
Optimal Control with Learned Local Models:
Application to Dexterous Manipulation

Vikash Kumar1, Emanuel Todorov1, and Sergey Levine2

Fig. 1: Learned hand manipulation behavior involving clockwise rotation of the object

Abstract— We describe a method for learning dexterous ma-
nipulation skills with a pneumatically-actuated tendon-driven
24-DoF hand. The method combines iteratively refitted time-
varying linear models with trajectory optimization, and can
be seen as an instance of model-based reinforcement learning
or as adaptive optimal control. Its appeal lies in the ability
to handle challenging problems with surprisingly little data.
We show that we can achieve sample-efficient learning of tasks
that involve intermittent contact dynamics and under-actuation.
Furthermore, we can control the hand directly at the level of
the pneumatic valves, without the use of a prior model that
describes the relationship between valve commands and joint
torques. We compare results from learning in simulation and on
the physical system. Even though the learned policies are local,
they are able to control the system in the face of substantial
variability in initial state.

I. INTRODUCTION

Dexterous manipulation is among the most challenging
control problems in robotics, and remains largely unsolved.
This is due to a combination of factors including high
dimensionality, intermittent contact dynamics, and under-
actuation in the case of dynamic object manipulation. Here
we describe our efforts to tackle this problem in a principled
way. We do not rely on manually designed controllers. In-
stead we synthesize controllers automatically, by optimizing
high-level cost functions. The resulting controllers are able
to manipulate freely-moving objects; see Fig 1. While the
present results are limited to learning local models and
control policies, the performance we obtain, together with
the small amount of data we need (around 60 trials) indicate
that the approach can be extended with more global learning
methods such as [1].

We use our Adroit platform [2], which is a ShadowHand
skeleton augmented with high-performance pneumatic actu-
ators. This system has a 100-dimensional continuous state
space, including the positions and velocities of 24 joints, the

1Computer Science & Engineering, University of Washington; 2Electrical
Engineering & Computer Science, University of California, Berkeley. This
work was supported by the US National Science Foundation & MAST
Program, Army Research Office.

.

pressures in 40 pneumatic cylinders, and the position and
velocity of the object being manipulated.

Pneumatics have non-negligible time constants (around 20
ms in our system), which is why the cylinder pressures
represent additional state variables, making it difficult to
apply torque-control techniques. The system also has a 40-
dimensional continuous control space – namely the com-
mands to the proportional valves regulating the flow of com-
pressed air to the cylinders. The cylinders act on the joints
through tendons. The tendons do not introduce additional
state variables (since we avoid slack via pre-tensioning)
but nevertheless complicate the dynamics. Overall this is a
daunting system to model, let alone control.

Depending on one’s preference of terminology, our method
can be classified as model-based Reinforcement Learning
(RL), or as adaptive optimal control [3]. While RL aims
to solve the same general problem as optimal control, its
uniqueness comes from the emphasis on model-free learning
in stochastic domains [4]. The idea of learning policies
without having models still dominates RL, and forms the
basis of the most remarkable success stories, both old [5]
and new [6]. However RL with learned models has also been
considered. Adaptive control on the other hand mostly fo-
cuses on learning the parameters of a model with predefined
structure, essentially interleaving system identification with
control [7].

Our approach here lies somewhere in between (to fix
terminology, we call it RL in subsequent sections). We rely
on a model, but that model does not have any informative
predefined structure. Instead, it is a time-varying linear model
learned from data, using a generic prior for regularization.
Related ideas have been pursued previously [8], [1], [9].
Nevertheless, as with most approaches to automatic control
and computational intelligence in general, the challenge is
not only in formulating ideas but also in getting them to
scale to hard problems – which is our main contribution here.
In particular, we demonstrate scaling from a 14-dimensional
state space in [9] to a 100-dimensional state space here. This

Algorithm 1 RL with linear-Gaussian controllers

1: initialize p(ut|xt)
2: for iteration k = 1 to K do
3: run p(ut|xt) to collect trajectory samples {τi}
4: fit dynamics p(xt+1|xt,ut) to {τj} using linear re-

gression with GMM prior
5: fit p = argminpEp(τ)[`(τ)] s.t. DKL(p(τ)‖p̂(τ)) ≤ ε
6: end for

is important in light of the curse of dimensionality. Indeed
RL has been successfully applied to a range of robotic tasks
[10], [11], [12], [13], however dimensionality and sample
complexity have presented major challenges [14], [15].

The manipulation skills we learn are represented as time-
varying linear-Gaussian controllers. These controllers are
fundamentally trajectory-centric, but otherwise are extremely
flexible, since they can represent any trajectory with any
linear stabilization strategy. Since the controllers are time-
varying, the overall learned control law is nonlinear, but is lo-
cally linear at each time step. These types of controllers have
been employed previously for controlling lower-dimensional
robotic arms [16], [9].

II. REINFORCEMENT LEARNING WITH LOCAL LINEAR
MODELS

In this section, we describe the reinforcement learning
algorithm (summarised in algorithm 1) that we use to control
our pneumatically-driven five finger hand. The derivation in
this section follows previous work [1], but we describe the
algorithm in this section for completeness. The aim of the
method is to learn a time-varying linear-Gaussian controller
of the form p(ut|xt) = N (Ktxt + kt,Ct), where xt and
ut are the state and action at time step t. The actions in our
system correspond to the pneumatic valve’s input voltage,
while the state space is described in the preceding section.
The aim of the algorithm is to minimize the expectation
Ep(τ)[`(τ)] over trajectories τ = {x1,u1, . . . ,xT ,uT },
where `(τ) =

∑T
t=1 `(xt,ut) is the total cost, and the expec-

tation is under p(τ) = p(x1)
∏T
t=1 p(xt+1|xt,ut)p(ut|xt),

where p(xt+1|xt,ut) is the dynamics distribution.

A. Optimizing Linear-Gaussian Controllers

The simple structure of time-varying linear-Gaussian con-
trollers admits a very efficient optimization procedure that
works well even under unknown dynamics. The method is
summarized in Algorithm 1. At each iteration, we run the
current controller p(ut|xt) on the robot to gather N samples
(N = 5 in all of our experiments), then use these samples
to fit time-varying linear-Gaussian dynamics of the form
p(xt+1|xt,ut) = N (fxtxt + futut + fct,Ft). This is done
by using linear regression with a Gaussian mixture model
prior, which makes it feasible to fit the dynamics even when
the number of samples is much lower than the dimensionality
of the system [1]. We also compute a second order expansion
of the cost function around each of the samples, and average
the expansions together to obtain a local approximate cost

function of the form

`(xt,ut) ≈
1

2
[xt;ut]

T`xu,xut[xt;ut]+[xt;ut]
T`xut+const.

where subscripts denote derivatives, e.g. `xut is the gradient
of ` with respect to [xt;ut], while `xu,xut is the Hessian.
The particular cost functions used in our experiments are
described in the next section. When the cost function is
quadratic and the dynamics are linear-Gaussian, the op-
timal time-varying linear-Gaussian controller of the form
p(ut|xt) = N (Ktxt + kt,Ct) can be obtained by using
the LQR method. This type of iterative approach can be
thought of as a variant of iterative LQR [17], where the
dynamics are fitted to data. Under this model of the dynamics
and cost function, the optimal policy can be computed by
recursively computing the quadratic Q-function and value
function, starting with the last time step. These functions are
given by

V (xt) =
1

2
xT
t Vx,xtxt + xT

t Vxt + const

Q(xt,ut) =
1

2
[xt;ut]

TQxu,xut[xt;ut]+[xt;ut]
TQxut+const

We can express them with the following recurrence:

Qxu,xut = `xu,xut + fTxutVx,xt+1fxut

Qxut = `xut + fTxutVxt+1

Vx,xt = Qx,xt −QT
u,xtQ

−1
u,utQu,xt

Vxt = Qxt −QT
u,xtQ

−1
u,utQut,

which allows us to compute the optimal control law as
g(xt) = ût + kt +Kt(xt − x̂t), where Kt = −Q−1u,utQu,xt

and kt = −Q−1u,utQut. If we consider p(τ) to be the
trajectory distribution formed by the deterministic control
law g(xt) and the stochastic dynamics p(xt+1|xt,ut), LQR
can be shown to optimize the standard objective

min
g(xt)

T∑
t=1

Ep(xt,ut)[`(xt,ut)]. (1)

However, we can also form a time-varying linear-Gaussian
controller p(ut|xt), and optimize the following objective:

min
p(ut|xt)

T∑
t=1

Ep(xt,ut)[`(xt,ut)]−H(p(ut|xt)).

As shown in previous work [18], this objective is in fact
optimized by setting p(ut|xt) = N (Ktxt + kt,Ct), where
Ct = Q−1u,ut. While we ultimately aim to minimize the
standard controller objective in Equation (1), this maximum
entropy formulation will be a useful intermediate step for a
practical learning algorithm trained with fitted time-varying
linear dynamics.

B. KL-Constrained Optimization

In order for this learning method to produce good results, it
is important to bound the change in the controller p(ut|xt)
at each iteration. The standard iterative LQR method can
change the controller drastically at each iteration, which can

cause it to visit parts of the state space where the fitted
dynamics are arbitrarily incorrect, leading to divergence.
Furthermore, due to the non-deterministic nature of the real
world domains, line search based methods can get misguided
leading to unreliable progress.

To address these issues, we solve the following optimiza-
tion problem at each iteration:

min
p(ut|xt)

Ep(τ)[`(τ)] s.t. DKL(p(τ)‖p̂(τ)) ≤ ε,

where p̂(τ) is the trajectory distribution induced by the
previous controller. Using KL-divergence constraints for
controller optimization has been proposed in a number
of prior works [19], [20], [21]. In the case of linear-
Gaussian controllers, a simple modification to the LQR
algorithm described above can be used to solve this con-
strained problem. Recall that the trajectory distributions are
given by p(τ) = p(x1)

∏T
t=1 p(xt+1|xt,ut)p(ut|xt). Since

the dynamics of the new and old trajectory distributions are
assumed to be the same, the KL-divergence is given by

DKL(p(τ)‖p̂(τ)) =
T∑
t=1

Ep(xt,ut)[log p̂(ut|xt)]−H(p),

and the Lagrangian of the constrained optimization problem
is given by

Ltraj(p, η) = Ep[`(τ)] + η[DKL(p(τ)‖p̂(τ))− ε] =[∑
t

Ep(xt,ut)[`(xt,ut)−η log p̂(ut|xt)]

]
−ηH(p(τ))−ηε.

The constrained optimization can be solved with dual gra-
dient descent [22], where we alternate between minimizing
the Lagrangian with respect to the primal variables, which
are the parameters of p, and taking a subgradient step on
the Lagrange multiplier η. The optimization with respect to
p can be performed efficiently using the LQG algorithm, by
observing that the Lagrangian is simply the expectation of
a quantity that does not depend on p and an entropy term.
As described above, LQR can be used to solve maximum
entropy control problems where the objective consists of
a term that does not depend on p, and another term that
encourages high entropy. We can convert the Lagrangian
primal minimization into a problem of the form

min
p(ut|xt)

T∑
t=1

Ep(xt,ut)[
˜̀(xt,ut)]−H(p(ut|xt))

by using the cost ˜̀(xt,ut) = 1
η `(xt,ut)− log p̂(ut|xt). This

objective is simply obtained by dividing the Lagrangian
by η. Since there is only one dual variable, dual gradient
descent typically converges very quickly, usually in under 10
iterations, and because LQR is a very efficient trajectory op-
timization method, the entire procedure can be implemented
to run very quickly.

We initialize p(ut|xt) with a fixed covariance Ct and zero
mean, to produce random actuation on the first iteration. The
Gaussian noise used to sample from p(ut|xt) is generated

(a) Start pose, against gravity (b) End pose, against gravity

(c) Start pose, with gravity (d) End pose, with gravity

Fig. 2: Positioning task

in advance and smoothed with a Gaussian kernel with a
standard deviation of two time steps, in order to produce
more temporally coherent noise.

III. SYSTEM AND TASK DESCRIPTION

Modularity and the ease of switching robotic platforms
formed the overarching philosophy of our system design.
The training can either happen locally (on the machine
controlling the robot) or remotely (if more computational
power is needed). The learning algorithm (algorithm 1) has
no dependency on the selected robotic platform except for
step 3, where the policies are shipped to the robotic platform
for evaluation and the resulting trajectories are collected.
For the present work, the system was deployed locally on
a 12 cores 3.47GHz Intel(R) Xeon(R) processor with 12GB
memory running Windows x64. Learning and evaluated was
studied for two different platforms detailed below.

A. Hardware platform

The Adroit platform is described in detail in [2]. Here we
summarize the features relevant to the present context. As
already noted, the hand has 24 joints and 40 Airpel cylinders
acting on the joints via tendons. Each cylinder is supplied
with compressed air via a high-performance Festo valve.
The cylinders are fitted with solid-state pressure sensors.
The pressures together with the joint positions and velocities
(sensed by potentiometers in each joint) are provided as state
variables to our controller.

The manipulation task also involves an object – which
is a long tube filled with coffee beans, inspired by earlier
work on grasping [23]. The object is fitted with PhaseSpace
active infrared markers on each end. The markers are used
to estimate the object position and velocity (both linear and
angular) which are also provided as state variables. Since all

(a) End pose, learned (b) End pose, human

(c) End pose, learned (d) End pose, human

Fig. 3: Object rotation task: end poses for the two rotation direc-
tions (a-b: clockwise, c-d: anticlockwise), comparing the learned
controller to the movement of a human who has not seen the robot
perform the task.

our sensors have relatively low noise, we apply a minimal
amount of filtering before sending the sensor data to the
controller.

B. Simulation platform

We model the entire system, including the air dynamics,
tendon actuation and hand-object interactions, in the MuJoCo
simulator we have developed [24]. Here MuJoCo is used
as a MEX file called from MATLAB. Simulating a 5 s
trajectory at 2 ms timestep takes around 0.7 s of CPU time,
or around 0.3 ms of CPU time per simulation step. This
includes evaluating the feedback control law (which needs
to be interpolated because the trajectory optimizer uses 50
ms time steps) and advancing the physics simulation.

Having a fast simulator enables us to prototype and
quickly evaluate candidate learning algorithms and cost func-
tion designs, before testing them on the hardware. Apart from
being able to run much faster than real-time, the simulator
can automatically reset itself to a specified initial state (which
needs to be done manually on the hardware platform).

Ideally, the learning on the hardware platform should
be seeded from the results of the software platform. This
however is hard in practice due to (a) the difficulty in aligning
the state space of the two platforms, (b) the non-deterministic
nature of the real world. State space alignment requires
precise system identification and sensor calibration which
otherwise are not necessary, as our algorithm can learn the
local state space information directly from the raw sensor
values.

TABLE I: Different tasks variations learned

Task Platform # different task variations learned
Hand Hardware 5 (move assisted by gravity)
posit- 2 (move against gravity)
ioning Simulated 5 (move assisted by gravity)

3 (move against gravity)
Object Hardware + an elon- 2 ({clockwise & anti-clockwise}
manipu- gated object (Fig:3) object rotations along vertical)
lation Simulated + 13 ({clockwise, anti-clockwise,

4 object variations clockwise then anti-clockwise}
object rotation along vertical

8 ({clockwise, anti-clockwise}
object rotation along horizontal)

C. Tasks and cost functions

Various tasks we trained for (detailed in table I and
the accompanying video) can be classified into two broad
categories

1) Hand behaviors: We started with simple positioning
tasks: moving the hand to a specified pose from a given
initial pose. We arranged the pair of poses such that in one
task-set the finger motions were helped by gravity, and in
another task-set they had to overcome gravity; see Figure 2.
Note that for a system of this complexity even achieving a
desired pose can be challenging, especially since the tendon
actuators are in agonist-antagonist pairs and the forces have
to balance to maintain posture.

The running cost was

`(xt,ut) = ||qt − q∗||2 + 0.001||ut||2

where x = (q, q̇, a). Here q denotes the vector of hand joint
angles, a the vector of cylinder pressures, and ut the vector
of valve command signals. At the final time we used

`(xt,ut) = 10||qt − q∗||2

2) Object manipulation behaviours: The manipulation
tasks we focused on require in-hand rotation of elongated
objects. We chose this task because it involves intermittent
contacts with multiple fingers and is quite dynamic, while
at the same time having a certain amount of intrinsic sta-
bility. We studied different variations (table I) of this task
with different objects: rotation clockwise (figure 1), rotation
counter-clockwise, rotation clockwise followed by rotation
counter-clockwise, and rotation clockwise without using the
wrist joint (to encourage finger oriented maneuvers) – which
was physically locked in that condition. Figure 3 illustrates
the start and end poses and object configurations in the task
learned on the Adroit hardware platform.

Here the cost function included an extra term for desired
object position and orientation. The relative magnitudes of
the different cost terms were as follows: hand pose: 0.01,
object position: 1, object orientation: 10, control: 0.001. The
final cost was scaled by a factor of 2 relative to the running
cost, and did not include the control term.

IV. RESULTS

The controller was trained as described above. Once the
order of cost parameters were properly established, minimal
parameter tuning was required. Training consisted of around

Iteration

1 2 3 4 5 6 7 8 9 10

C
o
s
t

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000
Hand posing progress

curling with gravity(hardware)

curling with gravity(sim)

curling against gravity(hardware)

curling against gravity(sim)

Iteration

0 2 4 6 8 10 12 14 16 18

C
o

s
t

3000

3500

4000

4500

5000

5500

6000

6500

7000
Object twirling progress

Rotate clockwise

Rotate anticlockwise

Rotate clockwise(WR)

Fig. 4: Learning curves for the positioning (top) and manipulation
(bottom) tasks. 1

15 iterations. In each iteration we performed 5 movements
with different instantiations of the exploration noise in the
controls. The progress of training as well as the final
performance is illustrated in the video accompanying the
submission, and in the figure at the beginning of the paper.

Here we quantify the performance and the robustness to
noise. Figure 4 shows how the total cost for the movement
(as measured by the cost functions defined above) decreased
over iterations of the algorithm. The solid curves are data
from the physical system. Note that in all tasks and task
variations we observe very rapid convergence. Surprisingly,
the manipulation task which is much harder from a control
viewpoint takes about the same number of iterations to learn.

In the positioning task we also performed a systematic
comparison between learning in the physical system and
learning in simulation. Performance early in training was
comparable, but eventually the algorithm was able to find
better policies in simulation. Although it is not shown in
the figure, training on simulation platform happens a lot
faster, because the robot can only run in real-time while the
simulated platform runs faster than real-time, and because
resetting between repetitions needs to be done manually on

the robot.

Iteration

0 2 4 6 8 10 12 14

C
o

s
t

4800

5000

5200

5400

5600

5800

6000

6200

6400

6600

6800
Effects of injected noise

Sigma=1

Sigma=2

Sigma=3

Fig. 5: Effect of noise smoothing on learning. Sigma=1 (width of
the Gaussian kernel used for smoothing noise), takes a slow start
but maintains a constant progress. Higher sigma favors steep decent
but it fails to maintain the progress as it is unable to successfully
maintain the stability of the object being manipulated and ends up
dropping it. The algorithm incurs a huge cost penalty and restarts
its decent from there. 1

We further investigated the effects of exploration noise
magnitude injected during training. Figure 5 shows that for
a relatively small amount of noise performance decreases
monotonically. As we increase the noise magnitude, some-
times we see faster improvement early on but the behavior
of the algorithm is no longer monotonic. These are data on
the Adroit hardware platform.

Finally, we used the simulation platform to investigate
robustness to perturbations more quantitatively, in the ma-
nipulation task. We wanted to quantify how robust our
controllers are to changes in initial state (recall that the
controllers are local). Furthermore, we wanted to see if
training with noisy initial states, in addition to exploration
noise injected in the controls, will result in more robust
controllers. Naı̈vely adding initial state noise at each iteration
of the algorithm (Algorithm 1) severely hindered the overall
progress. However, adding initial state noise after the policy
was partially learned (iteration ≥ 10 in our case) resulted in
much more robust controllers.

The results of these simulations are shown in Figure 6.
We plot the orientation of the object around the vertical axis
as a function of time. The black curve is the unperturbed
trajectory. As expected, noise injected in the initial state
makes the movements more variable, especially for the
controller that was trained without such noise. Adding initial
state noise during training substantially improved the ability
of the controller to suppress perturbations in initial state.
Overall, we were surprised at how much noise we could add
(up to 20 % of the range of each state variable) without the
hand dropping the object, in the case of the controller trained

1 At each iteration, the current controller p(ut|xt) is deployed on the
robot to gather N samples (N = 5 in all of our experiments).

sec

0 5

ra
di

an

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

5% noise

sec

0 5

10% noise

sec

0 5

20% noise

sec

0 5

ra
di

an

0

0.5

1

1.5

2

5% noise

sec

0 5

10% noise

sec

0 5

20% noise

Fig. 6: Robustness to noise in initial state. Each column corresponds
to a different noise level: 5, 10, 20 % of the range of each state
variable. The top row is a controller trained with noise in the initial
state. The bottom row is a controller trained with the same initial
state (no noise) for all trials.

with noise. The controller trained without noise dropped the
object in 4 out of 20 test trials. Thus injecting some noise
in the initial state (around 2.5 %) helps improve robustness.
Of course on the real robot we cannot avoid injecting such
noise, because exact repositioning is very difficult.

V. DISCUSSION AND FUTURE WORK

We demonstrated learning-based control of a complex,
high-dimensional, pneumatically-driven hand. Our results
show simple tasks, such as reaching a target pose, as well as
dynamic manipulation behaviors that involve repositioning
a freely-moving cylindrical object. Aside from the high-
level objective encoded in the cost function, the learning
algorithm does not use domain knowledge about the task
or the hardware, learning a low-level valve control strategy
for the pneumatic actuators entirely from scratch. The ex-
periments show that effective manipulation strategies can be
automatically discovered in this way.

While the linear-Gaussian controllers we employ offer
considerable flexibility and closed-loop control, they are
inherently limited in their ability to generalize to new
situations, since a time-varying linear strategy may not
be effective when the initial state distribution is more di-
verse. Previous work has addressed this issue by combining
multiple linear-Gaussian controllers into a single nonlinear
policy, using methods such as guided policy search [9] and
trajectory-based dynamic programming [25]. Applying these
methods to our manipulation tasks could allow us to train
more generalizable manipulation skills, and also bring in
additional sensory modalities, such as haptics and vision,
as described in recent work on guided policy search [26].

REFERENCES

[1] S. Levine and P. Abbeel, “Learning neural network policies with
guided policy search under unknown dynamics,” in Advances in Neural
Information Processing Systems (NIPS), 2014.

[2] Z. X. V. Kumar and E. Todorov, “Fast, strong and compliant pneu-
matic actuation for dexterous tendon-driven hands,” in International
Conference on Robotics and Automation (ICRA), 2013.

[3] R. Bellman and R. Kalaba, “A mathematical theory of adaptive control
processes,” Proceedings of the National Academy of Sciences, vol. 8,
no. 8, pp. 1288–1290, 1959.

[4] R. Sutton and A. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

[5] G. Tesauro, “Td-gammon, a self-teaching backgammon program,
achieves master-level play,” Neural computation, vol. 6, no. 2, pp.
215–219, 1994.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[7] K. J. Åström and B. Wittenmark, Adaptive control. Courier Corpo-
ration, 2013.

[8] D. Mitrovic, S. Klanke, and S. Vijayakumar, “Adaptive optimal
feedback control with learned internal dynamics models,” in From
Motor Learning to Interaction Learning in Robots, 2010, vol. 264,
pp. 65–84.

[9] S. Levine, N. Wagener, and P. Abbeel, “Learning contact-rich manip-
ulation skills with guided policy search,” in International Conference
on Robotics and Automation (ICRA), 2015.

[10] R. Tedrake, T. Zhang, and H. Seung, “Stochastic policy gradient rein-
forcement learning on a simple 3d biped,” in International Conference
on Intelligent Robots and Systems (IROS), 2004.

[11] J. Kober, E. Oztop, and J. Peters, “Reinforcement learning to adjust
robot movements to new situations,” in Robotics: Science and Systems
(RSS), 2010.

[12] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,” in
International Conference on Robotics and Automation (ICRA), 2009.

[13] M. Deisenroth, C. Rasmussen, and D. Fox, “Learning to control a
low-cost manipulator using data-efficient reinforcement learning,” in
Robotics: Science and Systems (RSS), 2011.

[14] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” International Journal of Robotic Research, vol. 32,
no. 11, pp. 1238–1274, 2013.

[15] M. Deisenroth, G. Neumann, and J. Peters, “A survey on policy search
for robotics,” Foundations and Trends in Robotics, vol. 2, no. 1-2, pp.
1–142, 2013.

[16] R. Lioutikov, A. Paraschos, G. Neumann, and J. Peters, “Sample-
based information-theoretic stochastic optimal control,” in Interna-
tional Conference on Robotics and Automation (ICRA), 2014.

[17] W. Li and E. Todorov, “Iterative linear quadratic regulator design for
nonlinear biological movement systems,” in ICINCO (1), 2004, pp.
222–229.

[18] S. Levine and V. Koltun, “Guided policy search,” in International
Conference on Machine Learning (ICML), 2013.

[19] J. A. Bagnell and J. Schneider, “Covariant policy search,” in Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), 2003.

[20] J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients,” Neural Networks, vol. 21, no. 4, pp. 682–697, 2008.

[21] J. Peters, K. Mülling, and Y. Altün, “Relative entropy policy search,”
in AAAI Conference on Artificial Intelligence, 2010.

[22] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY,
USA: Cambridge University Press, 2004.

[23] J. R. Amend Jr, E. Brown, N. Rodenberg, H. M. Jaeger, and H. Lipson,
“A positive pressure universal gripper based on the jamming of
granular material,” Robotics, IEEE Transactions on, vol. 28, no. 2,
pp. 341–350, 2012.

[24] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on. IEEE, 2012, pp. 5026–5033.

[25] C. Atkeson and J. Morimoto, “Nonparametric representation of poli-
cies and value functions: A trajectory-based approach,” in Advances
in Neural Information Processing Systems (NIPS), 2002.

[26] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” arXiv preprint arXiv:1504.00702, 2015.

	Introduction
	Reinforcement Learning with Local Linear Models
	Optimizing Linear-Gaussian Controllers
	KL-Constrained Optimization

	System and task description
	Hardware platform
	Simulation platform
	Tasks and cost functions
	Hand behaviors
	Object manipulation behaviours

	Results
	Discussion and Future Work
	References

