
 

 

 

 

Abstract—In this paper, we introduce a novel neural network 

architecture for motor control. Our general framework employs 

a recurrent neural network (RNN) to govern a dynamical 

system (body) in a closed loop fashion. This hybrid system is 

trained to behave as an interpreter that translates high-level 

motor plan into desired movement. Our method uses a variant 

of optimal control theory applicable to neural networks. When 

applied to biology, our method yields recurrent neural networks 

which are analogous to circuits in primary motor cortex (M1) or 

central pattern generators (CPGs) in the spinal cord.  

 

I. INTRODUCTION 

In recent years, there has been much progress in the study 

of biological motor control, both experimentally and 

theoretically.  Numerous neural recording experiments have 

yielded insight into the neural substrate of motor control. 

Optimality principles of sensory motor functions have been 

successful in explaining behavior [1,2]. However, there is a 

lack of understanding of how the two are related. The field 

may benefit from neural network (NN) modeling that bridges 

the two; neural mechanisms and optimal control. In the 

present work, we introduce a novel theoretical framework 

that yields recurrent neural network (RNN) controllers 

capable of real-time control of a simulated body (e.g. limb). 

Previously, neural network modeling has been used to 

understand the simple reflex system of leeches, based on 

detailed neural activity data in response to sensory stimuli 

[3,4]. Their RNN was trained to reproduce the recorded 

input-output (stimulus-neural response) mapping. However, 

there are two shortcomings to such approach: one technical, 

and another conceptual. As we model more complex systems 

the number of neurons involved and the repertoire of 

movement grow larger, so that obtaining detailed neural 

activity data becomes unrealistic. Moreover, it gives little 

intuition about how such neural activity ends up 

accomplishing the final goal of motor control. 

Here, we use an alternative approach. Instead of 

reproducing desired neural response, a RNN is trained to 

directly control a simulated body in a closed loop to generate 

desired movement. However, the conventional RNN training 

paradigm does not deal with such situation where RNN is 

connected with a foreign object in interactive way. It is time 

to merge NN with more general optimal control theory. 

However, the conventional optimal control theory has its 

own shortcoming too, that it optimizes performance for a 
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single task only. On the other hand, most motor areas, 

including the primary motor cortex, subserve multiple 

motor-tasks under changing task environment, where the task 

information (or command) is given from the decision making 

(or motor-planning) centers of the brain. Therefore, it is 

appropriate to model the motor area as performing a general 

mapping between command sequences to movements, not a 

single motor task (fig 1). In section 2, we introduce a 

generalized optimal control framework which properly deals 

with command-movement mapping. 

One of the major technical challenges for all mapping 

problems is that both the inputs and outputs may reside in a 

very high dimensional space. In order for the training to be 

possible, it is crucial to discover the underlying low 

dimensional structure of the data space. In section 4, we 

introduce attractor-analysis-method which reveals the low 

dimensional structure of the movement space. This method 

not only enables efficient training, but also an inspiring view 

point for understanding the motor control process. 
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Fig 1.  Body is a dynamical system with state 𝒙. Controller receives 

time-varying command (task-information) 𝒌  and controls body 
accordingly. The combined body-controller system can be seen as 

performing a mapping from command sequence  𝒌  to body-state 

sequence  𝒙 , i.e. movement. 

 

TABLE I 

NOTATION 

Representation  meaning 

bold, lower case 

𝒇 𝒙  

𝒙,𝒚,𝒒  

𝒔,𝒖,𝒌  

State vector, or  
Signal vector,  or 

Function with vector output 

bold, upper case 𝑾  Matrix 

normal, lower case 𝑉 𝒒 , c 𝒙,𝒖  Scalar, or scalar function 

curly bracket  𝒙 𝑡  ,  𝒙  Sequence of 𝒙 𝑡  between 

initial and final time  𝑡𝑖 , 𝑡𝑓  
function with 

subscript 
𝒇𝒙 =

𝜕𝒇

𝜕𝒙
   Partial derivative matrix, such 

that 𝑑𝒇 = 𝒇𝒙𝑑𝒙 =
𝜕𝒇

𝜕𝒙
𝑑𝒙 
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In section 6, we show two examples of successful 

application of the method.  

Our method yields recurrent neural networks which are 

analogous to circuits in primary motor cortex (M1) or central 

pattern generators (CPGs) in the spinal cord. Despite the 

biological motivation of this work, our methods are general 

and widely applicable to various engineering applications.  

II. MODIFIED OPTIMAL CONTROL FORMULATION 

In this section, we formulate the mapping problem in the 

stochastic optimal control framework. It takes a dynamical 

equation of the body-controller system, and a cost function 

which describes the desired movement. We have modified the 

framework so that the desired motor task may change as 

function of high-level command, which is considered as 

stochastic event. Here, we choose a RNN as a model 

controller, but this framework applies to any parametric 

model in general. Note that a mapping problem is translation 

invariant in time, and therefore our cost function, dynamic 

equation and probability distribution do not have explicit time 

dependence. 

A. General Model of Dynamical System 

The model system is composed of a body and a RNN 

controller. Body is a stochastic dynamical system that can be 

described as a set of equations, 
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and RNN is also a stochastic dynamical system as described 

by the following equations, 
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where 𝒙  is body-state, 𝒚  is neural-state, 𝒔  is sensory 

measurement from body, 𝒌  is high-level command, 𝒖  is 

low-level control signal, and 𝑾 is a matrix of free parameters 

with appropriate dimension, 𝝈 is a transfer function that acts 

on each element of input vector one-by-one, 𝝈 𝒙 𝒊 = 𝜎 𝒙𝒊 . 
𝑾 is usually referred to as the synaptic weight matrix. 

Here, we will treat body and RNN as a single dynamical 

system with the following dynamical equation,  

                   Wω;k,q,fq 
1
                        (3) 

where 𝒒 𝒕 =  𝒙 𝒕 ;𝒚 𝒕    is a combined state vector, and 

𝝎 𝒕  is noise. This expression hides the fact that our controller 

is made of RNN. Thus, our method is independent from the 

nature of controller. Notice that we have taken the view that 

the system dynamics, which is originally stochastic, can be 

seen as deterministic once the noise is given as input [5]. 

B. Uncertainty 

In order for a state trajectory  𝒒  to be determined 

according to (3), initial state 𝒒𝟎, command sequence  𝒌 , and 

 
1  Mathematicians would prefer more accurate notation 

  ωWq;fq q ddtd  . However, we consider 𝝎 𝒕  as one of the inputs to 

the dynamical system, and (3) emphasizes this view.  

noise sequence  𝝎 should be given. The controller-body 

system operates in stochastic environment where these 

variables are probabilistically drawn from a distribution 

   ωkq ,,0P . Here we assume that P is known.  

C. Cost Function and Value Function 

In optimal control framework, the desired mapping is 

described by an instantaneous cost function. A cost function 

evaluates current body-state and current control whose 

desirability is set by command: 

c 𝒙,𝒖;𝒌  
which may be rewritten as c 𝒒;𝒌,𝑾 . 
A value function, on the other hand, evaluates the entire 

movement trajectory. It is defined as the total accumulated 

cost along the trajectory  𝒒  generated by (3):  
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WkqWωkq dt;c;V
             (4) 

Notice that value function is a function of    ωkq ,,0
 

which are the determinants of trajectory  𝒒 . 

D. Objective Function 

For a deterministic problem, V  is the objective function to 

be minimized. For a stochastic problem, however, an 

objective function should reflect the uncertainty 

   .0 ωkq ,,P  A popular objective function is the simple 

average  V
P

E . Such objective functions, however, only 

takes into account the mean but not the variability of V, and 

tend to leave some unoptimized outliers. 

Instead, we define a risk-sensitive objective function, as 

introduced by [6], 
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where   is a positive number which provides a link 

between optimality and robustness. In the limit 0 , 

 WA  reduces to the usual average  V
P

E , and for  , 

 VA
P

max)( W . Empirically, we have found that it is 

important to set β  to an appropriate value for both faster 

optimization and robustness. 

Our goal is finding W that minimizes A. This is exactly the 

same formulation as finding an optimal global control law. In 

 
 
Fig. 2.  Our model system consists of a dynamical body and a recurrent 
neural network, parameterized by a weight matrix W. There are five 

components of W: Recurrent, Sensory, Motor, Command, and Reflex 

connections.  

 



 

 

 

other words, we will directly approximate the global control 

law with RNN. 

In practice, however, the expectation in (5) cannot be 

computed, because we do not have an explicit expression of 

V . Instead, we approximate it using sample average  
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where     Wωkq ;VV iiii ,,0 is a sample of the value 

function drawn from     ωkq ,,0P . A large number of 

samples may be required for proper approximation, 

depending on the complexity of the body dynamics and 

dimensionality of     ωkq ,,0
. Note that the number of 

required samples is significantly decreased by focusing on the 

attractor dynamics, which has small dimensionality. (By 

focusing on the attractor dynamics, the number of required 

samples can be significantly decreased.) 

III. OPTIMIZATION 

We use conjugate gradient descent method for optimization. 

First, we need to differentiate (5’): 

 



N

i

i
i

d

dV
AββV

Nd

Ad

1

~
exp

1
~

WW
 .            

Therefore, is WdAd
~

 is a weighted sum of WddVi
, 

where exponential weight. Here, WddVi
 means 

differentiating (4) while holding all the random variables 

fixed at     iii
ωkq ,,0
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The differentiation in (9) is not simple to calculate, because 

change in W has complex effect in the state trajectory {q}. 

Pontryagin solved this problem using the minimum action 

principle of classical mechanics. Here we introduce a 

modified version. 

A. Modified Pontryagin’s Maximum Principle 

Define Hamiltonian as  

     WkqWωkqfpWpq T ;,;,,;, cH        

Then gradient of value function is 
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where integration is along the special trajectory  **, pq  

which is determined by the following dynamics,  
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Note that, {q*} is the actual trajectory as generated by (3). 

{p*} can be obtained by integrating the lower equation 

backward in time, and it represents backward propagation of 

cost gradient.  

This method is called Pontryagin’s Maximum Principle [7]. 

If the system of interest purely consists of RNN, this method 

reduces to the famous Back-Propagation-Through-Time 

method [ref:Werbos]. 

IV. ATTRACTOR DYNAMICS ANALYSIS 

One of the major technical challenges for all mapping 

problems is that both the inputs and outputs may reside in a 

very high dimensional space. In order for the training to be 

possible, it is crucial to discover the underlying low 

dimensional structure of the data space. We introduce the 

attractor analysis method (section 5), which mitigates the 

curse and leads to efficient optimization. It also sets a nice 

framework for understanding the movement generation 

process. 

A. Size of Movement Space 

The brute-force approach to the mapping problem would 

be to learn one-to-one match between all command sequence 

and the desired movement   𝒌 ,  𝒙  . In this view, learning 

seems hopeless. Consider 𝜲 ∋ 𝒙 , the body-state space, and 

𝑴 ∋ {𝒙} , the space of all possible movement between 

interval  𝑡𝑖 , 𝑡𝑓 . The size, or cardinality of M grows 

exponentially in time,  𝑴 =  𝑿 1+∆𝑡/𝑡0 , where ∆𝑡 = 𝑡𝑓 − 𝑡𝑖  

is the movement duration, and 𝑡0 ≅ 1 s  is the movement 

correlation time. Then it would require huge number of 

sample pairs   𝒌 ,  𝒙   in order to approximate (5’) . 

Fortunately, such exponential growth is illusionary, 

because it includes much redundancy. The actual complexity 

of mapping problem is much lower dimensional. In order to 

discover the low dimensional structure of the movement 

space, we analyze the attractor dynamics of the desired 

system. 

 
 
Fig. 3ab.  (a) Command dynamics is continuous, which reflecting the actual 

dynamics. (b) Command dynamics is discretized in to a series of jumps, 

with duration longer than 𝜏𝑐 . This gives enough time for body-state to 

converge to attractors during each static period.  

 



 

 

 

B.  Unique Attractor Property of Desired Mapping 

By default, we assume the desired mapping to have stability 

and memoryless properties for reasons explained below. 

Stability means that if command input is held fixed k(t)=k0 

for t>t0, then the body-state will converge to a set of states 

A(k0) after enough time (see fig 3b). Such a set is called an 

attractor. Let us assume that the convergence would take at 

most 𝜏𝑐  – the convergence time constant. 

Memorylessness means an attractor is uniquely determined 

by the current command k0, regardless of the past command 

history or state history before t0.  

Together, these properties guarantee that for each command, 

there exists a unique attractor state to which the body-state 

converges, and they create a one-to-one mapping between 

command and state, thereby keeping the mapping simple and 

intuitive. 

Geometrically, an attractor can be a point (0d), a periodic 

orbit (1d, limit-cycle), a manifold (higher dimension), or 

chaotic (fractional dimension). In this paper, we deal only 

with the first two simple types. 

C. Reducing Dimensionality 

Rather than attacking the full mapping problem (fig 3a), we 

focused on a simplified version where the command sequence 

is discretized into a sequence of jumps and the intervals 

between jumps are constrained to be longer than 𝜏𝑐  (fig 3b). 

In this case, the desired movement is a series of transition 

from one attractor to another. Then, for N number of such 

transitions, the movement space has the size  𝑨 𝑁+1 for 

point-attractors, or  𝑨 𝑁+1 𝜣 𝑵 for limit-cycles, where  𝑨  is 

the size of attractor space (related to dimensionality of k) and 

𝜣 is the space of limit-cycle phases (between 0 and 2π). 

Now the redundancy becomes obvious here. Because of 

time invariance nature and memoryless property of each 

transition, optimizing a series of jumps between attractors is 

equivalent to optimizing a parallel batch of single jumps.
2
 In 

other words, if we optimize the controller for single jumps, 

which we do (fig 4), it will behave optimally for series of 

multiple jumps, too. Therefore, the true complexity of the 

mapping problem is  𝑨 2, or  𝑨 2 𝜣 . 
This approach is analogous to impulse response analysis, 

or step response analysis for linear systems, which captures 

(most)(full) information of the system’s dynamical properties 

in a compact manner. On the other hand, the brute-force 

approach is highly redundant which causes inefficient 

learning. 

V. EXAMPLES 

We trained RNN to control a realistic human arm-model for 

two types of attractor dynamics. The first type is reaching, 

which is interpreted as transition between point attractors.  

This simple dynamics is likely to underlie biological (human) 

arm control, and there are lots of neurophysiological data to 

be explained regarding this dynamics. Even more striking is 

revealed when the method is applied to learning the 

 
2 In terms of statistical physics, we are substituting time-average with 

ensemble-average. 

limit-cycle dynamics – circle drawing task. Such periodic 

dynamics would be more relevant to locomotive systems than 

an arm, but it clearly shows what our method is capable of.  

This approach focuses on accurately learning the attractor 

states, and learning the correct transition (convergence) 

movement toward the attractors. 

 

A. Model System - Specification 

1) Two-Link Arm Model 

The body plant we use is a simulated, two 

degree-of-freedom arm restricted to horizontal movements 

(fig 5a). Actuation of the arm is performed by three pairs of 

opposing muscles (flexor/extensor). Two pairs of muscles 

individually actuate the shoulder and elbow joints, while the 

third pair actuates both joints simultaneously. Control of the 

arm is achieved by activating each muscle. 

The arm state is represented by a 10 dimensional vector: 

 Taaaaaa 6543212121 ,,,,,,,,,  x , where 1  is the 

shoulder joint angle, 2  the elbow angle, and ia  is 

activation level of each muscle. The activation level 

dynamics is approximated by a first order model: 

iii aa u , where ms50 , and u  is the control signal.  

The tension generated by each muscle is a linear function 

of its activation level, and it also has non-linear dependence 

on the muscle length and speed (see fig 5b).  iiii llTaT , . 

Then joint torque is calculated as a function of muscle 

tension and joint angles. The actual arm movement is driven 

by the net joint torques plus the Coriolis force induced by 

movement velocity. 

2) Sensory Signal and Command 

In this model, sensory signal includes length, speed, and 

tension of each muscle: T];l[l;xs )( . 

In (2), note that there exist a direct route for the mapping 

from 𝒔 and 𝒌 to 𝒖 that does not involves the RNN. The direct 

route from 𝒔 to 𝒖 imitates the mono-synaptic sensory-motor 

reflex loops. However, there is no biological evidence for a 

direct channel between 𝒌 to 𝒖 and thus it is removed from our 

model. 

 
Fig. 4.  Training movement sample : 

A traning movement consists of two attractors and transition between 

them. For each attractor, the command signals is held fixed for duration 

longer than 𝜏𝑐 + 𝑇, where 𝜏𝑐  is the convergence time constant, and T is 

the oscillation period for limit-cycle attractors, or 0.5 seconds for 
point-attractors. At initial time t=0, body-state is set to be on the first 

attractor, and neural-state is set randomly.  

  

 



 

 

 

3) RNN Transfer Function 𝝈 

In principle, neurons and muscles may process the 

information differently and may have different transfer 

functions: 𝝈𝒚, 𝝈𝒖. For muscles, we use soft-threshold-linear 

function 𝝈𝒖 =  ∙ +, which properly rectifies negative output. 

There are more choices for the neuron transfer function 𝝈𝒚, 

such as sigmoid or other monotonically increasing functions. 

I found little difference in computational power and learning 

speed among those 𝝈𝒚 ’s given their dynamic range  was 

properly normalized. In the end, I ended up using 𝝈𝒚 =  ∙ + 

because its piece-wise linear property makes the RNN’s 

dynamical properties simple to understand for future analysis.  

4) Process Noise 

In this model, process noise is modeled as multiplicative 

noise acting on sensory, command, and control signals. 

Therefore, each element of 𝒖  is replaced with its noisy 

version  uωu ii   1 , and 𝒔𝑖 , 𝒌𝑖  with  sωs ii   1 , 

 kωk ii   1 . We modeled 𝝎𝑖  as white Gaussian noise, with 

zero mean and 0.2 standard deviation  (20% noise level). 

B. Desired Dynamics 

1) Point-Attractor: Reaching 

We trained our system to perform reaching movements to 

randomly appearing target positions. Here, attractors are 

point-attractors. 

The RNN receives a desired target location (in Cartesian 

coordinate) as command signal (𝒌 = 𝑻𝑨𝑹𝑮𝑬𝑻) . This is 

consistent with the experimental observation that neurons in 

motor cortex have cosine-tuning for target location, which 

implies Cartesian representation [8]. 

The instantaneous cost function is 

𝑐 𝒙,𝒌,𝒖 = 1 − exp −
𝑑2

2𝑑0
2 +

𝛼

2

 𝒗 2

𝑣0
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exp −
𝑑2

2𝑑0
2  

                                                          +
𝛾

2
 𝒖 2,                      (6) 

where 𝑑 ≡  𝒉 − 𝑻𝑨𝑹𝑮𝑬𝑻  2 is the Euclidean distance 

between the hand (𝒉 ) and TARGET, 𝑑0 ≅ 0.04 𝑚  is the 

target size, 𝒗  is the hand velocity, 𝑣0 ≅ 0.3 𝑚/𝑠  is the 

typical movement speed, and 𝛼, 𝛾  are appropriate mixing 

coefficients. For the distance cost, we used a saturating 

function (inverse of Gaussian) rather than the popular 

 
 
Fig 5. (a) arm model, showing how the muscles are connected to bones 

around the joints. (b) Tension generation function of muscle:  Tension is 
a linear function of activation level but non-linear with respect to length 

and speed. The activation level was set to 1 for the above plot. 
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Fig 6. (a) Trajectory of reaching movement for four consecutive targets 

during testing. Open circles represent target locations. Thick line 
represent the arm. The background curves are joint-coordinate grids. 

(b) Distance to target 

(c) Speed of movement 
(d) Tracking movement for continuously moving target. Target 

trajectory is drawn as a dotted line and hand trajectory is a solid line. 

Thick line represent the arm.  
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quadratic. Such saturating cost is necessary in order to 

describe reaching-task in a time-independent manner. The 

velocity cost is active only near TARGET. 

The space of point-attractors is 2 dimensional, and the 

space of reaching movements is 4 dimensional. 

For batch training, 200 movement samples were used for 

approximating (5’) with RNN of size 12 neurons. The larger 

the RNN, the more training samples were needed to prevent 

over-fitting. TARGETs were uniformly distributed in space 

within reaching range.   

We first tested the system with a series of discrete target 

jumps (fig 6(a,b,c)). The arm successfully generated a series 

of reaching movements to a given target locations with near 

straight movement. The curvature is due to arm dynamics and 

non-isotropic distribution of inertia. Distance to target indeed 

decreases to near zero, and the speed plot matches well with 

the bell-shaped profile recorded from human reaching 

movements. 

When the target was allowed to make continuous 

movement, the arm-RNN system naturally generalized to 

perform trajectory following task (fig 6(d)).  

 

2) Circle Drawing: limit-cycle 

We also applied our method to limit-cycle mapping 

problem, where the task is to draw circles whose desired 

location, radius and rotation speed are given by the command 

signal: k= 𝑪𝑬𝑵𝑻𝑬𝑹; 𝑟𝑎𝑑𝑖𝑢𝑠;𝑣𝑑  . We define positive 𝑣𝑑  as 

clockwise rotation and negative 𝑣𝑑  counter-clock.  

The instantaneous cost function is 

𝑐 𝒙,𝒌,𝒖 =  1 − exp  −
𝑑2
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where 𝑑 ≡  𝒉 − 𝑪𝑬𝑵𝑻𝑬𝑹 2 − 𝑟𝑎𝑑𝑖𝑢𝑠  is the “distance” 

between hand and circle, and  𝒗𝒅 (= 𝑣𝑑𝒏)   is the desired 

velocity in the tangent direction (𝒏) of the circle. Notice that 

this cost function reduces to the reaching cost when both  

𝑟𝑎𝑑𝑖𝑢𝑠 and 𝑣𝑑  are set to zero.  

Notice that this cost function can easily be generalized to 

limit-cycles of different shapes, simply by redefining 𝑑 to be 

the distance between the new orbit and hand, and 𝒗𝒅  to be 

tangent to that orbit. 

The space of all limit-cycle attractors is 4 dimensional, and 

the space of circle-drawing movements is 17 dimensional. 

This is much more difficult task than the reaching-task.  

400 movement samples are used with RNN size of 36 

neurons. 

The arm-RNN system was tested for when the circle made 

a sequence of discrete jumps (fig 7(a)), when the radius and 

rotation speed input were varied (fig 7(b)). In all cases, the 

system successfully made desired circle drawing movements. 

Fig 7(b) different command sequences.  It can also generate 

various complex shapes by appropriately planning the 

command signal  – for example figure 8 shapes (fig 8) 

Limit-cycle attractors is more relevant to locomotion rather 

than arm control. Once we develop appropriate leg models, 

we would like to train the leg-RNN system for locomotive 

behavior. Indeed, locomotion would be an easier problem 

than the circle-drawing task, because its attractors will be 

uniquely determined by walking speed  and step length, 

which is only 2 dimensional (and 5 dimensional movement 

space). 

 

VI. CONCLUSION 

In this paper, we have presented a novel use of RNNs as 

part of a hierarchical structure for controlling a non-linear 

body. Our novel optimization paradigm was efficient in 

training a body-RNN system with a desired mapping for both 
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Fig 7. Trajectory of circle drawing task (a) for multiple center locations. 
(b) varying radius and rotation speed condition, fixed center. Positive 

rotation sleep means clockwise rotation.  



 

 

 

point-attractor or limit-cycle based mapping.  

When the command input is fixed, this RNN operates as an 

optimal controller that performs a single motor task (e.g. 

bringing the arm to a specific location). In more general view, 

however, it is better understood as an interpreter: the RNN 

translates a user-(homunculus)-friendly-neural-code into a  

muscle-friendly-code. The former is suitable for abstract 

motor planning, while the latter is more for detailed motor 

execution. For non-ambiguous translation, existence of a 

unique attractor for every command is a necessary feature, 

which is achieved by stability and memoryless properties. 

This interpreter view then inevitably leads to another view 

that attractor dynamics is the basis for all movement 

generation. Is this true in biological systems? 

Existence of limit-cycle attractors in spinal CPGs (such as 

the locomotive CPG) has been well recognized. In the 

primary motor cortex (M1, such as arm control area), 

micro-stimulation experiments have shown existence of 

point-attractor dynamics. Stimulating a population of neurons 

drives the limbs toward a unique postures (regardless of the 

previous body state), depending on the site of stimulation [9].  

Moreover, in our preliminary comparison with monkey 

neurophysiological data, our RNN activity during reaching 

movement turns out to have very similar pattern to the data [to 

be published elsewhere]. Therefore, our RNN controller 

could be a good model of biological motor control systems. 

Our view of attractor-based-control is related to the old 

equilibrium-point-hypothesis, which says that brain controls 

body movement by setting an equilibrium point at a desired 

limb position. In our model, the equilibrium point is 

substituted with an attractor that is elaborately generated by 

RNN. 

Our model may also be interpreted in terms of synergy 

something., which says groups of muscles gets recruited 

together for certain motor tasks.   In our model, such muscle 

groups may be related to the attractor basis. 

This work is the first step toward understanding the whole 

hierarchy of biological motor control, and it may be 

comparable to modeling the hierarchy of sensory systems. 

 

 

 

 

REFERENCES 

[1] Optimality principles in sensorimotor control (review) 
Todorov E (2004). Nature Neuroscience 7(9): 907-915  

[2] Optimal feedback control as a theory of motor coordination 

Todorov E and Jordan M (2002). Nature Neuroscience 5(11): 
1226-1235 

[3] Fang, Y.; Sejnowski, T. J.; Faster Learning for Dynamic Recurrent 

Backpropagation, Neural Computation, 2,270-273, 1990 
[4] Lockery, S. R.; Fang, Y.; Sejnowski, T. J.; A Dynamic Neural Network 

Model of Sensorimotor Transformations in the Leech, Neural 

Computation, 2, 274-282, 1990 
[5] PEGASUS: A policy search method for large MDPs and POMDPs, 

Andrew Y. Ng and Michael Jordan. In Uncertainty in Artificial 

Intelligence, Proceedings of the Sixteenth Conference, 2000 
[6] Jacobson, D.H. (1973). Optimal stochastic linear systems with 

exponential performance criteria and their relation to deterministic 

differential games. IEEE Trans. Automatic Control. AC-18: 124–131 
[7] Iyanaga, S. and Kawada, Y. (Eds.). "Pontrjagin's Maximum 

Principle." Encyclopedic Dictionary of Mathematics. Cambridge, MA: 

MIT Press, pp. 295-296, 1980. 
[8] Georgopoulos, A., Kalaska, J., Caminiti, R., & Massey, J. (1982). On 

the relations between the direction of two-dimensional arm movements 

and cell discharge in primate motor cortex. Journal of Neuroscience, 
2(11), 1527–1537 

[9] Graziano, M.S.A., Taylor, C.S.R. and Moore, T., 2002. Complex 

movements evoked by microstimulation of precentral 
cortex. Neuron 34, pp. 841–851 

 
 
Fig 8. Figure 8 drawing task can be easily done by alternating between 

two center locations and opposite rotational directions. 
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