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Abstract

Recent work has led to the development of an
elegant theory of Linearly Solvable Markov
Decision Processes (LMDPs) and related
Path-Integral Control Problems. Tradition-
ally, LMDPs have been formulated using
stochastic policies and a control cost based on
the KL divergence. In this paper, we extend
this framework to a more general class of di-
vergences: the Rényi divergences. These are
a more general class of divergences param-
eterized by a continuous parameter α that
include the KL divergence as a special case.
The resulting control problems can be inter-
preted as solving a risk-sensitive version of
the LMDP problem. For α > 0, we get risk-
averse behavior (the degree of risk-aversion
increases with α) and for α < 0, we get risk-
seeking behavior. We recover LMDPs in the
limit as α→ 0. This work generalizes the re-
cently developed risk-sensitive path-integral
control formalism which can be seen as the
continuous-time limit of results obtained in
this paper. To the best of our knowledge,
this is a general theory of linearly solvable
control and includes all previous work as a
special case. We also present an alternative
interpretation of these results as solving a 2-
player (cooperative or competitive) Markov
Game. From the linearity follow a number of
nice properties including compositionality of
control laws and a path-integral representa-
tion of the value function. We demonstrate
the usefulness of the framework on control
problems with noise where different values of
α lead to qualitatively different control be-
haviors.

1 INTRODUCTION

Optimal Control is a conceptually appealing frame-
work for building solutions to complex control prob-
lems. However, computational intractability has
severely limited its application to practical problems
with nonlinear dynamics and high dimensional con-
tinuous state/control spaces. In recent years, re-
searchers have developed restricted, yet fairly general
classes of control problems that are more tractable:
examples include Linearly Solvable MDPs (LMDPs)
(Todorov, 2009) and related path-integral control
problems (PIC) (Kappen, 2005), for which the Bell-
man equation characterizing the optimal value func-
tion can be made linear. This has several other in-
teresting consequences: the ability to build solutions
to new control problems by combining the solutions
to simpler control problems (Todorov, 2009), using
probabilistic inference techniques for control (Mensink
et al. , 2010) etc. Already, this work has had encour-
aging success in domains like character control for an-
imation (Da Silva et al. , 2009) and robotic control
(Theodorou et al. , 2010). In this paper, we present
a more general class of linearly solvable control prob-
lems.

Traditional MDPs are formulated as minimizing ex-
pected accumulated costs (over a finite or infinite time
horizon). However, in many applications, one cares
about higher order moments of the accumulated cost
(like its variance) that depend on the amount of noise
in the system. This is particularly relevant for noisy
underactuated systems near unstable equilibria, since
it can be hard to recover from even small amounts of
perturbations. In this paper, we develop a class of
linearly solvable risk-sensitive problems. The degree
of risk-sensitivity is controlled by a scalar parameter
α. For α < 0, we get risk-seeking behavior and for
α > 0, we get risk-averse behavior. We show that the
Bellman equation characterizing the optimal solution
to problems in this class can be made linear (using an
exponential transformation) and call these problems



α-Risk Sensitive Linearly Solvable Control Problems
(α-RLCs).

Our results can be seen as a generalization of 2 lines
of work: one on Linearly Solvable MDPs(LMDPs)
(Todorov, 2009) and the other on risk-sensitive path-
integral control (Broek et al. , 2010). We obtain the
LMDP results in the risk-neutral limit α → 0 and
the results from (Broek et al. , 2010) by taking a
continuous-time limit. To the best of our knowledge,
α-RLCs are the broadest class of linearly solvable
control problems known and include all previous work
as a special case.

This paper is organized as follows: Section 2 intro-
duces notation and preliminaries. Section 3 contains
the main α-RLC results and discusses connections be-
tween α-RLCs and previous work. Theorem 1 is the
main technical result of the paper, that uses an elegant
result on α divergences proved in Theorem 5. Section
3.4 discusses interesting properties of α-RLCs : Path
Integral Representations of the optimal value function
(section 3.4.2), Compositionality of Optimal Control
Laws (section 3.4.1) and a Game Theoretic Interpreta-
tion of α-RLCs(section 3.1). In Section 4, we present
numerical results on simple control problems that il-
lustrate the risk-sensitive behavior.

2 BACKGROUND

2.1 NOTATION

We use X to denote the state space, x to denote states.
We assume that X is a finite set. v(α) for the optimal
value function under risk-parameter α. Let Uc(x) de-
note the space of feasible control signals in state x and
P [X ] be the set of probability distributions over X .
We use uc to denote an arbitrary member of Uc(x).
For any p ∈ P [X ],let supp [p] = {x ∈ X : p(x) > 0}.
We use πco to denote policies, ie, mappings from states
to controls, πco(x) ∈ Uc(x) for every x. In this paper,
controls will be probability distributions over X them-
selves, and we use the notation πco(·|x) to denote the
control distribution in state x. We use v(α)(·, πco) to
denote the policy-specific value function at risk factor
α. Define the KL-divergence between two members

of P [X ] by KL (πco ‖ π0) =
∑
x∈X πco(x) log

(
πco(x)
π0(x)

)
,

which is well-defined when supp [πco] ⊆ supp [π0]. Let
f be any real-valued function on X . We denote the
expectation of f under π as Eπ [f ] =

∑
x π(x)f(x)

and let Ψα
π [f ] = α−1 log (Eπ [exp(αf)]) and Ψπ [f ] =

Ψ1
π [f ]. One can prove that in the limit α → 0, this

is just the expectation so we define Ψ0
π [f ] = Eπ [f ].

Note that both these quantities are independent of x.
We denote a Gaussian distribution as N (µ,Σ) and the
corresponding density value at a point x as N (x;µ,Σ).

2.2 RISK SENSITIVE MDPs

Risk Sensitive MDPs (Marcus et al. , 1997) are
defined by specifying a state space X , a control space
Uc(x) for each x ∈ X , a transition probability function
P (P (x′|x, u) is the probability of landing in x′ ∈ X
in one time step after applying control u is state x), a
cost function c(x, u) and a risk-sensitivity parameter
α. Let Pπ denote the dynamics of the sytems under
control policy π. The objective is to design a policy
πco(x) ∈ Uc(x) that minimizes an accumulated cost,
which is defined in the finite horizon(FH),infinite
horizon(IH) and first-exit(FE) problems as follows:

FH : Ψα
Pπco

[
exp

(
α
∑T
t=0 c(xt, πco(xt), t)

)]
IH : limT→∞

1
T Ψα

Pπco

[
exp

(
α
∑T
t=0 c(xt, πco(xt))

)]
FE : Ψα

Pπco

[
exp

(
α
∑Te
t=0 c(xt, πco(xt))

)]
where Te denotes the first time the system enters
a terminal state. A first order approximation of

the FH objective gives EPπco

[∑T
t=0 c(xt, πco(xt))

]
+

αVar (
∑
t c(xt, πco(xt))). Thus, if α > 0, the cost in-

creases with variance of the accumulated cost while if
α < 0, the cost decreases with variance so that we get
risk-seeking behavior. As α→ 0, we get the standard
MDP back. Thus, one can effectively trade risk and
expected costs: If one is willing to take risks (increase
variance of costs), it is possible to get achieve lower
expected cost. On the other hand, if one wants strong
guarantees on expected cost (low variance), then one
needs to settle for a higher expected cost. The de-
gree of risk-averse/risk-seeking behavior increases with
the magnitude of α. The discounted problem in risk-
sensitive MDPs does not admit a stationary optimal
policy in general and hence we do not consider it here.
It can be shown that the Bellman equation(Marcus
et al. , 1997) for risk-sensitive MDPs is given by

FH : v
(α)
t (x) = min

uc∈Uc(x)
c(x, uc, t) + Ψα

Pπ(·|x)

[
v

(α)
t+1

]
IH : v(α)(x) + c̄ = min

uc∈Uc(x)
c(x, uc) + Ψα

Pπ(·|x)

[
v(α)

]
FE : v(α)(x) = min

uc∈Uc(x)
c(x, uc) + Ψα

Pπ(·|x)

[
v(α)

]
(1)

where c̄ is the optimal average risk-sensitive cost in
the IH formulation. For FH problems, the value func-
tion at the end of the horizon is given by the final

cost: v
(α)
T (x) = c(x, T ). In FE problems the value

function on the exit manifold T is given by the final
cost:v(α)(x) = cf (x) for x ∈ T in FE problems. Exis-



tence of solutions to (1) in continuous state spaces has
been a subject of active research but we do not discuss
it in detail in this paper. Recent papers (Jaśkiewicz,
2007) have shown the existence of solutions to the IH
Bellman equation under fairly general conditions.

2.3 RÉNYI DIVERGENCES

Rényi divergences (Van Erven & Harremoes, 2010)
are a general class of divergences between probabil-
ity distributions that generalize the well-known KL-
divergence.

Definition 1. Let p, q ∈ P [X ]. Then the
Rényi divergence between p, q of order α is defined as

Dα (p ‖ q) = 1
α(α−1) log

(∑
x∈X

p(x)
α
q(x)

1−α

)
if α 6=

0, 1 and D0 (p ‖ q) = KL (q ‖ p) ,D1 (p ‖ q) = (p ‖ q) =
KL (p ‖ q). The Rényi divergence is well defined if
supp [p] ∩ supp [q] 6= ∅ if α ∈ (0, 1), supp [p] ⊂
supp [q] if α ≥ 1 and supp [q] ⊂ supp [p] if α ≤
0. It can be shown (lemma 1) that Dα (p ‖ q) ≥
0, (Dα (p ‖ q) = 0 ⇐⇒ p = q) for any α ∈ R.

This definition differs from the standard definition by
a factor of α (the standard definition does not cover
the case α ≤ 0 either), but the modified definition is
more convenient to work with. We defined the limiting
cases D0,D1 by taking limits as α→ 0, α→ 1 so that
Dα is a continuous function of α.

2.4 LMDPs

Linearly solvable MDPs (Todorov, 2009) are a class
of MDPs for which the Bellman equation character-
izing the optimal value function can be made linear.
In traditional MDPs, the controller chooses an action
u ∈ Uc that then determines the probability of the
future state through the transition density P (x′|x, u).
In LMDPs, we allow the controller to directly choose
the transition density πco(x′|x), that is, Uc = P [X ].
However, if no restrictions were placed on this, the
optimal πco(x′|x) could be trivially chosen to be a
delta-distribution centered at the lowest-cost state.
In order to get an interesting problem, we impose a
cost on picking a transition density: this is defined
as the KL-divergence between πco and π0, the “pas-
sive” dynamics of the system, ie, the dynamics of the
system left to itself (when the controller does noth-
ing). Thus, we can think of the controller as trying to
change the natural dynamics of the system in order to
move towards states of low cost, but it pays a price
for doing so. Thus, the total cost function is given
by c(x, uc, t) = q(x) + KL (uc ‖ π0(·|x)) where q(x)
is any cost on the state. It can be shown (Todorov,
2009) that the exponentiated optimal value function
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Figure 1: αDα (p ‖ q) vs αKL (q ‖ p)

zt(x) = exp (−vt(x)) satisfies a linear Bellman equa-
tion: zt(x) = exp (−q(x, t))

∑
x′∈X π0(x′|x)zt(x

′).

3 LINEARLY SOLVABLE RISK
SENSITIVE CONTROL

In this section, we show that it is possible to extend the
framework of LMDPs to Risk Sensitive MDPs while
preserving the linearity of the Bellman equation. How-
ever, we need to modify the risk sensitive formulation
slightly in order to do this.

Definition 2. A Linearly Solvable Risk Sensitive Con-
trol Problem (α-RLC) is a Risk-Sensitive MDP with
risk parameter α and the following restrictions:

The actions are the controlled dynamics themslves:
uc ∈ Uc(x) ⊂ P [X ] , P (x′|x, uc) = uc(x′).

The basic cost function can be decomposed as fol-
lows: c(x, uc) = q(x) + KL (uc ‖ π0(·|x)) where π0

is called the Passive Dynamics and corresponds to
the natural dynamics of the system in the absence
of controls. However, at risk factor α, we replace
the scaled cost αc with αq(x) + αDα (π0(·|x) ‖ uc).
Thus, the FH objective (scaled by α) becomes :

log

(
Eπco exp

(
α

T∑
t=0

q(xt) + Dα (π0(·|xt) ‖ πco(·|xt))

))
We have Uc(x) = {uc ∈ P [X ] : supp [uc] ⊂
supp [π0(·|x)] if α ≤ 0, Uc(x) = {uc ∈ P [X ] :
supp [uc] ⊃ supp [π0(·|x)] if α ≥ 1 and Uc(x) = {uc ∈
P [X ] : supp [uc] ∩ supp [π0(·|x)] 6= ∅} if 0 < α < 1.

If the regular risk-sensitive framework is applied to
LMDPs, we would simply exponentiate the scaled
cost:

exp

(
T∑
t=0

αq(xt) + αKL (πco(·|xt) ‖ π0(·|xt))

)

However, in this alternate approach, we replace
αKL (πco(·|xt) ‖ π0(·|xt)) by the Rényi divergence
αDα (πco(·|xt) ‖ π0(·|xt)). Even though it differs from



the standard formulation, this is justified by the fol-
lowing observations:
1) As α → 0,Dα → KL (lemma 1). Thus, in the limit
α→ 0, we recover the risk-neutral LMDP
2) αDα is a monotonically increasing function of α
(lemma 1), negative for α < 0 and positive for α > 0
just like the linear scaling.
3) If p, q are Gaussians with the same covariance,
αDα (p ‖ q) = αKL (q ‖ p) (lemma 2) so we’re doing
the traditional linear scaling.
4) The game theoretic interpretation (section 3.1) of
this framework further demonstrates how it naturally
models to risk sensitivity. For risk averse problems, the
game theoretic interpretation says that the controller
is fighting against a stronger adversary as α increases,
and hence is expected to be more conservative/risk-
averse while the reverse is true as α becomes negative
and large.
5) Numerical experiments (section 4) that show that
this new risk sensitive model conforms to intuitive no-
tions of risk.
For two randomly generated distributions p, q, the lin-
ear and nonlinear scaling are plotted in figure 1.

Theorem 1. The Bellman equation for an α-RLC
can be made linear in a transformed value function.
If α 6= 1, z(α)(x) = exp

(
−(1− α)v(α)(x)

)
, Q(x) =

exp (−(1− α)q(x)). The resulting linear bellman equa-
tion is, if α 6= 1:

FH : z
(α)
t (x) =Q(x, t) Eπ0(·|x)

[
z
(α)
t+1

]
FE : z(α)(x) =Q(x) Eπ0(·|x)

[
z(α)

]
IH : z(α)(x) =Q(x) exp (−(α− 1) c̄) Eπ0(·|x)

[
z(α)

]
FH : v

(1)
t (x) =q(x, t) + Eπ0(·|x)

[
v

(1)
t+1

]
FE : v(1)(x) =q(x) + Eπ0(·|x)

[
v(1)

]
IH : v(1)(x) + c̄ =q(x) + Eπ0(·|x)

[
v(1)

]
(2)

For FH problems, v
(α)
T (x) = q(x, T ). For FE prob-

lems, T ,N are the terminal and non-terminal states,
respectively and v(α)(x) = q(x)∀x ∈ T . For IH prob-
lems, c̄ is the optimal average cost for infinite-horizon
average cost problems. The optimal control law is al-

ways given by π∗co(x′|x) =
π0(x′|x) exp(−v(α)(x′))∫
π0(x′|x) exp(−v(α)(x′)) dx′

.

Proof. We prove the result for the IH case, the proof
for the other cases is similar. The Bellman equation
(1) becomes
v(α)(x) + c̄ =
q(x) + minuc∈Uc(x) Dα (π0(·|x) ‖ uc) + Ψα

u(·|x)

[
v(α)

]
=

q(x) + Ψα−1
π0(·|x)

[
v(α)

]
(Using theorem 5)

If α = 1, this is already a linear Bellman equation

since Ψ0
π0(·|x)

[
v(α)

]
= Eπ0(·|x)

[
v(α)

]
. If not, we have:

(α− 1)(v(α)(x) + c̄−q(x, t)) = Ψπ0(·|x)

[
(α− 1)v(α)

]
Exponentiating both sides, we get:
z(α)(x) = exp (−(α− 1) c̄)Q(x) Eπ0(·|x)

[
z(α)

]
3.1 GAME-THEORETIC

INTERPRETATION

The relationship between risk-sensitive control
and dynamic games has been studied extensively
(Fleming & McEneaney, 1992). For systems with
linear dynamics, quadratic costs and Gaussian noise
(LQG systems), the classic paper of Jacobson et al
(Jacobson, 1973) showed exact equivalence between
risk-sensitive control and deterministic LQ games
(2 player zero-sum games with determinstic linear
dynamics and quadratic costs). We generalize that
result here and show exact correspondence between
α-RLCs and a class of 2-player zero-sum Markov
Games. If α > 0, α-RLCs can be interpreted as
solving a 2-player zero-sum Markov Game (Başar &
Bernhard, 1995), where the first player (controller) is
trying to minimize the cost while the second player
(adversary) is trying to maximize it. We have analo-
gous results if α < 0 and one considers a cooperative
(rather than competitive) game where both players
cooperate to minimize costs. First suppose α > 0(the
construction/proof for the other case is similar).
Consider a Markov game that proceeds as follows:
System is in state x
Player 1 (controller) picks transition density πco(·|x)
Player 2 (adversary) picks transition density
πa(·|x, πco)
The system transitions to state x′ ∼ πa(·|x, πco)
The dynamics of the system is completely controlled
by the adversary and the controller has no direct
influence on it. However, the adversary pays a cost
for picking a transition drastically different from
the controller: c(x, πco(·|x), πa(·|x), t) = q(x, t) +
Dα (πco(·|x) ‖ π0(·|x)) − 1

α KL (πa(·|x) ‖ πco(·|x)).
The upper value function (Başar & Bernhard,
1995) of the game is given by the Bellman-Issacs
equation(Başar & Bernhard, 1995):

v
(α)
t (x) = minuc∈Uc maxua∈Uc c(x, uc, ua) + Eua

[
v

(α)
t+1

]
v

(α)
t (x) = q(x, t) + minuc∈Uc Dα (uc ‖ π0(·|x)) −

min
ua∈Uc

KL (ua ‖ uc)

α
− Eua

v(α)

v
(α)
t (x) = q(x, t) + minuc

Dα (uc ‖ π0(·|x)) + Ψα
uc

[
v(α)

]
where the last line follows from using theorem 5 in
the limit α → 0. The last equation matches the
risk-sensitive Bellman equation (1) and hence the
optimal strategy for the controller matches that for
the α-RLC. The optimal strategy for the adversary
(using theorem 5) is



π∗a(x′|x, t) ∝ π∗co(x′|x, t) exp
(
αv

(α)
t+1(x′)

)
∝ π0(x′|x) exp

(
(α− 1)v

(α)
t+1(x′)

)
If we scale the control costs of both the controller and
the adversary by α, we see that the controller’s cost
αDα increases monotonically while the adversary’s
cost KL remains fixed. Thus, as α increases, the
controller is fighting against a stronger adversary and
will tend to be more conservative/risk-averse. This
further justifies the nonlinear scaling used in the
risk-sensitive interpretation.

In the game theoretic setting, if α > 1, the closed loop
system (which mimics the adversary) has a dynamics
that moves towards increasing costs (since the cost-to-
go v(α) has a positive coefficient), meaning that the
adversary dominates the game. If 0 < α < 1, on the
other hand, the closed loop system has a dynamics
that moves towards decreasing costs and the controller
dominates the game.

3.2 EXISTENCE OF SOLUTIONS

In this section, we show that under reasonable assump-
tions, (2) has solutions when X is finite. The exten-
sion to infinite X should be possible under appropri-
ate technical assumptions, but we leave that for future
work.

Theorem 2. Let X be finite, |X | = ns. Let z ∈ Rns =
{z(α)(x) : x ∈ X} and similarly define v(α), q ∈ Rns

and π0 ∈ Rns×ns. (2) always has a solution in FH.
Suppose that π0 is irreducible, ie, there is a path of
non-zero probability from every state to every other
state under the passive dynamics. Then, (2) has a
solution in IH. Further, if q ≥ 0, α ≤ 1, (2) has a
solution in FE.

Proof. Solutions to the Bellman equations (2) always
exist in the finite horizon case (Marcus et al. , 1997).
The Bellman equation (2) for the IH case becomes
z(α) = exp (−(α− 1) c̄) diag (exp ((α− 1)q))π0z(α) if
α 6= 1 and v(α) + c̄ = q + π0v(α) if α = 1. In the
first case, we have an eigenvalue problem that is guar-
anteed to have a unique positive eigenvector under
the Perron-Frobenius theorem (Serre, 2010) given that
diag (exp ((α− 1)q))π0 is irreducible. If α = 1, we can
enforce the extra constraint

∑
v(α)(x) = 0 to get lin-

ear system in v(α), c̄ which is non-singular (and hence
has a unique solution) as long as π0 is irreducible. In
the FE case, if α = 1, we can break up the equation
into terminal and non-terminal parts

(I − diag
(
QN

)
πNN0 )z(α)N = πN T0 QT

where the superscripts indicate indexing, Q =
exp ((α− 1)q). If α < 1, q ≥ 0, diag

(
QN

)
πNN0 has

a spectral radius less than 1 so that the above system
has a positive solution (Serre, 2010). Again, the case
α = 1 is easy to handle since its directly linear in v(α)

space.

3.3 CONNECTIONS TO PREVIOUS
WORK

In this section, we draw connections between α-RLCs
and previous work: In particular LMDPs (Todorov,
2009), Risk-Sensitive Path Integral Control (Broek
et al. , 2010) and policy iteration.

3.3.1 LMDPs

As α→ 0, in the limit Dα (p ‖ q)→ KL (q ‖ p). Thus,
in the limit α → 0, α-RLC becomes equivalent to
an MDP with cost function q(x) + KL (π0(·|x) ‖ u).
The Bellman equation (2) becomes z(0)(x) =
exp

(
−v(0)(x)

)
, z(0)(x) = exp (c̄−q(x)) Eπ0(·|x)

[
z(0)
]

which is exactly the LMDP Bellman equation
(Todorov, 2009). Thus, LMDPs are a special case of
α-RLCs obtained in the limit when α→ 0. We shall
see in section 3.4 that many of the nice properties of
LMDPs generalize to α-RLCs. The policy gradient
theorem and the maximum principle (Todorov, 2009),
however, do not generalize to α-RLCs.

3.3.2 Risk Sensitive Path-Integral Control

Suppose we have an Ito diffusion process:

dx = a(x)dt+B(x)(udt+ σdω)

with a cost rate c(x, u) = q(x) + λ
2σ2u

Tu. Consider an
h-step Euler discretization of the problem:
Ph(x′|x, u) = N (x+ (a(x) +B(x)u)h;σhB(x)B(x)T )

Let z
(α)
h (x) be the z function for the h-step discretiza-

tion and πh0 (x′|x) = N (x+a(x)h;σhB(x)B(x)T ). The
Bellman equation for the α-RLC with α′ = λα, β =
1− α′ is

z
(α)
h (x) exp (hβ(q(x)− c̄)) = Eπh0 (x′|x)

[
z
(α)
h (x′)

]
z
(α)
h (x)

exp (hβ(q(x)− c̄))− 1

h
= E

[
z
(α)
h (x′)− z

(α)
h (x)

h

]

Taking limits as h→ 0, we know from stochastic calcu-
lus (Øksendal, 2003) that the RHS becomes the gener-
ator of the passive Ito diffusion dx = a(x)dt+σB(x)dω
applied to z(α):

z(α)(x)(q(x)−c̄) =
∇z(α)(x)Ta(x) +

tr(B(x)B(x)T∇2z(x))
2

1− λα

Also, using lemma 2, we get

α′ Dα
(
πh0 (·|x) ‖ Ph(·|x, u)

)
= hα′uTu

2σ2 = hλαuTu
2σ2



so that chα(x, P (·|x, u)) = αhc(x, u). Thus, we’re
solving exactly the traditional risk sensitive control
problem for the given Ito process as h → 0. These
results also coincide with those in (Broek et al. ,
2010), so Risk-Sensitive Path Integral Control can be
seen as a continuous-time limit of α-RLCs.

3.3.3 Policy Iteration

There is a very interesting relationship between
α-RLCs with α = θ and α = θ − 1. The
optimal value function for α = θ is given

by v
(θ)
t (x) = q(x) + Ψθ−1

π0(·|x)

[
v

(θ)
t+1

]
. The

value function corresponding to the policy
π when α = θ − 1 is given by solving the

policy-specific Bellman equation: v
(θ−1,π)
t (x) =

q(x) + Dθ−1 (π0(·|x) ‖ π(·|x)) + Ψθ−1
π

[
v

(θ−1,π)
t+1

]
. If we

plug in π = π0, this becomes identical to the previous
equation. Hence, the optimal value function for α = θ
corresponds to the value of the null policy π0 with
α = θ − 1. Thus, if we run policy iteration when
α = θ − 1 starting with the null policy π0, in one step
we get
argminuc∈Uc Dθ−1 (π0(·|x) ‖ uc) + Ψθ−1

π

[
v(θ)

]
=

π∗co(θ|x) using lemma 5. Thus, the optimal policy for
risk parameter θ is the policy obtained after one step
of policy iteration with risk parameter θ − 1.

3.4 PROPERTIES OF α-RLCs

In this section, we show that for α-RLCs, under some
conditions, it is possible to combine the solutions of
simple control problems directly to solve a more com-
plicated control problem. This property has been used
in the risk neutral case for building controllers for char-
acter animation (Da Silva et al. , 2009).

3.4.1 Compositionality

Theorem 3. Let {qif}ki=1 be a set of final costs for
a set of α-RLC FH or FE problems with the same
passive dynamics π0 and running cost q(x) and let

w ∈ Rk, w ≥ 0. If α 6= 1, let {z(α)
i } be the set of

optimal z-functions corresponding to each final cost.

Then,
∑
i wiz

(α)
i is the optimal z-function for the prob-

lem with final cost 1
α−1 log

(∑
i wi exp

(
(α− 1)qif

))
.

If α = 1, the
∑
i wiv

(α)
i is the optimal value function

for the composite final cost
∑
i wiq

i
f . In this case, both

running and final costs can be composed.

Proof. We do the proof for FE the FH case is similar
We know that for each i, we have

z
(α)
i (x) = exp ((α− 1)q(x)) Eπ0

[
z
(α)
i

]
if x ∈ N

z
(α)
i (x) = exp

(
(α− 1)qif (x)

)
if x ∈ T

Thus, z(α)(x) =
∑
i wiz

(α)
i (x), by linearity, must sat-

isfy
z(α)(x) = exp ((α− 1)q(x)) Eπ0

[
z(α)

]
if x ∈ N

z(α)(x) =
∑
i wi exp

(
(α− 1)qif (x)

)
if x ∈ T

which means that z(α) is the optimal z-function
for the problem with composite cost qf (x) =

1
α−1 log

(∑
i wi exp

(
(α− 1)qif

))
. For α = 1, (2) is

linear in v(α), q, so both running and final costs can be
composed.

3.4.2 Path-Integral Representation

In this section, we show that the optimal value func-
tion for α-RLCs has a path integral representation,
ie, it can be expressed as an expectation of the trans-
formed cost over trajectories sampled from the passive
(or uncontrolled) dynamics. For the risk-neutral case,
this property has been used to build controllers for
practical robotic applications successfully (Theodorou
et al. , 2010).

Theorem 4. If α 6= 1, the optimal value function has
a path integral representation:

FH : v
(α)
0 (x) =

log (Eπ0
[exp ((α− 1)q(x0:T )) |x0 = x])

α− 1

FE : v(α)(x) =
log (Eπ0 [exp ((α− 1)q(x0:Te)) |x0 = x])

α− 1
(3)

where the expectation is over trajectories starting
from x sampled under the passive dynamics π0 and
q(x0:τ ) =

∑τ
t=0 q(xt). Te is the first time the tra-

jectory enters a terminal state T . When α = 1,

we have v
(α)
0 (x) = Eπ0 [q(x0:T )|x0 = x] for FH and

v(α)(x) = Eπ0(·|x) [q(x0:Te)|x0 = x] for FE.

Proof. From section 3.3.3, we know that v
(α)
0 (x) =

v
(α−1)
0 (x, π0). The RHS of (3) is precisely the value

of the policy π0 under risk α.

4 EXPERIMENTS

We illustrate the effects of the risk-sensitivity param-
eter and the uses of a risk-sensitive objective through
a control problem. The state space is [−3, 3]× [−6, 6]
and encodes the position and velocity of a point mass
moving along a hilly terrain. The equation describing
the terrain is given by:

f(x) = exp
(
−v1(x−0.9)2

2

)
+ r exp

(
−v2(x+0.9)2

2

)
ie, a superposition of 2 hills peaked at x = −0.9 and
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Figure 2: Terrain and State Cost (blue is low cost and
red high)

x = 0.9 respectively. The uncontrolled (passive) dy-
namics of the system are given by the effect of grav-
ity (acting vertically downward) on the car moving
along the surface (so that only the component of grav-
ity along the tangent to the surface matters):

dp = v√
1+f ′(p)2

dt, dv = − gf ′(p)√
1+f ′(p)2

dt+ σdω

We choose r = 0.95, v1 = 12.5, v2 = 3.4, σ = 2 for our
experiments. We consider the h-step Euler discretiza-
tion of the problem to get a passive dynamics π0 and
define a state cost q(x) = 1 − f(x) encouraging the
point mass to stay near the peaks. The terrain and
state costs are shown in figure 2. In order to solve
the problem, we discretize the state space X with a
101 × 101 grid. We can the define q, π0 on the grid
and solve the IH problem using the power-iteration
method, which works fairly well since π0 is sparse. Us-
ing a straightforward implementation in MATLAB, it
takes about 0.5 seconds to solve the problem.

We solve this problem for 3 different values of alpha
−0.1(risk-seeking),0(risk-neutral) and 0.1(risk-averse).
We plot the stationary distribution of the optimally
controlled system for each case in figure 3. As ex-
pected, the stationary distribution is concentrated
around the 2 peaks in all cases. However, since the hill
peaked at +0.9 is slightly less steep (albeit shorter),
it is less risky (a small perturbation is less likely to
push one downhill to high cost regions). Thus, the
risk-averse controller sticks to the shorter/broader hill.
The risk-seeking controller chooses the lower cost but
riskier taller hill. The risk-neutral controller, places
almost equal probability on both solutions. Thus, we
can see that the risk-sensitive framework allows us to
trade risk for reward (or low cost).

5 CONCLUSIONS

We have developed a very general family of linearly
solvable control problems. To the best of our knowl-
edge, all previous work on linearly solvable control are
special cases. Also, the use of Rényi divergences in
control is novel. An interesting theoretical question
is whether α-RLCs are the most general family of
linearly solvable control problems possible.
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In terms of practical applicability, α-RLCs could be
very useful for tuning controllers to be more conser-
vative (risk-averse) or more aggressive (risk-taking).
We have seen that the resulting behavior can be sub-
stantially different for different α. The linearity makes
α-RLCs easier to solve, but we still need to develop
function approximation techniques that scale to high
dimensional state spaces and nonlinear dynamics. If
π0 is Gaussian and z(α) is represented as a mixtures of
Gaussians × polynomials × trigonometric functions,
one can use a power-iteration like algorithm to solve
the linear Bellman equation with each step being ana-
lytical. Combined with the flexibility of α-RLCs we
believe that these techniques are very promising and
can potentially solve hard control problems.

6 Appendix

To avoid technical complications, we do the proof only
for the case when X is finite. Let π0 ∈ P [X ], f be any
real-valued function over X .

Theorem 5. min
π∈P[X ]

[Dα (π0 ‖ π) + Ψα
π [f ]] =

Ψα−1
π0

[f ] with the min achieved at π∗co(x′|x) =
π0(x′|x) exp

(
−f(x′)−Ψπ0(·|x) [−f ]

)
.

Proof. Suppose α 6= 0, 1. Notice that the objective is
invariant to scaling π by any c > 0. Thus, we can
choose a scaling to set

∑
x∈X π(x) exp (αf(x)) = 1

so that Ψα
π [f ] = 0. Thus, the objective reduces to

Dα (π ‖ π0) =
log(

∑
x∈X π0(x)απ(x)1−α)

α(α−1) . Now, since log

is monotonically increasing, we can get an equivalent
problem:



minπ α(α− 1)
∑
x∈X π0(x)απ(x)1−α

Subject to
∑
x∈X π(x) exp (αf(x)) = 1, π(x) ≥ 0

f(x) = a(a − 1)x1−a is always convex (it is easy to
check that f ′′ > 0). Hence, the objective is con-
vex. Since the constraint is linear, we have a con-
vex problem. Setting the gradient of the lagrangian

to 0 gives
(
π0(x)
π(x)

)α
∝ exp (f(x))

α
so that π∗(x) ∝

π0(x) exp (−f(x)). Normalizing π to sum to 1 gives
π∗co to be the optimum. Plugging in π∗co into the ob-
jective gives us Ψα−1

π0
[f ]. Taking limits as α → 0, 1,

we get the result for all α.

Lemma 1. Let p, q ∈ P [X ]. Then Dα (p ‖ q) ≥ 0∀α,
Dα (p ‖ q) = 0 ⇐⇒ p = q. αDα (p ‖ q) is a mono-
tonically increasing function of α

Proof.
∑
x∈X

p(x)αq(x)1−α =
∑
x∈X

q(x)

(
p(x)

q(x)

)α
. If α ∈

(0, 1), xα in concave. Hence, by Jensen’s inequality,

the sum is smaller than ≤
(∑

x∈X q(x)p(x)
q(x)

)α
= 1.

When α 6∈ (0, 1), the reverse inequality is true since

xα is convex. Thus, log

(∑
x∈X

p(x)αq(x)1−α

)
is pos-

itive if α 6∈ (0, 1) and negative otherwise, show-
ing that Dα ≥ 0 for all α. Equality holds in
Jensen’s if and only if every term in the sum is equal
(by strict convexity/concavity) and hence p = q if
Dα (p ‖ q) = 0. Let f(α) = α(α − 1)Dα (p ‖ q) =

log
(

Eq

[
p(x)
q(x)

]α)
= log

(
Eq

[
exp

(
α log

(
p(x)
q(x)

))])
.

Letting r(x) = p(x)αq(x)1−α∑
x∈X p(x)αq(x)1−α , we get

f ′(α) = Er

[
log

(
p(x)

q(x)

)]
= −KL (r ‖ p) + KL (r ‖ q)

= −KL (r ‖ p) + Er

[
log

(
p(x)αq(x)−α∑

x∈X p(x)αq(x)1−α

)]
= −KL (r ‖ p) + αf ′(α)− f(α) ≤ αf ′(α)− f(α)

Thus, (1−α)f ′(α)+f(α) ≤ 0 implying f ′(α)
1−α + f(α)

(1−α)2
≤

0. The LHS is just the derivative of f(α)
1−α = −αDα.

Thus αDα has a positive derivative and is monotoni-
cally increasing.

Lemma 2. Dα
(
N (µ1,Σ

−1) ‖ N (µ2,Σ
−1)
)

=
(µ1−µ2)TΣ−1(µ1−µ2)

2 .

Follows from simple algebra.
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