

Abstract—In this paper, we introduce a novel neural network

architecture for motor control. Our general framework employs

a recurrent neural network (RNN) to govern a dynamical

system (body) in a closed loop fashion. This hybrid system is

trained to behave as an interpreter that translates high-level

motor plan into desired movement. Our method uses a variant

of optimal control theory applicable to neural networks. When

applied to biology, our method yields recurrent neural networks

which are analogous to circuits in primary motor cortex (M1) or

central pattern generators (CPGs) in the spinal cord.

I. INTRODUCTION

In recent years, there has been much progress in the study

of biological motor control, both experimentally and

theoretically. Numerous neural recording experiments have

yielded insight into the neural substrate of motor control.

Optimality principles of sensory motor functions have been

successful in explaining behavior [1,2]. However, there is a

lack of understanding of how the two are related. The field

may benefit from neural network (NN) modeling that bridges

the two; neural mechanisms and optimal control. In the

present work, we introduce a novel theoretical framework

that yields recurrent neural network (RNN) controllers

capable of real-time control of a simulated body (e.g. limb).

Previously, neural network modeling has been used to

understand the simple reflex system of leeches, based on

detailed neural activity data in response to sensory stimuli

[3,4]. Their RNN was trained to reproduce the recorded

input-output (stimulus-neural response) mapping. However,

there are two shortcomings to such approach: one technical,

and another conceptual. As we model more complex systems

the number of neurons involved and the repertoire of

movement grow larger, so that obtaining detailed neural

activity data becomes unrealistic. Moreover, it gives little

intuition about how such neural activity ends up

accomplishing the final goal of motor control.

Here, we use an alternative approach. Instead of

reproducing desired neural response, a RNN is trained to

directly control a simulated body in a closed loop to generate

desired movement. However, the conventional RNN training

paradigm does not deal with such situation where RNN is

connected with a foreign object in interactive way. It is time

to merge NN with more general optimal control theory.

However, the conventional optimal control theory has its

own shortcoming too, that it optimizes performance for a

This work was supported by U.S. National Science Foundation.

Dongsung Huh is with University of California, San Diego, La Jolla, CA
92093 USA (corresponding author to provide phone: 858-822-3713; fax:

858-534-1128; e-mail: dhuh@ ucsd.edu).

Emanuel Todorov is with University of California, San Diego, La Jolla,
CA 92093 USA (e-mail: todorov@cogsci.ucsd.edu).

single task only. On the other hand, most motor areas,

including the primary motor cortex, subserve multiple

motor-tasks under changing task environment, where the task

information (or command) is given from the decision making

(or motor-planning) centers of the brain. Therefore, it is

appropriate to model the motor area as performing a general

mapping between command sequences to movements, not a

single motor task (fig 1). In section 2, we introduce a

generalized optimal control framework which properly deals

with command-movement mapping.

One of the major technical challenges for all mapping

problems is that both the inputs and outputs may reside in a

very high dimensional space. In order for the training to be

possible, it is crucial to discover the underlying low

dimensional structure of the data space. In section 4, we

introduce attractor-analysis-method which reveals the low

dimensional structure of the movement space. This method

not only enables efficient training, but also an inspiring view

point for understanding the motor control process.

Real-Time Motor Control using Recurrent Neural Networks

Dongsung Huh, and Emanuel Todorov

Fig 1. Body is a dynamical system with state 𝒙. Controller receives

time-varying command (task-information) 𝒌 and controls body
accordingly. The combined body-controller system can be seen as

performing a mapping from command sequence 𝒌 to body-state

sequence 𝒙 , i.e. movement.

TABLE I

NOTATION

Representation meaning

bold, lower case

𝒇 𝒙

𝒙,𝒚,𝒒

𝒔,𝒖,𝒌

State vector, or
Signal vector, or

Function with vector output

bold, upper case 𝑾 Matrix

normal, lower case 𝑉 𝒒 , c 𝒙,𝒖 Scalar, or scalar function

curly bracket 𝒙 𝑡 , 𝒙 Sequence of 𝒙 𝑡 between

initial and final time 𝑡𝑖 , 𝑡𝑓
function with

subscript
𝒇𝒙 =

𝜕𝒇

𝜕𝒙
 Partial derivative matrix, such

that 𝑑𝒇 = 𝒇𝒙𝑑𝒙 =
𝜕𝒇

𝜕𝒙
𝑑𝒙

todorov
Typewritten Text
In IEEE ADPRL 2009

In section 6, we show two examples of successful

application of the method.

Our method yields recurrent neural networks which are

analogous to circuits in primary motor cortex (M1) or central

pattern generators (CPGs) in the spinal cord. Despite the

biological motivation of this work, our methods are general

and widely applicable to various engineering applications.

II. MODIFIED OPTIMAL CONTROL FORMULATION

In this section, we formulate the mapping problem in the

stochastic optimal control framework. It takes a dynamical

equation of the body-controller system, and a cost function

which describes the desired movement. We have modified the

framework so that the desired motor task may change as

function of high-level command, which is considered as

stochastic event. Here, we choose a RNN as a model

controller, but this framework applies to any parametric

model in general. Note that a mapping problem is translation

invariant in time, and therefore our cost function, dynamic

equation and probability distribution do not have explicit time

dependence.

A. General Model of Dynamical System

The model system is composed of a body and a RNN

controller. Body is a stochastic dynamical system that can be

described as a set of equations,

 output

update state

noise

noise

xss

ux,gx

,

 (1)

and RNN is also a stochastic dynamical system as described

by the following equations,

noise

k

s

y

Wσ
u

yy

,

 (2)

where 𝒙 is body-state, 𝒚 is neural-state, 𝒔 is sensory

measurement from body, 𝒌 is high-level command, 𝒖 is

low-level control signal, and 𝑾 is a matrix of free parameters

with appropriate dimension, 𝝈 is a transfer function that acts

on each element of input vector one-by-one, 𝝈 𝒙 𝒊 = 𝜎 𝒙𝒊 .
𝑾 is usually referred to as the synaptic weight matrix.

Here, we will treat body and RNN as a single dynamical

system with the following dynamical equation,

 Wω;k,q,fq
1
 (3)

where 𝒒 𝒕 = 𝒙 𝒕 ;𝒚 𝒕 is a combined state vector, and

𝝎 𝒕 is noise. This expression hides the fact that our controller

is made of RNN. Thus, our method is independent from the

nature of controller. Notice that we have taken the view that

the system dynamics, which is originally stochastic, can be

seen as deterministic once the noise is given as input [5].

B. Uncertainty

In order for a state trajectory 𝒒 to be determined

according to (3), initial state 𝒒𝟎, command sequence 𝒌 , and

1 Mathematicians would prefer more accurate notation

 ωWq;fq q ddtd . However, we consider 𝝎 𝒕 as one of the inputs to

the dynamical system, and (3) emphasizes this view.

noise sequence 𝝎 should be given. The controller-body

system operates in stochastic environment where these

variables are probabilistically drawn from a distribution

 ωkq ,,0P . Here we assume that P is known.

C. Cost Function and Value Function

In optimal control framework, the desired mapping is

described by an instantaneous cost function. A cost function

evaluates current body-state and current control whose

desirability is set by command:

c 𝒙,𝒖;𝒌
which may be rewritten as c 𝒒;𝒌,𝑾 .
A value function, on the other hand, evaluates the entire

movement trajectory. It is defined as the total accumulated

cost along the trajectory 𝒒 generated by (3):

.,,,0
q

WkqWωkq dt;c;V
 (4)

Notice that value function is a function of ωkq ,,0

which are the determinants of trajectory 𝒒 .

D. Objective Function

For a deterministic problem, V is the objective function to

be minimized. For a stochastic problem, however, an

objective function should reflect the uncertainty

 .0 ωkq ,,P A popular objective function is the simple

average V
P

E . Such objective functions, however, only

takes into account the mean but not the variability of V, and

tend to leave some unoptimized outliers.

Instead, we define a risk-sensitive objective function, as

introduced by [6],

 βV
β

βA explog
1

;
P

EW (5)

where is a positive number which provides a link

between optimality and robustness. In the limit 0 ,

 WA reduces to the usual average V
P

E , and for ,

 VA
P

max)(W . Empirically, we have found that it is

important to set β to an appropriate value for both faster

optimization and robustness.

Our goal is finding W that minimizes A. This is exactly the

same formulation as finding an optimal global control law. In

Fig. 2. Our model system consists of a dynamical body and a recurrent
neural network, parameterized by a weight matrix W. There are five

components of W: Recurrent, Sensory, Motor, Command, and Reflex

connections.

other words, we will directly approximate the global control

law with RNN.

In practice, however, the expectation in (5) cannot be

computed, because we do not have an explicit expression of

V . Instead, we approximate it using sample average

N

i

iβV
Nβ

βA
1

exp
1

log
1

;
~

W , (5’)

where Wωkq ;VV iiii ,,0 is a sample of the value

function drawn from ωkq ,,0P . A large number of

samples may be required for proper approximation,

depending on the complexity of the body dynamics and

dimensionality of ωkq ,,0
. Note that the number of

required samples is significantly decreased by focusing on the

attractor dynamics, which has small dimensionality. (By

focusing on the attractor dynamics, the number of required

samples can be significantly decreased.)

III. OPTIMIZATION

We use conjugate gradient descent method for optimization.

First, we need to differentiate (5’):

N

i

i
i

d

dV
AββV

Nd

Ad

1

~
exp

1
~

WW
 .

Therefore, is WdAd
~

 is a weighted sum of WddVi
,

where exponential weight. Here, WddVi
 means

differentiating (4) while holding all the random variables

fixed at iii
ωkq ,,0

:

 Wωkq
WW

;,,0 iii

i V
d

d

d

dV
 .

The differentiation in (9) is not simple to calculate, because

change in W has complex effect in the state trajectory {q}.

Pontryagin solved this problem using the minimum action

principle of classical mechanics. Here we introduce a

modified version.

A. Modified Pontryagin’s Maximum Principle

Define Hamiltonian as

 WkqWωkqfpWpq T ;,;,,;, cH

Then gradient of value function is

,, pq

WW
T

pq

fp
WW

dtcdt
HV

where integration is along the special trajectory **, pq

which is determined by the following dynamics,

 0pfpqp

qqfpq

qq
TT

T

f

i

tcH

tH

*,**

, 0

Note that, {q*} is the actual trajectory as generated by (3).

{p*} can be obtained by integrating the lower equation

backward in time, and it represents backward propagation of

cost gradient.

This method is called Pontryagin’s Maximum Principle [7].

If the system of interest purely consists of RNN, this method

reduces to the famous Back-Propagation-Through-Time

method [ref:Werbos].

IV. ATTRACTOR DYNAMICS ANALYSIS

One of the major technical challenges for all mapping

problems is that both the inputs and outputs may reside in a

very high dimensional space. In order for the training to be

possible, it is crucial to discover the underlying low

dimensional structure of the data space. We introduce the

attractor analysis method (section 5), which mitigates the

curse and leads to efficient optimization. It also sets a nice

framework for understanding the movement generation

process.

A. Size of Movement Space

The brute-force approach to the mapping problem would

be to learn one-to-one match between all command sequence

and the desired movement 𝒌 , 𝒙 . In this view, learning

seems hopeless. Consider 𝜲 ∋ 𝒙 , the body-state space, and

𝑴 ∋ {𝒙} , the space of all possible movement between

interval 𝑡𝑖 , 𝑡𝑓 . The size, or cardinality of M grows

exponentially in time, 𝑴 = 𝑿 1+∆𝑡/𝑡0 , where ∆𝑡 = 𝑡𝑓 − 𝑡𝑖

is the movement duration, and 𝑡0 ≅ 1 s is the movement

correlation time. Then it would require huge number of

sample pairs 𝒌 , 𝒙 in order to approximate (5’) .

Fortunately, such exponential growth is illusionary,

because it includes much redundancy. The actual complexity

of mapping problem is much lower dimensional. In order to

discover the low dimensional structure of the movement

space, we analyze the attractor dynamics of the desired

system.

Fig. 3ab. (a) Command dynamics is continuous, which reflecting the actual

dynamics. (b) Command dynamics is discretized in to a series of jumps,

with duration longer than 𝜏𝑐 . This gives enough time for body-state to

converge to attractors during each static period.

B. Unique Attractor Property of Desired Mapping

By default, we assume the desired mapping to have stability

and memoryless properties for reasons explained below.

Stability means that if command input is held fixed k(t)=k0

for t>t0, then the body-state will converge to a set of states

A(k0) after enough time (see fig 3b). Such a set is called an

attractor. Let us assume that the convergence would take at

most 𝜏𝑐 – the convergence time constant.

Memorylessness means an attractor is uniquely determined

by the current command k0, regardless of the past command

history or state history before t0.

Together, these properties guarantee that for each command,

there exists a unique attractor state to which the body-state

converges, and they create a one-to-one mapping between

command and state, thereby keeping the mapping simple and

intuitive.

Geometrically, an attractor can be a point (0d), a periodic

orbit (1d, limit-cycle), a manifold (higher dimension), or

chaotic (fractional dimension). In this paper, we deal only

with the first two simple types.

C. Reducing Dimensionality

Rather than attacking the full mapping problem (fig 3a), we

focused on a simplified version where the command sequence

is discretized into a sequence of jumps and the intervals

between jumps are constrained to be longer than 𝜏𝑐 (fig 3b).

In this case, the desired movement is a series of transition

from one attractor to another. Then, for N number of such

transitions, the movement space has the size 𝑨 𝑁+1 for

point-attractors, or 𝑨 𝑁+1 𝜣 𝑵 for limit-cycles, where 𝑨 is

the size of attractor space (related to dimensionality of k) and

𝜣 is the space of limit-cycle phases (between 0 and 2π).

Now the redundancy becomes obvious here. Because of

time invariance nature and memoryless property of each

transition, optimizing a series of jumps between attractors is

equivalent to optimizing a parallel batch of single jumps.
2
 In

other words, if we optimize the controller for single jumps,

which we do (fig 4), it will behave optimally for series of

multiple jumps, too. Therefore, the true complexity of the

mapping problem is 𝑨 2, or 𝑨 2 𝜣 .
This approach is analogous to impulse response analysis,

or step response analysis for linear systems, which captures

(most)(full) information of the system’s dynamical properties

in a compact manner. On the other hand, the brute-force

approach is highly redundant which causes inefficient

learning.

V. EXAMPLES

We trained RNN to control a realistic human arm-model for

two types of attractor dynamics. The first type is reaching,

which is interpreted as transition between point attractors.

This simple dynamics is likely to underlie biological (human)

arm control, and there are lots of neurophysiological data to

be explained regarding this dynamics. Even more striking is

revealed when the method is applied to learning the

2 In terms of statistical physics, we are substituting time-average with

ensemble-average.

limit-cycle dynamics – circle drawing task. Such periodic

dynamics would be more relevant to locomotive systems than

an arm, but it clearly shows what our method is capable of.

This approach focuses on accurately learning the attractor

states, and learning the correct transition (convergence)

movement toward the attractors.

A. Model System - Specification

1) Two-Link Arm Model

The body plant we use is a simulated, two

degree-of-freedom arm restricted to horizontal movements

(fig 5a). Actuation of the arm is performed by three pairs of

opposing muscles (flexor/extensor). Two pairs of muscles

individually actuate the shoulder and elbow joints, while the

third pair actuates both joints simultaneously. Control of the

arm is achieved by activating each muscle.

The arm state is represented by a 10 dimensional vector:

 Taaaaaa 6543212121 ,,,,,,,,, x , where 1 is the

shoulder joint angle, 2 the elbow angle, and ia is

activation level of each muscle. The activation level

dynamics is approximated by a first order model:

iii aa u , where ms50 , and u is the control signal.

The tension generated by each muscle is a linear function

of its activation level, and it also has non-linear dependence

on the muscle length and speed (see fig 5b). iiii llTaT , .

Then joint torque is calculated as a function of muscle

tension and joint angles. The actual arm movement is driven

by the net joint torques plus the Coriolis force induced by

movement velocity.

2) Sensory Signal and Command

In this model, sensory signal includes length, speed, and

tension of each muscle: T];l[l;xs)(.

In (2), note that there exist a direct route for the mapping

from 𝒔 and 𝒌 to 𝒖 that does not involves the RNN. The direct

route from 𝒔 to 𝒖 imitates the mono-synaptic sensory-motor

reflex loops. However, there is no biological evidence for a

direct channel between 𝒌 to 𝒖 and thus it is removed from our

model.

Fig. 4. Training movement sample :

A traning movement consists of two attractors and transition between

them. For each attractor, the command signals is held fixed for duration

longer than 𝜏𝑐 + 𝑇, where 𝜏𝑐 is the convergence time constant, and T is

the oscillation period for limit-cycle attractors, or 0.5 seconds for
point-attractors. At initial time t=0, body-state is set to be on the first

attractor, and neural-state is set randomly.

3) RNN Transfer Function 𝝈

In principle, neurons and muscles may process the

information differently and may have different transfer

functions: 𝝈𝒚, 𝝈𝒖. For muscles, we use soft-threshold-linear

function 𝝈𝒖 = ∙ +, which properly rectifies negative output.

There are more choices for the neuron transfer function 𝝈𝒚,

such as sigmoid or other monotonically increasing functions.

I found little difference in computational power and learning

speed among those 𝝈𝒚 ’s given their dynamic range was

properly normalized. In the end, I ended up using 𝝈𝒚 = ∙ +

because its piece-wise linear property makes the RNN’s

dynamical properties simple to understand for future analysis.

4) Process Noise

In this model, process noise is modeled as multiplicative

noise acting on sensory, command, and control signals.

Therefore, each element of 𝒖 is replaced with its noisy

version uωu ii 1 , and 𝒔𝑖 , 𝒌𝑖 with sωs ii 1 ,

 kωk ii 1 . We modeled 𝝎𝑖 as white Gaussian noise, with

zero mean and 0.2 standard deviation (20% noise level).

B. Desired Dynamics

1) Point-Attractor: Reaching

We trained our system to perform reaching movements to

randomly appearing target positions. Here, attractors are

point-attractors.

The RNN receives a desired target location (in Cartesian

coordinate) as command signal (𝒌 = 𝑻𝑨𝑹𝑮𝑬𝑻) . This is

consistent with the experimental observation that neurons in

motor cortex have cosine-tuning for target location, which

implies Cartesian representation [8].

The instantaneous cost function is

𝑐 𝒙,𝒌,𝒖 = 1 − exp −
𝑑2

2𝑑0
2 +

𝛼

2

 𝒗 2

𝑣0
2

exp −
𝑑2

2𝑑0
2

 +
𝛾

2
 𝒖 2, (6)

where 𝑑 ≡ 𝒉 − 𝑻𝑨𝑹𝑮𝑬𝑻 2 is the Euclidean distance

between the hand (𝒉) and TARGET, 𝑑0 ≅ 0.04 𝑚 is the

target size, 𝒗 is the hand velocity, 𝑣0 ≅ 0.3 𝑚/𝑠 is the

typical movement speed, and 𝛼, 𝛾 are appropriate mixing

coefficients. For the distance cost, we used a saturating

function (inverse of Gaussian) rather than the popular

Fig 5. (a) arm model, showing how the muscles are connected to bones

around the joints. (b) Tension generation function of muscle: Tension is
a linear function of activation level but non-linear with respect to length

and speed. The activation level was set to 1 for the above plot.

(a)

(b)

(c)

Fig 6. (a) Trajectory of reaching movement for four consecutive targets

during testing. Open circles represent target locations. Thick line
represent the arm. The background curves are joint-coordinate grids.

(b) Distance to target

(c) Speed of movement
(d) Tracking movement for continuously moving target. Target

trajectory is drawn as a dotted line and hand trajectory is a solid line.

Thick line represent the arm.

θ2

θ1

quadratic. Such saturating cost is necessary in order to

describe reaching-task in a time-independent manner. The

velocity cost is active only near TARGET.

The space of point-attractors is 2 dimensional, and the

space of reaching movements is 4 dimensional.

For batch training, 200 movement samples were used for

approximating (5’) with RNN of size 12 neurons. The larger

the RNN, the more training samples were needed to prevent

over-fitting. TARGETs were uniformly distributed in space

within reaching range.

We first tested the system with a series of discrete target

jumps (fig 6(a,b,c)). The arm successfully generated a series

of reaching movements to a given target locations with near

straight movement. The curvature is due to arm dynamics and

non-isotropic distribution of inertia. Distance to target indeed

decreases to near zero, and the speed plot matches well with

the bell-shaped profile recorded from human reaching

movements.

When the target was allowed to make continuous

movement, the arm-RNN system naturally generalized to

perform trajectory following task (fig 6(d)).

2) Circle Drawing: limit-cycle

We also applied our method to limit-cycle mapping

problem, where the task is to draw circles whose desired

location, radius and rotation speed are given by the command

signal: k= 𝑪𝑬𝑵𝑻𝑬𝑹; 𝑟𝑎𝑑𝑖𝑢𝑠;𝑣𝑑 . We define positive 𝑣𝑑 as

clockwise rotation and negative 𝑣𝑑 counter-clock.

The instantaneous cost function is

𝑐 𝒙,𝒌,𝒖 = 1 − exp −
𝑑2

2𝑑0
2 1 +

𝛼

2

𝑣𝑑
2

𝑣0
2

 +
𝛼

2

 𝒗 − 𝒗𝒅
2

𝑣0
2

exp −
𝑑2

2𝑑0
2 +

𝛾

2
 𝒖 2 (7)

where 𝑑 ≡ 𝒉 − 𝑪𝑬𝑵𝑻𝑬𝑹 2 − 𝑟𝑎𝑑𝑖𝑢𝑠 is the “distance”

between hand and circle, and 𝒗𝒅 (= 𝑣𝑑𝒏) is the desired

velocity in the tangent direction (𝒏) of the circle. Notice that

this cost function reduces to the reaching cost when both

𝑟𝑎𝑑𝑖𝑢𝑠 and 𝑣𝑑 are set to zero.

Notice that this cost function can easily be generalized to

limit-cycles of different shapes, simply by redefining 𝑑 to be

the distance between the new orbit and hand, and 𝒗𝒅 to be

tangent to that orbit.

The space of all limit-cycle attractors is 4 dimensional, and

the space of circle-drawing movements is 17 dimensional.

This is much more difficult task than the reaching-task.

400 movement samples are used with RNN size of 36

neurons.

The arm-RNN system was tested for when the circle made

a sequence of discrete jumps (fig 7(a)), when the radius and

rotation speed input were varied (fig 7(b)). In all cases, the

system successfully made desired circle drawing movements.

Fig 7(b) different command sequences. It can also generate

various complex shapes by appropriately planning the

command signal – for example figure 8 shapes (fig 8)

Limit-cycle attractors is more relevant to locomotion rather

than arm control. Once we develop appropriate leg models,

we would like to train the leg-RNN system for locomotive

behavior. Indeed, locomotion would be an easier problem

than the circle-drawing task, because its attractors will be

uniquely determined by walking speed and step length,

which is only 2 dimensional (and 5 dimensional movement

space).

VI. CONCLUSION

In this paper, we have presented a novel use of RNNs as

part of a hierarchical structure for controlling a non-linear

body. Our novel optimization paradigm was efficient in

training a body-RNN system with a desired mapping for both

(a)

(b)

Fig 7. Trajectory of circle drawing task (a) for multiple center locations.
(b) varying radius and rotation speed condition, fixed center. Positive

rotation sleep means clockwise rotation.

point-attractor or limit-cycle based mapping.

When the command input is fixed, this RNN operates as an

optimal controller that performs a single motor task (e.g.

bringing the arm to a specific location). In more general view,

however, it is better understood as an interpreter: the RNN

translates a user-(homunculus)-friendly-neural-code into a

muscle-friendly-code. The former is suitable for abstract

motor planning, while the latter is more for detailed motor

execution. For non-ambiguous translation, existence of a

unique attractor for every command is a necessary feature,

which is achieved by stability and memoryless properties.

This interpreter view then inevitably leads to another view

that attractor dynamics is the basis for all movement

generation. Is this true in biological systems?

Existence of limit-cycle attractors in spinal CPGs (such as

the locomotive CPG) has been well recognized. In the

primary motor cortex (M1, such as arm control area),

micro-stimulation experiments have shown existence of

point-attractor dynamics. Stimulating a population of neurons

drives the limbs toward a unique postures (regardless of the

previous body state), depending on the site of stimulation [9].

Moreover, in our preliminary comparison with monkey

neurophysiological data, our RNN activity during reaching

movement turns out to have very similar pattern to the data [to

be published elsewhere]. Therefore, our RNN controller

could be a good model of biological motor control systems.

Our view of attractor-based-control is related to the old

equilibrium-point-hypothesis, which says that brain controls

body movement by setting an equilibrium point at a desired

limb position. In our model, the equilibrium point is

substituted with an attractor that is elaborately generated by

RNN.

Our model may also be interpreted in terms of synergy

something., which says groups of muscles gets recruited

together for certain motor tasks. In our model, such muscle

groups may be related to the attractor basis.

This work is the first step toward understanding the whole

hierarchy of biological motor control, and it may be

comparable to modeling the hierarchy of sensory systems.

REFERENCES

[1] Optimality principles in sensorimotor control (review)
Todorov E (2004). Nature Neuroscience 7(9): 907-915

[2] Optimal feedback control as a theory of motor coordination

Todorov E and Jordan M (2002). Nature Neuroscience 5(11):
1226-1235

[3] Fang, Y.; Sejnowski, T. J.; Faster Learning for Dynamic Recurrent

Backpropagation, Neural Computation, 2,270-273, 1990
[4] Lockery, S. R.; Fang, Y.; Sejnowski, T. J.; A Dynamic Neural Network

Model of Sensorimotor Transformations in the Leech, Neural

Computation, 2, 274-282, 1990
[5] PEGASUS: A policy search method for large MDPs and POMDPs,

Andrew Y. Ng and Michael Jordan. In Uncertainty in Artificial

Intelligence, Proceedings of the Sixteenth Conference, 2000
[6] Jacobson, D.H. (1973). Optimal stochastic linear systems with

exponential performance criteria and their relation to deterministic

differential games. IEEE Trans. Automatic Control. AC-18: 124–131
[7] Iyanaga, S. and Kawada, Y. (Eds.). "Pontrjagin's Maximum

Principle." Encyclopedic Dictionary of Mathematics. Cambridge, MA:

MIT Press, pp. 295-296, 1980.
[8] Georgopoulos, A., Kalaska, J., Caminiti, R., & Massey, J. (1982). On

the relations between the direction of two-dimensional arm movements

and cell discharge in primate motor cortex. Journal of Neuroscience,
2(11), 1527–1537

[9] Graziano, M.S.A., Taylor, C.S.R. and Moore, T., 2002. Complex

movements evoked by microstimulation of precentral
cortex. Neuron 34, pp. 841–851

Fig 8. Figure 8 drawing task can be easily done by alternating between

two center locations and opposite rotational directions.

http://www.cogsci.ucsd.edu/~todorov/papers/optimality_review.pdf
http://www.cogsci.ucsd.edu/~todorov/papers/coordination.pdf
http://papers.cnl.salk.edu/index.php?SearchText=Fang%2C%20Y.
http://papers.cnl.salk.edu/index.php?SearchText=Sejnowski%2C%20T.%20J.
http://papers.cnl.salk.edu/index.php?SearchText=Lockery%2C%20S.%20R.
http://papers.cnl.salk.edu/index.php?SearchText=Fang%2C%20Y.
http://papers.cnl.salk.edu/index.php?SearchText=Sejnowski%2C%20T.%20J.
http://www.amazon.com/exec/obidos/ASIN/0262590204/ref=nosim/weisstein-20
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WSS-473W01V-6&_user=4429&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_version=1&_urlVersion=0&_userid=4429&md5=d61d287784a15abf427e8e98e4bc5508#bbib41

