
Physically consistent state estimation and
system identification for contacts

Svetoslav Kolev and Emanuel Todorov

Abstract— Successful model based control relies heavily on
proper system identification and accurate state estimation. We
present a framework for solving these problems in the context
of robotic control applications. We are particularly interested
in robotic manipulation tasks, which are especially hard due to
the non-linear nature of contact phenomena.

We developed a solution that solves both the problems of
estimation and system identification jointly. We show that these
two problems are difficult to solve separately in the presence
of discontinuous phenomena such as contacts. The problem
is posed as a joint optimization across both trajectory and
model parameters and solved via Newton’s method. We present
several challenges we encountered while modeling contacts and
performing state estimation and propose solutions within the
MuJoCo physics engine.

We present experimental results performed on our manip-
ulation system consisting of 3-DOF Phantom Haptic Devices,
turned into finger manipulators. Cross-validation between dif-
ferent datasets, as well as leave-one-out cross-validation show
that our method is robust and is able to accurately explain
sensory data.

I. INTRODUCTION

Accurate models and state estimation are crucial com-
ponents of model-based robot controllers. Such controllers
usually utilize a planner with which the control algorithm
imagines a future and then optimizes the plan to best satisfy
user specifications. There are two critical requirements for
this strategy to work: 1) We need to have an accurate estimate
of our current position, otherwise the resulting plan would
not make any sense and 2) we need to have an accurate
physical model so that we are confident that the plan is
feasible and will indeed be realized by our robot.

Model predictive control (MPC) is a particular implemen-
tation of that idea which is able to cope with slight estimation
and modeling inaccuracies. The idea is that deviations from
the plan accumulate slowly and smoothly; if we replan fast
enough then the controller will still achieve the goal. MPC
has been applied to contact rich tasks such as humanoid
robot walking [1], where despite it being in simulation an
MPC approach is still needed because the simulation model
is different than the one used for planning. Model based
control has even been applied to dexterous hand manipulation
[2] where the planner has to reason about multiple acyclic
contact events.

Still, applying model based controllers to real-world con-
tact rich problems has been an elusive task. Even if we

Authors are with the Department of Computer Science & Engineering,
University of Washington, WA 98195, USA

e-mail: swetko@cs.washington.edu, todorov@cs.washington.edu
This work was supported by the US National Science Foundation

had perfect contact information, many tasks would still be
difficult. For example, in manipulation tasks friction is of
great importance, where not only the contact state matters
but the friction force and normal forces are what allows one
to hold an object against gravity, or change its configuration.
This problem manifests itself both in the planner, which has
to plan those contact forces, as well as in the estimator that
needs to reason about them. Due to their nature, contacts
introduce very sharp nonlinearities in the dynamical model,
which makes the control and estimation tasks much harder.
Even slight error in state information will cause incorrect
contact state which will result in significant misprediction
when used by a controller.

Robots are usually equipped with plenty of sensors, in-
cluding force, tactile and motor torque sensors in an attempt
to cope with those challenges. Similarly a human hand is
covered with tactile sensors and our muscles are equipped
with tendons which have force sensors embedded in them.
Our brains are able to fuse this information into an intuitive
state estimate. We are also able to predict the effects of our
muscle actions on the objects we grasp. Similarly we aim
to enable robots to do the same in what we call physically
consistent state estimation. Physical consistency means our
estimator is able to explain all the observed sensory data
with its dynamical model of the world.

The standard procedure for system identification of a
robot is to collect data while it is doing a task and then
optimize over certain model parameters so as to maximize
the predictive accuracy of the model. For example, if we
have access to an inverse dynamic simulator, given a state
trajectory it can compute the motor torques that must have
produced that behavior, which we can compare with the
collected data and determine success. Or with a forward
simulator we can judge by its ability to accurately simulate
certain time interval of the future. That strategy works well
for smooth systems, but it fails as soon as we encounter
contacts as shown in Figure 1. For example, trying to
estimate the coefficient of friction between an end effector
and a surface would be impossible if we had a distance of
even 1mm between them in our state estimate (the typical
error of motion capture system like Vicon and a robot like
a Phantom). This is the case because estimating friction
requires knowledge of the normal force, which in physics
simulators is greatly dependent on the interpenetration (or
distance in the case of remote contacts) between the two
objects. Therefore it is essential to consider both problems
of estimation and system identification together.

The main contribution of this paper is a joint system



Fig. 1: Example of system identification failure trying to estimate
the contact parameters between a robotic finger and a 3D printed
object. The finger is sliding on the surface applying various amounts
of pressure. The black graph shows the distance between the end
effector and the stationary object, estimated purely from motion
capture and joint encoder inputs. When the finger is too far from the
object (more than 0.2mm away) the physics simulator predicts zero
normal force (purple graph), making the estimated sensor reading
(red graph) very different than the true sensor reading (green graph).
The fluctuations of the red graph when not in contact are caused
by the simulated sensor measuring the inertial forces of the moving
end-effector.

identification and estimation framework that optimizes over
both a trajectory and dynamical model with the goal of
achieving high consistency. To the best of our knowledge this
is the first paper to present such a combination while using a
full-featured physics simulator, MuJoCo [3]. Furthermore we
propose solutions to associated challenges such as tangential
contact deformations and remote contact sensing.

This paper is organized as follows. In section II we discuss
previous approaches to system identification and estimation.
In section III we outline the mathematical formulation of the
optimization algorithm. After that in section IV we detail
some of the challenges in solving the posed optimization
problem while in section V we detail some of the contact
modelling challenges we encountered and their solutions.
In section VI we describe the hardware setup and data
collection. Section VII presents the results. We conclude in
section VIII and discuss possible venues for future work.

II. RELATED WORK

In our previous work [4] we developed an extension
to Extended Kalman Filter (EKF) that had two important
differences: Instead of keeping the state of the system for
the last step only, we kept a fixed length interval and instead
of a single Gauss Newton step we allowed for a varying
number, with the usual lag/accuracy tradeoff. Looking at
multiple steps in the past provides the estimator with richer
context which can be used to arrive at a more physically

consistent estimate. In this work we extend the algorithm to
handle system identification at the same time as estimation.

Zhang et al. also considered the problem of object track-
ing and identification of contact parameters together by
combining a visual datastream and tactile feedback [5].
However, they used a 2D physics engine and also their
estimation is done via Particle Filtering which proved too
slow for realtime, while our gradient based approach has
been successfully applied to realtime applications [4]. Wan et
al. attempt to solve the problems of state estimation, param-
eter estimation (system identification) and dual estimation
(combination of the two) using an Unscented Kalman Filter
(UKF) [6]. However, their results are not on robotic systems,
but on artificial data, and it is not clear whether robotic
system parameters can be estimated in an UKF manner,
without considering the whole trajectory.

The SLAM (Simultaneous Localization and Mapping)
problem is very similar to ours [7] [8]. Mapping corresponds
to system identification (learning about the environment)
and localization to state estimation. Instead of mapping
the tangible aspects of the environment we are modeling
dynamical properties of the environment and also the state of
a robot consist of many DOFs, whereas in SLAM the state
is usually 2D or 3D. SLAM is solved via landmark tracking
techniques [7] as well as by dense vision approaches [8].

Vision based systems for state estimation have been very
popular recently. Tanner et al. developed DART that uses a
depth camera to track articulated bodies [9] and extended
it by incorporating tactile information to enable tracking of
objects even when they are partially occluded [10]. They use
dense camera information which enables gradient approaches
and consider contacts and interpenetrations carefully but do
not use a full dynamical model and only consider a few pre-
defined states. Particle filtering is another technique applied
to estimation in contact rich tasks by Koval et al. [11], as
well as by Chalon et al. [12] who also combined vision and
tactile sensing. Koval et al. optimized the number of particles
required by placing them on the contact manifold but still
the number of particles required grows exponentially as the
number of contact points increases. While vision methods
provide good estimates based only on internal sensors they
cannot provide the required accuracy that is needed by a
physics simulator for planning, because for stiff contacts even
small inaccuracies have great effect on the dynamics. We
view this approach as complimentary to ours. For example, a
vision based system can replace our motion capture system,
as it is expected that robots should be able to operate in
arbitrary environments that are not equipped with motion
capture systems.

With regards to contact modeling, Gilardi et al. provide an
overview of the various approaches and attributes to consider
when implementing contact models [13]. Real contacts are
rather complex and no existing physics simulator captures
all aspects. We mention how we solve some of the arising
problems in section V. Drumwright et al. survey the various
implementations of multibody systems with contact [14].
Verscheure et al. identify contact dynamics with a stiff robot



and using extremely precise measurement tools and do not
use a general purpose physics model [15]. It is not clear
how easily a general contact model can be incorporated into
a physics engine, which is why we think it is important to
perform the system identification within the framework of a
physics engine.

The physics simulator that we use, MuJoCo [3], is a
general purpose physics engine and allows simulation of
robotic systems with multiple joints as well as handles
contacts between bodies, equality constraints and tendons.
MuJoCo relies on a new formulation of the physics of
contact described in [3]. The computation of contact forces
in forward dynamics reduces to a convex quadratic program,
while in inverse dynamics the contact forces are computed
analytically. This model also allows soft contacts, and has a
rich parametrization making it suitable for system identifi-
cation. Using a physics simulator such as MuJoCo bridges
the gap towards control as MuJoCo has been successfully
applied in trajectory optimization for control [2] [1].

III. PROBLEM FORMULATION

Currently, the mode of operation of our framework is as
follows. The robot moves around, either via teleoperation, or
following a predefined trajectory, possibly interacting with
the manipulated object. We record sensory data including
motion capture data, an IMU, a 6-DOF force sensor at the
end-effector, as well as joint angles and torques. We also
construct a model in MuJoCo that mirrors the realworld
scene. That model includes parameters such as masses,
inertias, friction coefficients, contact softness, etc. We then
ask the question: What is the robot/object trajectory and the
set of model parameters that best explains the sensory data?
We pose that question as an optimization problem as follows.

We model the trajectory as a sequence of states:

Q = {q1, q2, . . . , qn}

where n is the number of timesteps we consider. Each state
is a vector qi = (θ1, . . . , θk′ , x, y, z, qw, qx, qy, qz), with
θ1, . . . , θj representing joint angles and x, y, z, qw, qx, qy, qz
being the cartesian position and quaternion orientation of
the manipulated object. We denote by j the number of joint
angles and by k′ = j + 7 the number of state variables.
We do not consider velocities or accelerations separately but
compute them via finite differencing from position data:

vi =
qi − qi−1

h

ai =
vi+1 − vi

h
=
qi+1 + qi−1 − 2qi

h2

When computing the difference of quaternions we convert it
to a 3D rotational velocity. Therefore the size of the velocity
vector is k, same as the degrees of freedom of our system
and one less than the number of state variables. The number
of optimization variables is therefore nk.

The inputs to the optimization problem are the sensor
readings and control signals for all timesteps:

S = {s1, s2, . . . , sn}

and
U = {u1, u2, . . . , un}

Each sensor vector consists of l elements si =
(s1i , s

2
i , . . . , s

l
i), which includes joint angle sensors, motion

capture position and orientation, the IMU data as well as the
force sensor readings.

At the core of the optimization lies the physics simulator
MuJoCo. It is used to predict accelerations or torques, in
forward dynamics and inverse dynamics mode respectively.
In forward dynamics mode the simulator computes system
accelerations for a given timestep, given position, velocity
and control signal for each DOF. In inverse dynamics mode,
given position, velocity and acceleration at a given timestep
it computes the generalized forces for each DOF, including
the unactuated ones, required to produce the given motion.
Since we compare the predicted forces to the control signal
it is convenient that they have the same dimension so we
define the control signal for the unactuated DOFs as 0.

The basic dynamics formulas are

(âi, ŝi) = fwd(qi, vi, ui)

and
(τ̂i, ŝi) = inv(qi, vi, ai)

In both cases ŝi is the predicted sensor output given the state
and control signal, produced using MuJoCo via a generative
sensor model.

Since we are doing system identification, we also optimize
over a vector of c system parameters: P = (p1, p2, . . . , pc),
and generally we also have lower and upper bounds for these
parameters: pi ∈ [li, ui]. The system parameters that we
consider are detailed in section III-B.

With this setup we can formulate the following optimiza-
tion problems:
• Problem formulation using inverse dynamics

min
P,Q

∑
i=1...n

‖âi − ai‖∗3 +
∑

i=1...n

‖ŝi − si‖∗2

• Problem formulation using forward dynamics

min
P,Q

∑
i=1...n

‖τ̂i − ui‖∗1 +
∑

i=1...n

‖ŝi − si‖∗2

This optimization is done offline with the idea that the
estimator part can be run at realtime once a suitable model
is identified, as done in [4].

A. Cost terms

The difference between the two formulations is the cost
term related to accelerations, in the case of forward dynam-
ics, which is substituted to a cost term related to torques in
the case of inverse dynamics. The norms used are denoted
by ∗i, meaning they are not just quadratic norms but can
be arbitrary convex function. We call each element of the
vector ŝi−si a residual and generally we compute the norm
of a residual vector r with the formula ‖r‖ =

∑
i wifi(r

i),
where wi is a weight and fi can be any smooth convex
function. For example we used the standard f(r) = r2 or



f(r) = er
2 − 1, which behaves similarly to the quadratic

close to 0 but acts more like a barrier function further away.
The details of specifying norms and residuals are outlined
in [1]. Table I shows the set of cost terms that we used to
generate our results.

TABLE I: Cost terms for forward dynamics. Acceleration terms
are the difference between acceleration predicted from the physics
engine and acceleration computed via finite differencing from
the estimated trajectory. Sensor terms are deviations from sensor
readings.

Term Units Cost Term

Force sensor N r2

Torque sensor Nm 102r2

Joint acceleration rad
s2

10−5r2

Joint position sensor rad 20 ∗ 0.022e
1
2

r2

0.022

Object acceleration m
s2

10−2r2

Object rotational acceleration rad
s2

10−4r2

Object position Vicon sensor m 10 ∗ 0.0012(e
r2

0.0012 − 1)

Object orientation Vicon sensor rad 10 ∗ 0.0052(e
r2

0.0052 − 1)

Gyro sensor rad
s

10−1r2

B. Physics parameters

The physics parameters that we optimize for fall in 3
categories. This first category is kinematic parameters. For
example, in our datasets we have the object hanging on a
string. This configuration introduces an inequality constraint
(limiting the length of the string) in our system and MuJoCo
models that with the same machinery as contacts, since an
inequality constraint is very similar to frictionless contact.
Therefore the string forces are greatly dependent on the
position of its anchor point as well as the object. Similar
to state information we can use a motion capture system
to estimate the anchor position but we will have small
inaccuracies again. Therefore we include the anchor position
in our set of model parameters to optimize over. When
alternating trajectory optimization and model optimization,
we noticed very slow convergence in the case of hanging
object. The reason is that given an inaccurate anchor position,
the best trajectory is one that is shifted by the same amount as
the error of the anchor, and given offset trajectory, the best
anchor position is similarly shifted. Our joint optimization
approach avoids this issue by taking optimization step with
both sets of variables together.

The second category are intrinsic dynamic parameters
of our robots. Those are the parameters that govern its
interaction-free motion and include the positions of center of
mass of all links, their masses and inertia matrices, as well
as joint friction and damping. That is done in a separate
process because those parameters are best inferred with a
contact free behaviour.

The most important category is the parameters related to
contacts. Many of the contacts encountered in manipulation
tasks are with soft rubber-covered fingers. There are hard
contacts as well, such as an object sitting on a table. In
order to accommodate these different cases MuJoCo supports

contact softness. When objects collide they experience each
other’s inertia. One way MuJoCo simulates softness is by
scaling the apparent inertia depending on distance or pene-
tration between the objects. In this paper the apparent mass
scale factor increases quadratically with penetration. Another
set of parameters is the more familiar spring parameters,
namely damping and stiffness. Overall these parameters re-
sult in a position dependent mass on a spring damper system
for contacts. The details of the MuJoCo contact model are
explained in [3]. Of course the other important parameter is
the friction which determines the shape of the friction cone.
These are all parameters that we are interested in optimizing,
with the option of them being different between different
pairs of objects.

IV. OPTIMIZATION ALGORITHM

We solve the optimization problem with Newton’s method.
It is a second order numerical optimization method, meaning
it requires both gradient and a Hessian with which we iterate
the solution until convergence. The method is summarized as
follows: xi ← xi−1−αH−1g. The derivatives are computed
via finite differencing, as our physics simulator is not yet
capable of producing derivatives of the dynamics. Since our
optimization variables are non-homogeneous (model param-
eters and state variables), the computations follow different
paths.

Since a point in our trajectory only affects the dynamics of
the neighboring timesteps, computing the gradient is not very
computationally expensive. It only takes 3kn+ n dynamics
evaluations to evaluate the cost and the gradient for a given
trajectory. Again, since the effect of changing a trajectory
point is only local, the trajectory Hessian is band diagonal
and is also relatively cheap to compute via finite differencing.
It will take additional 9k(k+1)

2 n dynamics evaluations to
compute it exactly. However, we do not actually use the
real Hessian as it is not positive definite, which would
make the use of Newton method infeasible. Instead we
use an approximation of the Hessian: H ≈ JTJ , where
Jij = ∂ri

∂xj
, with ri being residual number i and xj being

the jth optimization variable. Computing J also allows us
to compute the gradient by g = Jr. Computing J costs
us 3nk dynamics evaluations and computing r is done by
evaluating the dynamics for each timestep, hence the total
number of 3nk+n evaluations for both the gradient and the
approximated Hessian.

Unlike a state variable, a change in a model parameter, in
general, will change the dynamics for all timesteps. There-
fore evaluating the parameters gradient and approximated
Hessian costs us cn, where c is the number of parameters.
Computing the part of the approximated Hessian between
the trajectory variable and the model parameters comes at
no additional cost, given we have the residuals from the
trajectory perturbations and model perturbations.

A typical trajectory of 20 seconds at 200Hz with 14
state variable yields an optimization problem with 56000
variables. Computing H−1g directly is impossible. There-
fore we use Cholesky decomposition and backsubstitution.



Fortunately the approximated Hessian is rather sparse with
a band diagonal structure and there are fast algorithms
for computing Cholesky decomposition and performing the
backsubstitution. When we add c parameters to the opti-
mization, the Hessian gets expanded with c dense rows
and columns. Fast algorithms exist even in those cases and,
overall, the computation of H−1g takes less than 10% of the
total execution time of our algorithm.

Our framework is flexible and it allows us to optimize
only model parameters, only trajectory, or both at the same
time. There are cases when trajectory optimization, which
is computationally heavier, is not necessary (e.g. system
identification of smooth dynamics), as well as cases when
system identification does not make sense (e.g. running the
system in realtime). Similarly to Wu et al. [16] we tried an
EM approach to solve the combined problem, but noticed
very slow progress in certain cases and moved to a full joint
optimization.

When optimizing over just model parameters we found
the Matlab Optimization Toolbox to be sufficient. However
it did not scale well to hundreds of thousands of variable
in trajectory optimization. Therefore we used minFunc [17]
which provides a wide selection of algorithms and options
but we found that Basic Newton method with Wolfe Line
Search performs best for our problems. Still, even minFunc
had trouble with computing H−1g, because, due to its huge
size, H, is numerically close to singular and the Cholesky
decomposition algorithm fails, in which case minFunc was
defaulting to the extremely slow eignevalue decomposition.
We modified that part of the algorithm by adding some small
constant to the diagonal of the Hessian in a Levenberg -
Marquardt fashion so that it is clearly positive definite: H ←
H+ µI s.t. H � 0.

V. MODELLING

When defining the optimization problem we emphasize
consistency over accuracy because accuracy is not well
defined in the presence of modeling errors, and no physics
engine can simulate the world with absolute accuracy. For
example, a common way of representing robots is with joints
and links, represented as rigid bodies. However, when forces
are applied on such a structure long robotic links bend
under the load. Then they no longer satisfy the rigid body
hypothesis and in turn the joint angles lose their meaning as
predictors of end-effector position via forward kinematics.
Such non-rigidities are usually small but also much greater
than the noise floor of joint-angle sensors. Another example
is soft-body contacts. Like human fingers, robotics fingers
are usually covered with soft rubbery material. Short of
using Finite Element Methods there is no clear definition
of an end-effector position. In this section we detail specific
modelling choices that proved helpful in solving the system
identification and estimation problems.

A. Remote Contacts

One feature that MuJoCo supports is contact forces be-
tween object that are not interpenetrating. As we mentioned

Fig. 2: The top figures show the result of running our estimation
algorithm on a sample run consisting of the robot tapping an
object. The remote contact distance is set at 0.1mm. Clearly seen
are artifacts in the estimates of the joint angle (top-left figure)
and the resulting penetration error (black graph on the top-right
figure). This is a local minima of the optimization. Still, the
sensor output was predicted well (red graph) matching the raw
sensor output (green graph). The bottom figure shows the result
of successive optimizations done with different contact sensing
distances, varying from 2mm (gray graph) to 0.1mm (black graph).
Each optimization was seeded with the result of the previous,
avoiding the local minima as a result.

in section III the apparent mass that the colliding bodies
feel during contact depends on their interpenetration but we
can extend that outside the boundaries of the objects so
that forces are felt at distance greater than 0. That remote
distance is another parameter that can be varied. This can
be best thought of as an invisible soft pillow that cushions
the impact between two bodies. This feature allows the
trajectory optimization algorithm to see gradients and orient
itself better in the almost discrete search space. By setting
this parameter to be relatively large in the beginning we can
guide the optimization process in its initial stages and then
progressively decrease to 0 it to make realistic estimates. An
example of our use of this idea is shown in figure 2. Also,
that idea can help with control for hand manipulation [18].

B. Springy end effector

While the contact softening mechanisms in MuJoCo al-
lows us to cope with rigid body violations in the normal
direction of the contact, they still cannot explain tangential
deformations. For example, when holding a heavy object the
friction force would deform a human’s skin in tangential
direction, similar to what happens with the soft silicon
rubber of the end effector. In order to cope with that we
introduced extra joints for the end effector, therefore making
the end effector non-rigidly attached to kinematic structure
of the robot. The joints have spring-dampers attached to
them that always aim to return them to nominal position.
The idea is that surface deformations will be explained by
load and displacement in those virtual springs. Naturally the



Fig. 3: Example of the effect of modelling the end effector as
attached with a spring to the rest of the robot. In this experiment
the end effector applies force on the object with a circular motion,
causing lateral deformations of its silicon cover. Top: an estimate
of a joint angle. Two things are to be noted here: 1) The joint
estimate when not using a springy end effector (blue graph) has
much higher amplitude compared to the sensory reading (green
graph). This is result of the compliant robot links. 2) It also is
phase-shifted, as a result of the silicon cover. The estimate with
springy end effector (red graph) tracks the sensory readings much
better. Bottom: Estimated contact penetration between the finger
and the object. The estimate with the springy end effector (red
graph) is much flatter than the one with rigid end effector (blue
graph). As the finger was pressed against the object throughout the
experiment the contact depth should not exhibit 1mm fluctuations.

spring-damper coefficients are another set of parameters we
optimize over. Another benefit is that these springs can also
explain bending and deformations of the kinematic structure.
Figure 3 shows how the springy end-effector helps explain
the sensory data better.

VI. EXPERIMENTAL PLATFORM

A. Hardware Overview

We explore these algorithms with our Phantom Manipula-
tion Platform. It consists of several Phantom Haptic Devices.
We use each of them as a robotic finger. Each haptic device
is a 3-DOF cable driven system shown in figure 4. Joints are
equipped with optical encoders with resolution of about 5K
steps per radian. The actuation is done by Maxon motors
(Maxon RE 25 #118743) that despite the low reduction
ratio are able to achieve 8.5N instantaneous force and 0.6N
continuous force at nominal position. Even though they were
designed as haptic devices the API allows for direct torque
control which is what allows us to use them as general
manipulators. The control loop is running at 2KHz.

For testing and developing our algorithms we use a single
robot that performs various motions against an object. The
robot was equipped with a silicon covered fingertip to enable
friction and reliable grasping of objects. The softness of
the rubber was one of the challenges that motivated us to

Fig. 4: Top: A single phantom robot manipulating a 3D-printed
cylinder. Bottom: Model of the scene in MuJoCo. The white
spheres are Vicon markers used for motion tracking.

carefully model contacts. There is a 6D force/torque sensor
(ATI Nano 17) attached between the end effector and the
robot. For our manipulation object, we used a 3D-printed
cylinder with known sizes.

We also rely on Vicon motion capture system, which gives
us position data at 240Hz. While being quite precise (0.1mm
error), the overall accuracy is significantly worse (< 1mm)
due, in part, to imperfect object and manipulator models. The
manipulated object is also equipped with an IMU (gyroscope
and accelerometer) producing inertial data at 1.8KHz.

B. Data collection

When collecting data for system identification we want
to have no unmodelled external perturbances. With our
Phantom manipulation platform this is easy to achieve as we
have several identical robots and teleoperation is a viable
option since they are back-drivable. The experimental data
that involves interaction with the manipulated object was col-
lected via teleoperation with force feedback. For identifying
the intrinsic robot model, we used a PID controller following
a predefined trajectory.

Each sensor had different update rates therefore input data
is collected at different frequencies. It poses a great software
engineering challenge to handle non-homogeneous input
frequencies. Therefore we resample all inputs at varying
frequency. We assign finer resolution to interesting parts of
the trajectory (contacts between robot and object) and lower
resolution when the robot is just moving in the air. The
frequency thus varied between 200Hz and 1KHz. Inaccu-
racies produced by this operation are easily tolerated since
our state variables are optimization variables as well and any
problems introduced by this operation will be cleaned up in
the optimization phase.



Fig. 5: Shown are the optimization traces for 5 datasets, each
dataset colored differently. Here we run only the estimation part of
our framework and for each dataset we perform 5 runs each using
different model parameters found as described in section VII-B.

Fig. 6: ATI Nano17 sensor readings during typical interaction
between the end effector and a hanging object. Shown is the
difference between the sensory readings (red and blue graphs),
the estimates predicted by our physics simulator at the end of
a full trajectory estimation, considering both sensors in the cost
function (green and cyan graphs) and the estimates generated
when not penalizing deviations of the corresponding sensor channel
(black and orange graphs). While considering all sensor inputs in
the optimization gives us more accurate estimates, omitting some
sensors does not result in overfitting and our framework correctly
predicts the missing sensor values. Only 4 out of the 6 sensor
channels are shown since the other two closely match the shown
channels.

VII. RESULTS

Figure 6 is an excerpt of our results showing the loadcell
readings during a typical tap of the end effector on the
hanging object. We note the oscillatory nature of the contact,
as well the intermittent period within the contact duration
where the force readings are flat. What happens is that the
finger bounces off the object and contact reoccurs several
times until a firm contact is established. This is due to the
compliant structure of the robot as well as to the weight
difference between the robot links and the object which is
about 3 times heavier.

Figure 5 shows the objective function value as a function
of optimization iteration. The overall shape is consistent
across different datasets. The number of iterations required
to reach close to the minimum is about 6.

A. Leave-one-sensor-out prediction
Here we show that our framework is robust to missing

sensory readings. We run the estimation two times: 1) not
penalizing for deviations from the force output of the ATI
Nano17 and 2) not penalizing for deviations from the torque
output. This simulates missing sensor readings. Figure 6
shows that our predictions of the missing sensor readings
match the sensor output well.

TABLE II: Model parameters values from different datasets

Parameter

Coefficient Contact Spring Spring
of friction stiffness stiffness damping

Dataset # N
m

Nm
rad

mNm
rad
s

Nominal 1.000 100 50.0 10.0
ID#1 0.247 221 48.4 19.9
ID#2 0.288 94.8 38.5 3.2
ID#3 0.268 196 41.9 16.6
ID#4 0.213 292 46.9 12.4
ID#5 0.250 338 41.4 20.2

B. Cross-validation between datasets
Here we show that our framework is robust to overfit-

ting. We perform joint system identification (sysID) and
estimation on each of 5 datasets independently. The model
parameters found in each of the 5 runs are shown in
table II. Then we perform only the estimation part of the
algorithm on all 5 datasets using the model parameters
from: 1) hand tuned model parameters and 2) the five sets
of parameters found found previously when running sysID
(labeled ID#1 . . . ID#5 ) on each of the datasets. The
minimized objective function values are summarized in table
III. Within each dataset the cost when using the parameters
estimated from the same dataset does not differ significantly
from the cost when using parameters identified using the
other datasets. In all cases, the resulting cost is significantly
lower than when using the hand-tuned model parameters.
The model parameters found using different datasets are
fairly close with few exceptions. The contact stiffness and the
damping of the end-effector spring parameters vary between
the different datasets. This is discussed in the next section.



TABLE III: Crossvalidation between different datasets

Model parameters from

Dataset # Manual ID#1 ID#2 ID#3 ID#4 ID#5

1 246.7 112.8 122.8 103.2 114.4 106.3
2 124.6 60.96 50.69 58.45 56.10 56.97
3 296.8 126.0 154.8 133.4 126.7 151.9
4 282.7 143.2 144.4 126.9 128.2 137.3
5 342.8 118.5 157.9 111.0 171.0 147.1

C. Robustness to parameter initialization

We run our algorithm on the same dataset, starting with 33
different initial parameter values. Table IV shows the result-
ing distributions of final cost and the estimated parameters.
Again we note that the contact stiffness and the damping of
the end-effector spring parameters have bigger variance. This
indicates that the datasets do not contain enough variability
of dynamical motion which will be addressed in future work.

TABLE IV: Final values distribution

Parameter Units Mean Variance

Final Cost 126.7 18.0
Friction coefficient 0.2770 0.0079

Contact softeness N
m

272.3 102.9
Spring stiffness Nm

rad
41.3 0.93

Spring damping mNm
rad
s

15.86 1.51

VIII. CONCLUSION AND FUTURE WORK

We present a framework for system identification and
dynamically consistent state estimation. We show results for
basic robot-object interactions. By enabling consistent state
estimation we hope to improve model based controllers in
the real world. We show that using a hand-tuned model
parameters produces worse estimates than when using system
identification together with the estimation.

There are two venues for future work. First, we will
improve the optimization tools by enabling constrained opti-
mization in the parameter space. A problem we encountered
is the optimizer asking our physics simulator to reason about
non-physical values such as negative mass or coefficient
of friction. Another improvement would be to optimize
over different behaviors jointly as well as to increase the
complexity of the scene by adding more robotic fingers.

While we performed various validations and show that
our optimization is robust to change in input data, it remains
to prove its effectiveness to control applications. The most
important venue for future work is to implement realtime
version of the algorithm and apply the realtime estimation in
a model based controller. Closing the loop with a controller
would be the ultimate validation tool as we can quickly
determine what is the quality of the results needed to achieve
certain tasks. Another advantage is that we will be able to
check which modelling choices are helpful in estimation and
not a hindrance in control. In general, a more complicated
model would give us better explanatory power in the esti-
mation phase but would make controller or planner’s work

harder. Keeping a sane middle level is very important and
closing the loop is what would allow us to do so. We see our
framework as a tool to discover new ways to model robots
and their interaction with the environment in applications of
state estimation and control.

REFERENCES

[1] T. Erez, K. Lowrey, Y. Tassa, V. Kumar, S. Kolev, and E. Todorov, “An
integrated system for real-time model predictive control of humanoid
robots,” in Humanoid Robots (Humanoids), 2013 13th IEEE-RAS
International Conference on, 2013.

[2] V. Kumar, Y. Tassa, T. Erez, and E. Todorov, “Real-time behaviour
synthesis for dynamic hand-manipulation,” in Proceedings of the
International Conference on Robotics and Automation (ICRA 2014).

[3] E. Todorov, “Convex and analytically-invertible dynamics with con-
tacts and constraints: Theory and implementation in mujoco,” in
Robotics and Automation (ICRA), 2014 IEEE International Conference
on. IEEE, 2014, pp. 6054–6061.

[4] K. Lowrey, S. Kolev, Y. Tassa, T. Erez, and E. Todorov, “Physically-
consistent sensor fusion in contact-rich behaviors,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, (IROS), 2014.

[5] L. E. Zhang and J. C. Trinkle, “The application of particle filtering
to grasping acquisition with visual occlusion and tactile sensing,” in
Robotics and Automation (ICRA), 2012 IEEE International Conference
on. IEEE, 2012, pp. 3805–3812.

[6] E. Wan, R. Van Der Merwe, et al., “The unscented kalman filter
for nonlinear estimation,” in Adaptive Systems for Signal Processing,
Communications, and Control Symposium 2000. AS-SPCC. The IEEE
2000. IEEE, 2000, pp. 153–158.

[7] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, et al., “Fastslam:
A factored solution to the simultaneous localization and mapping
problem,” in AAAI/IAAI, 2002, pp. 593–598.

[8] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in
Mixed and augmented reality (ISMAR), 2011 10th IEEE international
symposium on. IEEE, 2011, pp. 127–136.

[9] T. Schmidt, R. Newcombe, and D. Fox, “Dart: Dense articulated
real-time tracking,” Proceedings of Robotics: Science and Systems,
Berkeley, USA, vol. 2, 2014.

[10] T. Schmidt, K. Hertkorn, R. Newcombe, Z. Marton, M. Suppa, and
D. Fox, “Depth-based tracking with physical constraints for robot
manipulation,” in IEEE International Conference on Robotics and
Automation.

[11] M. C. Koval, M. R. Dogar, N. S. Pollard, and S. S. Srinivasa, “Pose
estimation for contact manipulation with manifold particle filters,” in
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference on. IEEE, 2013, pp. 4541–4548.

[12] M. Chalon, J. Reinecke, and M. Pfanne, “Online in-hand object lo-
calization,” in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on. IEEE, 2013, pp. 2977–2984.

[13] G. Gilardi and I. Sharf, “Literature survey of contact dynamics
modelling,” Mechanism and machine theory, vol. 37, no. 10, pp. 1213–
1239, 2002.

[14] E. Drumwright, D. Shell, et al., “An evaluation of methods for mod-
eling contact in multibody simulation,” in Robotics and Automation
(ICRA), 2011 IEEE International Conference on. IEEE, 2011, pp.
1695–1701.

[15] D. Verscheure, I. Sharf, H. Bruyninckx, J. Swevers, and J. De Schutter,
“Identification of contact dynamics parameters for stiff robotic pay-
loads,” Robotics, IEEE Transactions on, vol. 25, no. 2, pp. 240–252,
2009.

[16] T. Wu, Y. Tassa, V. Kumar, J. Movellan, and E. Todorov, “Stac:
simultaneous tracking and calibration,” in IEEE/RAS International
Conference on Humanoid Robots (HUMANOIDS), 2013.

[17] M. Schmidt, “Minfunc,” 2005.
[18] I. Mordatch, Z. Popović, and E. Todorov, “Contact-invariant opti-

mization for hand manipulation,” in Proceedings of the ACM SIG-
GRAPH/Eurographics symposium on computer animation. Euro-
graphics Association, 2012, pp. 137–144.


