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Abstract—We present a method that combines offline trajec-
tory optimization and online Model Predictive Control (MPC),
generating robust controllers for complex periodic behavior
in domains with unilateral constraints (e.g., contact with the
environment). MPC offers robust and adaptive control even
in high-dimensional domains; however, the online optimization
gets stuck in local minima when the domains has discontinuous
dynamics. Some methods of trajectory optimization that are
immune to such problems, but these are often too slow to be
applied online.

In this paper, we use offline optimization to find the limit-cycle
solution of an infinite-horizon average-cost optimal-control task.
We then compute a local quadratic approximation of the Value
function around this limit cycle. Finally, we use this quadratic
approximation as the terminal cost of an online MPC.

This combination of an offline solution of the infinite-horizon
problem with an online MPC controller is known as Infinite
Horizon Model Predictive Control (IHMPC), and has previously
been applied only to simple stabilization objectives. Here we
extend IHMPC to tackle periodic tasks, and demonstrate the
power of our approach by synthesizing hopping behavior in a
simulated robot. IHMPC involves a limited computational load,
and can be executed online on a standard laptop computer. The
resulting behavior is extremely robust, allowing the hopper to
recover from virtually any perturbation.

In real robotic domains, modeling errors are inevitable. We
show how IHMPC is robust to modeling errors by altering the
morphology of the robot; the same controller remains effective,
even when the underlying infinite-horizon solution is no longer
accurate.

I. INTRODUCTION

Methods of optimal control derive control policies from cost
functions that penalize undesirable states. This is an appealing
paradigm, because it offers the system designer an intuitive
scheme — it is easier to specify which states are desirable
than to directly craft the policy that realizes these goals.

The finite-horizon criterion seeks to minimize the future
cumulative cost over some predefined planning horizon. The
repeated online solution of the finite-horizon problem for
an ever-receding horizon is called Model Predictive Control
(MPC). Online optimization is possible because this class
of problems is relatively easy to solve, but may result in

undesirable “myopic” behavior due to the limited planning
horizon. In particular, it is ineffective in domains with contacts
(section IV).

The infinite-horizon criterion poses the optimization prob-
lem in terms of the average cost over an infinitely-distant
horizon. This formulation is used in domains where there are
well-defined terminal states, as well as domains where the
solution is periodic and forms a limit cycle (e.g., gait synthesis
and optimization). This class of optimization problems is
usually too computationally-intensive to be solved online.

The strengths of these two formulations can be combined
by using the cost-to-go of an infinite-horizon solution as the
terminal cost of the finite-horizon problem. This scheme is
called Infinite-Horizon MPC (IHMPC).

Existing IHMPC algorithms can only tackle domains with
fixed goal states (section II). In contrast, this paper tackles
the more general problem where the optimal behavior results
in a limit cycle. We use an offline optimization scheme to
construct a locally-quadratic approximation of the infinite-
horizon cost-to-go around the optimal limit-cycle. We then
use this approximation as a terminal cost for online IHMPC.

We show how this approach can generate robust control
for a simulated hopping robot (figure I) in real time. The
optimal limit cycle is found through offline optimization
(section III-B), and the infinite-horizon average-cost value
function (section VI) is fitted around the closed trajectory;
this approximation is used for IHMPC (section VII-B). The
computation of the MPC optimization is fast enough to
allow real-time simulation and control on a standard laptop
computer. The resulting controller yields robust behavior that
can effectively recover from any perturbation, as illustrated
by a movie demonstrating our results (which is available at
goo.gl/ymzUY).

Finally, we address the question of modeling errors. The
methods presented here use model-based dynamic trajectory
optimization both online and offline; however, such dynamic
models would always be somewhat inaccurate for real robots.
Robustness with respect to modeling errors is studied by
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Fig. 1. The hopping robot’s limit cycle.

altering the dynamics of the simulated plant, so that the
optimization uses an incongruent dynamic model (section
VII-C). Even in this case, our controller can generate the
desired behavior (figure 5) and recover from perturbations.

II. RELATED WORK

Local algorithms of optimal control fall into two broad
categories [8], according to the representation of the search
space: simultaneous methods explicitly represent the trajectory
in state space, treating the dynamics as constraints; in contrast,
sequential methods represent only the control sequence, and
use numerical integration to evaluate the resulting trajectory.
The sequential approach often employs less variables, and the
resulting trajectories are guaranteed to be dynamically con-
sistent. The simultaneous approach allows the optimization to
consider infeasible trajectories; this may prevent getting stuck
in some local minima, but requires machinery for enforcing
dynamical consistency.

The basic algorithm for sequential trajectory optimization in
a nonlinear system is Pontryiagin’s minimum principle [19], a
generalization of the Euler-Lagrange equations that provides a
first-order criterion for identifying a locally-optimal trajectory.
More elaborate proposals include algorithms by Jacobson and
Mayne [12] (see appendix), Bryson and Ho [6] and Bertsekas
and Dunn [9].

MPC has been studied extensively (see reviews by Morari
and Lee [16], Bertsekas [4], Mayne et al. [14], Diehl et al.
[8], and references therein), but its application to robotic
domains is only starting to gain popularity [1]. Chen and
Allgöwer [7] seem to be the first to suggest the combination
of MPC with an infinite-horizon optimization problem, and
this approach has been studied extensively in the past decade
[18, 2, 11]. However, current IHMPC algorithms make the
strong assumption that the task is specified in terms of reaching
a goal state. In such a case, only a finite amount of time is
spent away from this target, and so the conditions around
the goal state dominate the infinite-horizon considerations.
Even if the domain exhibits non-linear dynamics, a linear
approximation can be used effectively in some small region
around the goal state. Together with a quadratic approximation
of the cost function, the infinite-horizon problem takes the
familiar form of a Linear-Quadratic Regulator (LQR), and can
be solved using Ricatti equations.

The optimization criterion of infinite-horizon average-cost
has been studied in the past two decades [20, 10, 13, 21]; it
was used for policy search [3], and successfully applied to
gait optimization [23]. Local methods of optimization that use

a simultaneous representation include multiple shooting [5]
and space-time constraints [26], and this approach has been
applied to gait design [25, 15]. Popović and Wu [27] presented
a method where offline optimization (through Evolutionary
Computation) was complemented by Quadratic Programming
during runtime to generate robust locomotion behavior from
motion-capture data.

In contrast to existing IHMPC algorithms, the method
proposed in this paper allows us to tackle domains with no
single goal state. While local feedback controllers can be
fit around optimal trajectories found by offline optimization,
MPC offers much wider basins of attraction, as the online
re-optimization generates robust control that can recover the
desired behavior from any perturbation.

III. BACKGROUND

We consider systems with non-linear, discrete-time dynam-
ics of the form:

x(i+1) = f(x(i),u(i)) (1)

where x ∈ Rn is the system’s state, and u ∈ Rm is the
control signal. The optimization criterion is specified by the
cost function `(x,u).

A. Trajectory optimization and MPC

Given a planning horizon N , we seek the open-loop control
sequence U = {u(1), . . . ,u(N − 1)} that minimizes the
cumulative cost:

V
(
x(1), 1

)
= min

U

N−1∑
i=1

`
(
x(i),u(i)

)
+ `N

(
x(N)

)
(2)

where x(i) is defined by (1) for i > 1, and `N is an optional
state-dependent cost function which is applied to the terminal
state of the trajectory.

Bellman’s equation for this case yields a time-dependent
value function, defined recursively as the optimal cost-to-go:

V (x, i) = min
u

[
`(x,u) + V

(
f(x,u), i+ 1

)]
. (3)

Since the value function is time-dependent, the effective
planning horizon of states at the latter part (tail end) of the
trajectory is very short, which may cause myopic behavior
in these states. The terminal cost function `N mitigates that
problem, since it can effectively inform the controller about
all the events which lie beyond its planning horizon. However,
crafting a terminal cost function that yields the intended result
can be hard.

Finite-horizon optimization problems can be solved by both
simultaneous and sequential approaches; we focus here on the
sequential approach. Algorithms in this category (see section
II) share a common structure: given a fixed first state, and
initialized with some control sequence, every iteration seeks
an improved control sequence. The basic structure of a single
iteration consists of two phases: first, a new nominal trajectory
is found by integrating the current control sequence forward



in time using equation (1). Then, the trajectory is swept back-
wards, and a modification to the control sequence is computed.
These two passes are repeated until no improvement is found.

The computation of the modified control sequence often
involves the integration of the time-dependent value function
along the nominal trajectory. In such cases, every step of the
backwards pass computes a local approximation of the value
function around a certain state by integrating backwards the
local approximation around the next state, following equation
(3). Often, a locally-quadratic model of the value function
is used, parametrized by a linear component Vx(i) and a
quadratic component Vxx(i). In such cases the backwards step
has the form:{

Vx(i), Vxx(i)
}

= B
(
x(i), Vx(i+ 1), Vxx(i+ 1)

)
. (4)

We include an explicit description for such an algorithm in
the appendix, where the backwards step B is computed by
equations (11)-(13). These algorithms are fast enough to be
used for planning in Model-Predictive Control (MPC).

B. Limit-Cycle Optimization

In this case, we seek a policy u = π(x) that minimizes the
average cost along the trajectory in the limit of infinitely-long
horizon:

c = min
π

lim
N→∞

1

N

N∑
i=1

`
(
x(i), π

(
x(i)

))
. (5)

Given the optimal policy, the value function of the infinite-
horizon problem is defined as the deviation of the future
cumulative cost from the average:

Ṽ
(
x(1)

)
= lim
N→∞

[ N∑
i=1

`
(
x(i), π

(
x(i)

))
−N c

]
. (6)

Bellman’s equation for this formulation is simpler, as it is no
longer time dependent:

c+ Ṽ (x) = min
u

[
`(x,u) + Ṽ

(
f(x,u)

)]
(7)

A sequential approach is inapplicable to solve infinite-
horizon problems. Instead, we apply a simultaneous approach
to the optimization of limit cycles, which takes the general
form:

min
X,U

N∑
i=1

`
(
x(i),u(i)

)
s.t. ∀i : ψ

(
x(i),u(i),x(i+ 1)

)
= 0

where N is the period, X = {x(i)}Ni=1 is a sequence of states,
U = {u(i)}Ni=1 is a sequence of controls, and the function

ψ(x,u,x′) = x′ − f(x,u)

imposes dynamical consistency between every consecutive
pair of states, treating equation (1) as a constraint. Since we
focus on limit cycles, we define N + 1 ≡ 1 so that the last
state x(N) is followed by the first state x(1).

The optimization algorithm searches in the space of all rings
X for a limit cycle that minimizes the cumulative cost. In order

to reduce the dimensionality of the search space, we build a
model of the plant that solves for inverse dynamics: given
a pair of states x,x′, we compute the control signal u that
minimizes the dynamical error ||ψ(x,u,x′)||2. This allows us
to maintain only a representation of the state-space trajectory
X, and have it implicitly define U.

In practice, we can handle the constraints ψ by using
a penalty method, yielding the unconstrained optimization
problem

min
X

N∑
i=1

[
`
(
x(i),u(i)

)
+ λ

∣∣∣∣ψ(x(i),u(i),x(i+ 1)
)∣∣∣∣2]

which can be solved using standard optimization methods.

IV. WHY MPC IS NOT ENOUGH

The method of MPC is designed to avoid the problem of
myopic behavior in finite-horizon planning: while an entire
trajectory is planned, only the first action is executed, and
planning starts again from the resulting new state. In order to
be applicable for robotic domains, the process of re-planning
must be very rapid. This is achieved by warm-starting the
optimization with the entire optimized trajectory from the
previous iteration, with a single time-shift. The effectiveness
of MPC rests on the assumption that the solution at the
previous timestep is similar to the solution at this timestep, and
therefore the warm-start will allow for efficient optimization.

This assumption is disrupted if the tail of the trajectory
falls into a local optimum. This will have no immediate effect,
because only the first action is actually executed by the MPC,
but as the planning horizon recedes, more and more of the
trajectory is pushed into that local minimum. If at some stage
the local optimality vanishes, the trajectory used to initialize
the re-planning is no longer almost-optimal. This usually leads
to the failure of MPC, since there is not enough time for re-
optimization.

In section VII-B, we describe a one-legged hopping robot
whose task is to maintain a fixed horizontal velocity. Intu-
itively, the optimal behavior we expect in such a domain
is a hopping gait. However, applying regular MPC to this
domain results in catastrophic failure. To understand why,
consider a trajectory where the last few states could involve
ground collision. Such a collision would necessarily slow
down the hopper, which would impede the performance of
the task in the short term. As such, in the absence of an
adequately long planning horizon, the optimal solution is
myopic, causing the hopper to retract its leg; by avoiding
the ground, the hopper tries to maintain its air velocity just
a few timesteps longer. However, as the planning horizon of
the MPC recedes, the locally-optimal avoidance maneouver
becomes more complicated, and eventually ground impact
becomes inevitable. At that stage, the MPC must plan the foot
landing, but the optimization is initialized with a suboptimal
trajectory that involves a bizarre contortion towards the end.
Unwinding this suboptimal behavior is probably impossible
within the time constraints of the robotic application, leading
to the failure of MPC.



V. INFINITE-HORIZON MODEL PREDICTIVE CONTROL

In IHMPC, we compute the infinite-horizon value Ṽ (x) of
a given state x by breaking the infinite sum in (6) into two
parts:

lim
N→∞

[ N∑
i=1

`
(
x(i), π

(
x(i)

))
−N c

]
=

N−1∑
i=1

`
(
x(i), π

(
x(i)

))
− (N − 1)c+

lim
N→∞

[ N∑
i=N

`
(
x(i), π

(
x(i)

))
−N c

]
. (8)

Note that the first RHS sum is the finite-horizon value function
(2), and the latter sum is simply Ṽ

(
x(N)

)
. Therefore:

Ṽ
(
x(1)

)
= V

(
x(1)

)
+ Ṽ

(
x(N)

)
+ constant.

This identity implies a compositionality of controllers: if we
use the infinite horizon value function Ṽ as the terminal cost
function `N in (2), the MPC solution would be identical to
the globally-optimal controller derived directly from Ṽ .

However, Ṽ cannot be computed online, and in high-
dimensional domains it is impossible to pre-compute Ṽ (x)
for the entire state space. Previous studies of IHMPC focused
on tracking tasks where a well-defined goal state is available.
In this case, LQR/LQG theory can be used to find Ṽ for the
goal state. However, in some domains of autonomous behavior
the cost function does not specify a specific target state. In
this case, a different approach is needed to approximate Ṽ .
We use offline trajectory optimization to identify the optimal
limit cycle, and construct a local quadratic approximation of
Ṽ around it (section VI). For a given x(1), we can find
a good approximation of Ṽ

(
x(1)

)
using only finite horizon

optimization (which can be computationally very efficient), as
long as MPC can find a solution where x(N) is close to that
limit cycle.

VI. APPROXIMATING THE INFINITE HORIZON
VALUE FUNCTION

Given an optimized closed trajectory X and the correspond-
ing open-loop sequence U, we approximate the value function
of the infinite-horizon problem locally as a quadratic function.
This means that for each of the points x(i) ∈ X we seek the
coefficients ṽ(i), Ṽx(i), Ṽxx(i) so that for small δx,

Ṽ (x(i) + δx; i) ≈ ṽ(i) + δxTṼx(i) +
1

2
δxTṼxx(i)δx.

The constant terms ṽ(i) can be computed directly, while the
coefficients Ṽx(i), Ṽxx(i) can be estimated using least-squares.

A. The Constant Terms ṽ

Since we can measure the cost ` along every point of the
limit cycle, we can calculate the average cost per step

c =
1

N

N∑
i=1

`
(
x(i),u(i)

)
.
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Fig. 2. An illustration of the calculation of the infinite-horizon value function
along a limit cycle (described in section VI-A). A. the cost ` at every point
along a limit cycle (solid), and the average cost (dashed). B. the finite horizon
cost-to-go (solid) and the average cost-to-go (dashed), integrated along one
cycle of the closed trajectory. C. the resulting infinite-horizon average-cost
value function, shifted so that its mean over the entire limit cycle is zero.

We define the cost-to-go along the limit cycle

V (i) =

N∑
k=i

`
(
x(i),u(i)

)
and the average cost-to-go

V̄ (i) = (N − i)c.

The infinite-horizon value function is the deviation of the cost-
to-go from the average cost-to-go

Ṽ (i) = V (i)− V̄ (i) + b

(see figure 2), shifted by the scalar b to enforce
N∑
i=1

Ṽ (i) = 0.

This computation is illustrated in figure 2.

B. Estimating the Quadratic Model

Equation (4) describes a relationship between two consec-
utive quadratic models of the time-dependent value function
(3). Equation (7) describes a very similar relationship between
two parts of the same value function around two temporally-
consecutive states. However, although equations (3) and (7)
differ only in the constant term, a straightforward backward
integration of equation (4) along the limit cycle cannot always
be used to evaluate the value function of the infinite-horizon
problem. The backward integration used in the finite-horizon
case relies on the dynamic-programming principle that the past
can affect the future, but not vice-versa. This principle does
not hold in limit cycles, where every state is visited both before
and after every other state. We found that in practice, simple
backward integration of equation (4) along several rounds of
the limit cycle can be effective for some domains (section
VII-A), but fails to produce robust behavior in others (section
VII-B).

As an alternative, we can pose equation 4 in terms of least-
squares minimization. Given some values of a quadratic model
Ṽx(i), Ṽxx(i) and its successor Ṽx(i), Ṽxx(i), we can define
the backward step mismatch as

Ψ(i) = {Ṽx(i), Ṽxx(i)} −B
(
Ṽx(i+ 1), Ṽxx(i+ 1)

)
.



The difference between two quadratic models can be defined in
several ways; here we take the simple approach of calculating
the difference between corresponding coefficients. We seek a
sequence of quadratic models that minimize the backward step
mismatch:

min
{Ṽx(i),Ṽxx(i)}Ni=1

||Ψ(i)||2 .

This is a nonlinear sum-of-squares optimization problem
whose variables are the coefficients of the quadratic models
around the ring. Although the number of variables in this
problem is quadratic in the dimensionality of the domain, note
that only variables of consecutive pairs interact. Therefore, the
Hessian of this optimization problem is sparse, and it can be
efficiently solved using standard optimization algorithms.

VII. RESULTS

We present results from two domains. First, we tackle a
2D domain. This problem is small enough to afford a global
solution through state-space discretization, which serves as
ground truth. This allows us to evaluate the quality of our
approximations. Then, we apply our method to a simulated
domain of a one-legged hopping robot.

A. 2D Problem

A variant of this non-linear problem was first proposed
by Todorov [24], and we adopt it as a benchmark because
the optimal solution was shown to be a limit cycle. First,
we obtain ground-truth for the optimal policy by discretizing
the state space with a 200x200 grid, and solve the resulting
40,000-states Markov Decision Process which corresponds to

A

optimal policy

B

local feedback

C

IHMPC−2

D

IHMPC−12

Fig. 3. A. the ground-truth policy solved through MDP discretization. B. the
locally-linear feedback policy computed around the limit cycle. C. IHMPC
with a lookahead horizon of 2 steps. D. IHMPC with a horizon of 12 steps.
The complete limit cycle is 150 steps long.

body length (cm) radius (cm) mass (kg)

foot 50 7 8.77
lower leg 50 6 6.33
upper leg 50 5 4.32

TABLE I
MORPHOLOGICAL SPECIFICATION OF THE HOPPING ROBOT

the infinite-horizon problem. The resulting policy is shown at
the top left of figure 3.

We then found the optimal limit cycle using the algorithm
in section III-B, and confirmed that it matches the limit cycle
found by the MDP. We identified quadratic approximations
of the value function around every element of the limit
cycle according to the algorithm presented in section VI. The
locally-linear feedback constructed directly from this quadratic
approximation is shown on the top right of figure 3.

Finally, we used IHMPC to compute the policy over all
states in the same 200x200 grid. The two lower panels of
figure 3 shows the resulting policies for different lengths of the
MDP horizon. With a planning horizon of two steps, numerical
artifacts are still apparent (bottom left). However, with a
planning horizon of 12 steps, the IHMPC policy becomes
effectively equal to the true policy almost everywhere.

B. Planar Hopping Robot

This mechanical system of the hopping robot is composed
of three body segments and two joints, and so this domain
has 10-dimensional state space and two-dimensional control
space. The masses and segment lengths are specified in table
I. The ground interaction forces are computed using stochastic
LCP [22] with σ = 1. The task requires the hopper’s center of
mass to maintain a fixed horizontal velocity ẏCOM of 1 m/s,
while keeping its vertical position xCOM around 1 m:

`(x,u) = 10(ẏCOM − 1)2 + 0.1(xCOM − 1)2 + 0.01 ||u||2

We started by finding an optimal limit cycle with N = 40
steps of 20msec. The optimization of the hopping gait was
implemented in MATLAB, and took about an hour of compu-
tation on a standard dual-core T9300 Intel processor. Fitting
the quadratic approximation of the value function around the
limit cycle took about 5 minutes of computation. Both these
stages are run offline only once.

We then applied IHMPC with a planning horizon of 10
steps. Every MPC optimization loop was allowed at most
50msec or 5 iterations. When the simulation is unperturbed,
the MPC optimization converged in a single iteration in
every timestep. This allowed us to apply IHMPC in real-
time. IHMPC was able to generate robust behavior over the
entire state-space. The hopping behavior is best illustrated by a
movie depicting the hooper in action, which is available online
at goo.gl/ymzUY. The basin of attraction of the IHMPC
effectively covers the entire volume of state space, and the
hopping robot can recover from any perturbation and resume
its gait. Even when the hopper is thrown to the ground (frames

http://goo.gl/ymzUY


Fig. 4. IHMPC recovering from a starting state that is far from the limit cycle. Note how in the first frame on the right, the hopping robot is flying
upside-down, and yet manages to eventually get a foothold and push itself back up.

Fig. 5. The limit cycle of a hopping robot with altered morphology (the
top body’s length is extended by 60% to 80 cm). IHMPC can recover stable
hopping even as the planner still uses the original model.

1 and 2 in figure 4), it can find an appropriate motor sequence
to get up (frames 3 and 4) and resume its hopping (frames
5-8).

C. Robustness to modeling errors

We use model-based optimization for both the offline and
the online phases of our IHMPC algorithm. However, it is
impossible to build a perfectly-accurate dynamical model of
a physical robot. Therefore, in order to be useful for real-
world robotic applications, any model-based control method
must be robust to modeling errors. We examined this question
by modifying the model used for plant simulation, making
it incongruent with the model used for optimization. We
increased the length of the top segment by 60%, from 50cm
to 80cm. In this case, the original limit cycle is no longer
the optimal gait for the modified morphology, and the MPC
optimizations are using the wrong model of the dynamics.
However, IHMPC was able to maintain effective hopping in
this case as well (figure 5).

VIII. CONCLUSION

The main contribution of this paper is the presentation of
an algorithm for Infinite Horizon Model Predictive Control
(IHMPC) for tasks with no specified goal state. We show
that IHMPC can generate robust behavior in domains with
discontinuities and unilateral constraints, even at the face
of extreme external perturbations. We also show how our
controller can maintain the desired behavior in the face of
significant modeling errors.

Our results show a hopping robot that can get up when
tossed to the ground. The controller’s capacity to figure out
how to get up is not part of the behavioral repertoire that was
pre-computed offline. Instead, it is a result of MPC online
trajectory optimization. This highlights how IHMPC allows
for “motor creativity”, as the online optimization can tackle
any perturbation, as long as it can find a finite trajectory

that terminates close enough to the optimal limit cycle. This
kind of open-ended control is essential for robots who share
the space with unpredictable humans and their ever-shifting
environment.

APPENDIX

In the experiments described in section VII we used Dif-
ferential Dynamic Programming (DDP), an algorithm by Ja-
cobson and Mayne [12] which uses second-order expansion of
both dynamics and cost to iteratively find improved trajectories
given an initial state. Here we only repeat the main equations
(as presented by [17]), and refer the interested reader to [12]
for further details.

Every iteration involves a backward pass along the cur-
rent (x,u, i) trajectory, recursively constructing a quadratic
approximation to V (x, i), followed by a forward pass which
applies the new control sequence to form a new trajectory.

The backward pass integrates a quadratic approximation
of the value function backward in time along the trajectory.
Given a quadratic model around x(i + 1), we compute the
quadratic model Vx(i), Vxx(i) around x(i) as a function of
Vx(i+ 1), Vxx(i+ 1) and the quadratic models of f , ` around
x(i).

This backward integration is initialized by taking a quadratic
approximation of the terminal cost `N and setting the deriva-
tives of the value function:

Vx(N) = `Nx, Vxx(N) = `Nxx

where subscript denotes partial derivatives. In order to com-
pute the integration step, we define the argument of the
minimum in (3) (a quantity analogous to the Hamiltonian in
continuous time) as a function of perturbations around the i-th
(x,u) pair:

Q(δx, δu) = `(x + δx,u + δu, i)− `(x,u, i)
+ V (f(x + δx,u + δu), i+1)− V (f(x,u), i+1) (9)

and expand to second order

≈ 1

2

 1
δx
δu

T  0 QT
x QT

u

Qx Qxx Qxu

Qu Qux Quu

 1
δx
δu

 . (10)



The expansion coefficients are1

Qx = `x +fTx V
′
x (11a)

Qu = `u +fTuV
′
x (11b)

Qxx = `xx+fTx V
′
xxfx + V ′x · fxx (11c)

Quu = `uu+fTuV
′
xxfu + V ′x · fuu (11d)

Qux = `ux+fTuV
′
xxfx + V ′x · fux. (11e)

Note that the last terms in (11c, 11d, 11e) denote contraction
with a tensor. Minimizing (10) WRT δu we have

δu∗(i) = argmin
δu

Q(δx, δu) = −Q−1uu(Qu +Quxδx), (12)

giving us an open-loop term k = −Q−1uuQu and a feedback
gain term K = −Q−1uuQux. Plugging the result back in (10),
we have a quadratic model of the Value at time i:

∆V (i) = − 1
2QuQ

−1
uuQu (13a)

Vx(i) = Qx −QuQ
−1
uuQux (13b)

Vxx(i) = Qxx−QxuQ
−1
uuQux. (13c)

Recursively computing the local quadratic models of V (i) and
the control modifications {k(i),K(i)}, constitutes the back-
ward pass. The main complication stems from the inversion
of Quu in (12): while the maximum principle guarantees it
to be positive definite at the optimal trajectory, it is often not
the case throughout the optimization. This can be solved by
applying regularization: Q̄uu = Quu + λI.

Once the backward pass is completed, the forward pass
computes a new trajectory and control sequence:

x̂(1) = x(1) (14a)

û(i) = u(i) + k(i) + K(i)
(
x̂(i)− x(i)

)
(14b)

x̂(i+1) = f(x̂(i), û(i)). (14c)

Note that K(i) serves as a time-dependent linear feedback
term, using the second-order information to ensure a better
forward pass
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