in contin-
uous space and time. Such problems lead to PDEs
which in our experience are difficult to handle numeri-
cally. Therefore the new IRL method we derive below
(OptVA) uses time-discretization, along with adaptive
bases to handle the continuous state space. We also
consider state discretization as a way of obtaining large
MDPs on which we can further test the algorithms
from the previous section (see Figure 2A below).

3.1. Linearly-solvable controlled diffusions

Consider the control-affine Ito diffusion

dx = a (x) dt+B (x) (udt+ σdω) (13)

where a (x) is the drift in the passive dynamics (in-
cluding gravity, Coriolis and centripetal forces, springs
and dampers etc), B (x) u is the effect of the control
signal (which is now a more traditional vector instead
of a probability distribution), and ω (t) is a Brownian
motion process. The cost function is in the form

` (x,u) = q (x) +
1

2σ2
‖u‖2 (14)

The relationship between the noise magnitude and the
control cost is unusual but can be absorbed by scaling
q. The only restriction compared to the usual control-

Inverse optimal control with Linearly-Solvable MDPs

affine diffusions studied in the literature is that the
noise and controls must act in the same space.

It can be shown (Kappen, 2005; Todorov, 2009b) that
the HJB equation for such problems reduces to a 2nd-
order linear PDE when expressed in terms of the de-
sirability z, just like the Bellman equation (4) is linear
in z. This similarity suggests that the above prob-
lem and the linearly-solvable MDPs are somehow re-
lated. Indeed it was shown in (Todorov, 2009b) that
problem (13, 14) can be obtained from a discrete-time
continuous-state LMDP by taking a certain limit. The
passive dynamics for this MDP are constructed using
explicit Euler discretization of the time axis: p (x′|x)
is Gaussian with mean x + ha (x) + hB (x) u and

covariance hσ2B (x)B (x)
T

, where h is the time step.
The state cost in the MDP is hq (x). It can be shown
that the quadratic control cost in (14) is the limit of
the KL divergence control cost in (1) when h→ 0.

Thus the continuous optimal control problem (13, 14)
is approximated by the LMDP described above, and
IRL methods for this LMDP approximate the contin-
uous inverse problem. The approximation error van-
ishes when h→ 0. However, time-discretization allows
us to use larger h, which usually leads to better per-
formance for a given number of samples and bases.

3.2. Inverse optimal control with adaptive
bases (OptVA)

The inverse method developed here is similar to OptV,
however it uses a function approximator with adaptive
bases. We represent the value function as

v (x; w, θ) =
∑
iwifi (x; θ) = wT f (x; θ) (15)

where w is a vector of linear weights while θ is a vector
of parameters that affect the shape and location of the
bases fi. The bases are normalized Gaussian RBFs:

fi (x; θ) =
exp

(
θTi s (x)

)∑
j exp

(
θTj s (x)

) (16)

Here θi denotes the part of θ specific to fi, and
s (x) = [1;xk;xkxl] for all k ≤ l. Thus exp

(
θTi s (x)

)
is Gaussian. In the language of exponential families,
θi are the natural parameters and s (x) the sufficient
statistics. We chose normalized RBFs because they
often produce better results than unnormalized RBFs
– which we also found to be the case here.

Similar to the discrete case, the negative log-likelihood
of a dataset {xn,x′n} is

L (w, θ) =
∑
n

wT f (x′n; θ) + log G
[
e−w

T f(x;θ)
]

(xn)

where the linear operator G is the same as (3), except
that the sum becomes an integral.

Thus L is convex in w and can be minimized effi-
ciently for fixed θ. The optimization of θ, or in other
words the basis function adaptation, relies on gradient
descent – LBFGS or Conjugate Gradients as imple-
mented in the off-the-shelf optimizer (Schmidt, 2005).
We take advantage of the convexity in w by optimiz-
ing L̃ (θ) = minw L (w, θ). Each evaluation of L̃ (θ)
involves computing the optimal w∗ (θ) by Conjugate
Gradients (which converges very quickly). Then we

compute the gradient of L̃ using

∂L̃ (θ)

∂θ
=
∂L (w∗ (θ) , θ)

∂w

∂w∗ (θ)

∂θ
+
∂L (w∗ (θ) , θ)

∂θ

The first term on the right vanishes because L has
been optimized w.r.t. w. The only complica-

tion here is the computation of G
[
e−w

T f(x;θ)
]

=∫
p (x′|x) exp

(
−wT f (x; θ)

)
dx′. In our current im-

plementation we do this by discretizing the state space
around Ep [x′|x] and replacing the integral with a sum.
In high-dimensional problems such discretization will
not be feasible. However the passive dynamics p (x′|x)
are Gaussian, and numerical approximation methods
for Gaussian integrals have been studied extensively,
resulting in so-called cubature formulas which can be
applied here.

The optimization problem is convex in w but non-
convex in the basis parameters θ, thus we need good
initialization for θ. We developed an automated pro-
cedure for this. The intuition is that the optimal con-
troller frequently visits “good” parts of the state space
where the function approximator should have the high-
est resolution. Thus the centers of the Gaussians are
initialized using K-means on the data. The function
approximator can also benefit from initializing the co-
variances properly. We do this by finding the nearest
Gaussians, computing the covariance of their means,
and scaling it by a constant.

We argued earlier that data makes the inverse problem
generally easier than the forward problem. Is this still
true in the LMDP case given that the forward prob-
lem is linear? For fixed features/bases the two com-
putations are comparable, however basis adaptation is
much easier in the inverse problem. This is because
the data provides good initialization, and good initial-
ization is key when optimizing a non-convex function.

3.3. Numerical results

Here we study inverted pendulum dynamics in the
form (13, 14), with σ = 1. The state space is 2D:

Inverse optimal control with Linearly-Solvable MDPs

Figure 2. (A) Control policies in the first-exit (inverted
pendulum) problem. Each subplot shows the CPU time
and the policy found given the optimal transition proba-
bilities. The policy found by OptV was indistinguishable
from the optimal policy and achieved average cost of 13.06,
as compared to 57.21 for Syed and 41.15 for Abbeel.
(B) Value functions in the infinite-horizon (metronome)
problem. Here the algorithms have access to finite data
(12,000 transitions) thus the optimal value function can
no longer be recovered exactly. OptV with a lookup table
representation does quite poorly, indicating the need for
smoothing/generalization. The result of OptVA with the
initial bases vaguely resembles the correct solution, and is
substantially improved after basis adaptation. The ellipses
show the location and shape of the Gaussian bases before
normalization.
(C) Performance of OptVA over iterations of basis adap-
tation for 12,000 samples (left), and as a function of the
sample size at the last iteration of basis adaptation (right).
We plot the difference between the optimal and inferred z
functions (expressed as KL divergence), and the log av-
erage cost of the resulting control policy. The curves are
scaled and shifted to fit on the same plot.

x = [xp;xv]. We consider a first-exit formulation
where the goal is to reach a small region around the
vertical position with small velocity. We also con-
sider an infinite-horizon average-cost formulation cor-
responding to a metronome. The cost q (x) only de-
pends on xv. It is small when xv = ±2.5 and increases
sigmoidally away from these values. Thus the pendu-
lum is required to move in either direction at constant
speed. The system has positional limits; when these
limits are hit the velocity drops to zero. The discretiza-
tion time step is h = 0.1. In the first-exit problem the
state space is also discretized, on a 70-by-70 grid.

Figure 2A shows further comparison to prior IRL algo-
rithms in a discretized state space using lookup table
representaiton (pendulum first exit problem). OptV
is faster by orders of magnitude, and recovers the op-
timal policy almost exactly (relative error < 10−9),
while prior ILR algorithms recover different policies
with significantly worse performance. We used the
LP solver Gurobi (Yin, 2009-2010) to implement the
Syed-Schapire algorithm. We discretized the actions
space with a grid of 70 points for Syed-Schapire and
10 points for Abbeel-Ng (discretization was coarse to
limit running time). Figure 2B illustrates the perfor-
mance of the OptVA algorithm on the infinite horizon
metronome problem with finite data. A small num-
ber of bases (10) is sufficient to recover the optimal
value function quite accurately after basis adaptation.
The effects of sample size and iterations of the basis
adaptation algorithm are illustrated in Figure 2C.

4. Summary

Here we presented new algorithms for inverse optimal
control applicable to LMDPs with discrete and con-
tinuous state. They outperform prior IRL algorithms.
The new algorithms are solving a restricted class of
problems, but this class is broad enough to include or
approximate many control problems of interest. It is
particularly well suited for modeling the physical sys-
tems commonly studied in nonlinear control.

Apart from the benefits arising from the LMDP frame-
work, key to the efficiency of our algorithms is the in-
sight that recovering values is easier than recovering
costs because solving the forward problem is avoided.
This of course means that we need features over val-
ues rather than costs. Cost features are generally eas-
ier to design, which may seem like an advantage of
prior IRL algorithms. However prior IRL algorithms
need to solve the forward problem – therefore they
need features over values (or policies, or state-values,
depending on what approximation method is used for
solving the forward problem) in addition to features

Inverse optimal control with Linearly-Solvable MDPs

over costs. Thus the feature selection problem in prior
IRL work is actually harder.

5. Appendix : Convexity of OptQ

The convexity of L[q] follows from the following
Lemma: Let x ∈ Rm and M(x) ∈ Rn×n be
such that M(x)ij = exp(aTijx + bij). Suppose that∑
j exp(bij) < 1∀i. Then for any c, d ∈ Rn

+, the func-

tion f(x) = cT log((I −M(x))−1d) is convex on the
domain X = {x : aTijx ≤ 0 ∀i, j}.

Proof: M(x) is a matrix with positive entries and row
sums smaller than 1. Thus, the spectral radius ofM(x)
is smaller than 1. Hence, we use a series expansion of
(I − M(x))−1 to get f(x) = cT log

(∑∞
k=0M(x)kd

)
.

For k ≥ 1, letting l0 = i, lk+1 = j, we have

[M(x)k]ij =
∑
l1,l2,...,lk−1

∏k
p=0[M(x)]lplp+1

Since each

entry of M(x)k is a positive linear combination of
terms of the kind exp(aTx + b), so is

∑
kM(x)kd

(since d > 0). Thus, log(
∑
kM(x)kd) is a log-sum-

exp function of x and is hence convex. Since c > 0,
cT log(

∑
kM(x)kd) is a positive linear combination of

convex functions and is hence convex.

Acknowledgements

This work was supported by the NSF.

References

Abbeel, P. and Ng, A.Y. Apprenticeship learning via
inverse reinforcement learning. In Proceedings of
the twenty-first international conference on Machine
learning, pp. 1. ACM, 2004.

Abbeel, Pieter, Coates, Adam, Quigley, Morgan, and
Ng, Andrew Y. An application of reinforcement
learning to aerobatic helicopter flight. In In Ad-
vances in Neural Information Processing Systems
19. MIT Press, 2007.

Baker, C.L., Tenenbaum, J.B., and Saxe, R.R. Goal
inference as inverse planning. In Proceedings of the
29th annual meeting of the cognitive science society,
2007.

Collins, S., Ruina, A., Tedrake, R., and Wisse, M.
Efficient bipedal robots based on passive-dynamic
walkers. Science, 307(5712):1082, 2005.

Deng, H. and Krstic, M. Stochastic nonlinear
stabilization-I: A backstepping design. Systems and
Control Letters, 32(3):143–150, 1997.

Kalman, R. When is a linear control system optimal?
Trans AMSE J Basic Eng, Ser D, pp. 51–60, 1964.

Kappen, H.J. Linear theory for control of nonlinear
stochastic systems. Physical Review Letters, 95(20):
200201, 2005.

Körding, K.P. and Wolpert, D.M. The loss function of
sensorimotor learning. Proceedings of the National
Academy of Sciences of the United States of Amer-
ica, 101(26):9839, 2004.

Ng, A.Y. and Russell, S. Algorithms for inverse re-
inforcement learning. In Proceedings of the Seven-
teenth International Conference on Machine Learn-
ing, pp. 663–670. Morgan Kaufmann Publishers
Inc., 2000.

Schmidt, M. minfunc., 2005. http://www.cs.ubc.

ca/~schmidtm/Software/minFunc.html.

Srinivasan, M. and Ruina, A. Computer optimization
of a minimal biped model discovers walking and run-
ning. Nature, 439(7072):72–75, 2005.

Syed, U., Bowling, M., and Schapire, R.E. Apprentice-
ship learning using linear programming. In Proceed-
ings of the 25th international conference on Machine
learning, pp. 1032–1039. ACM, 2008.

Todorov, E. Optimality principles in sensorimotor con-
trol. Nature Neuroscience, 7(9):907–915, 2004.

Todorov, E. Linearly-solvable Markov decision prob-
lems. Advances in neural information processing
systems, 19:1369, 2007.

Todorov, E. Eigenfunction approximation methods
for linearly-solvable optimal control problems. In
IEEE International Symposium on Adaptive Dy-
namic Programming and Reinforcemenet Learning,
2009a.

Todorov, E. Efficient computation of optimal actions.
Proceedings of the National Academy of Sciences,
106(28):11478, 2009b.

Treuille, A., Lee, Y., and Popović, Z. Near-optimal
character animation with continuous control. In
ACM SIGGRAPH 2007 papers, pp. 7. ACM, 2007.

Yin, Wotao. Gurobi mex: A matlab interface for
gurobi, 2009-2010. http://www.caam.rice.edu/

~wy1/gurobi_mex.

Ziebart, B.D., Maas, A., Bagnell, J.A., and Dey, A.K.
Maximum entropy inverse reinforcement learning.
In Proc. AAAI, pp. 1433–1438, 2008.

http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
http://www.caam.rice.edu/~wy1/gurobi_mex
http://www.caam.rice.edu/~wy1/gurobi_mex

