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Abstract— We apply a hierarchical control framework to a
realistic arm model. With 7 degrees of freedom and 14 muscles,
this arm model has complex nonlinear dynamics operating on
28-dimensional state space and 14-dimensional control space.
A high-level controller is designed to capture the main features
of the complex high-dimensional plant dynamics but with
reduced dimensionality. This allows us to solve the original
optimal control problem without running into the curse of
dimensionality. We also provide a method to design a low-level
controller to generate arm configurations that are consistent
with high-level controls and at the same time satisfy biological
constraints. To the best of our knowledge, this is the first
feedback controller for a detailed 3-D model of a human arm.

I. INTRODUCTION

The human body has over 250 muscles each with a distinct
mechanical action at one or more joints [1], far more than
the degrees of freedom needed to perform any particular
task. Key to understanding biological motor control is thus
to solve the control problem of complex redundant systems.
This control problem, however, has not been well addressed
because the nonlinear dynamics and high-dimensional state
and control spaces of human body prevent the use of many
traditional methods for controller design.

In an attempt to describe the control of redundant ma-
nipulators, [2] proposed a hierarchical control framework.
This framework is inspired by two observations. First, from
a computational viewpoint, hierarchical organization emerges
in optimal feedback control for redundant systems even when
such organization is not imposed by design [3], [4]. Secondly,
from a biological viewpoint, it is known that sensorimotor
control occurs simultaneously on many levels [5], [6]. Lower-
level circuits (e.g., the spinal cord) interact with the mus-
culoskeletal system directly by both receiving rich sensory
input and generating corresponding motor outputs before
the rest of the brain has had time to react to that input.
Higher-level circuits (e.g., the motor cortex), on the other
hand, operate on a more abstract and goal-related movement
representation [7].

The proposed hierarchical framework in [2], which we
implement here, is composed of two layers (Fig. 1), anal-
ogous to the motor cortex-spinal cord structure. The plant
is augmented with a low-level feedback controller, which
receives full information about the plant states x, and sends
to the high-level controller a lower-dimensional representa-
tion y(x) which captures the task-relevant aspects of plant
dynamics. The high-level controller issues commands v(y)
to achieve a goal defined in y-space, without having full
access to the x dynamics. Then the low-level controller
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Fig. 1. Schematic illustration of a hierarchical control framework [2].

computes energy-efficient controls u(v,x) consistent with v.
In this way, the high-level controller solves the optimal con-
trol problem without considering all the details of the plant
and thus avoids running into the curse of dimensionality;
the low-level controller performs an instantaneous feedback
transformation to deal with the details. Two methods, an
explicit and an implicit one, for coupling the low-level and
high-level controllers are described in [2] and implemented
here.

This hierarchical control framework has been tested on a
simplified 2 degrees of freedom (DOF) planar arm model in
[2]. The goal of this paper is to apply this framework to a
more realistic 3-D arm model with 7-DOF and 14 muscles.
Our focus is on designing the high-level controller to capture
the low-level dynamics, and designing the low-lever con-
troller to generate biologically plausible arm configurations.

The rest of this paper is organized as follows. Section
II introduces the general framework of hierarchical control.
Section III describes an arm model with 7-DOF and 14
muscles, whose dynamics closely resemble those of a hu-
man arm. Section IV and Section V explain the design of
high-level and low-level controllers respectively. Simulation
results on three tasks of reaching, orienting and drawing are
presented in Section VI. Section VII concludes the paper
with some final remarks.

II. GENERAL FRAMEWORK

Consider the dynamical system

ẋ(t) = a(x(t)) + B(x(t))u(t) (1)

where x ∈ Rnx is the state vector, u ∈ Rnu is the control
vector, a(x) are the passive dynamics, and B(x)u are the
control-dependent dynamics assuming linear in the control.
The high-level state vector y ∈ Rny is a static function of
the plant state:

y = h(x) (2)

h should allow the high-level states to contain enough
information in computing the state-dependent cost q(t,x)
but with reduced dimensionality. In other words, h needs
to satisfy ∃q̃ s.t. q̃(t,y) = q(t,x) and ny < nx.
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In the high-level, we seek to construct some high-level dy-
namics that capture the main features of low-level dynamics
but operate on lower-dimensional state and control space:

ẏ(t) = f(y(t)) + G(y(t))v(t) (3)

Here v ∈ Rnv is the high-level control vector, functions f and
G are the passive- and control-dependent dynamics from the
high level. f and G should allow the high-level controller to
choose control signals v to accomplish the task goal without
considering all the details of the plant.

Differentiating Eq. 2 w.r.t. time t and using Eq. 1, the
dynamics of y become

ẏ = H(x)(a(x) + B(x)u) (4)

where H(x) = ∂h(x)/∂x is the Jacobian of the function h.
The goal of the low-level controller is then to choose u(v,x)
so that the y dynamics from the low-level circuits (Eq. 4)
match those from the high-level circuits (Eq. 3), or

H(x)a(x) + H(x)B(x)u = f(y) + G(y)v (5)

The goals of the two levels can be archived using two
methods:

1) Explicit modeling
We can treat the high level as an autonomous system,
explicitly model its dynamics, and then use standard
optimization techniques to solve the optimal control
problem in the high level. The low-level controller then
seeks energy efficient u to satisfy Eq. 5. Ideally, we
would like to have the high-level dynamics to mimic
those from the low level, so

f(y) ≈ H(x)a(x) (6)

However, when the high-level controller considers only
the end-effector (e.g. the fingertip) location as in most
reaching movements, Eq. 6 cannot be guaranteed be-
cause different arm configurations may result in the
same end-effector location. In other words,

H(x1)a(x1) 6= H(x2)a(x2) even h(x1) = h(x2)
(7)

In this case, low-level dynamics cannot be fully cap-
tured on the high level. As a result, the optimal solution
generated from the high-level controller may not be
optimal with respect to the low-level dynamics.

2) Implicit modeling
The drawback of explicit modeling can be avoided by
not modeling the passive dynamics explicitly on the
high level. Instead, the high-level controller gets on-
line access to H(x)a(x) at each time step, and uses
it to update y. The discrepancy between f(y) and
H(x)a(x) is no longer compensated on the low level.
So the low-level controller only needs to satisfy

H(x)B(x)u = G(y)v (8)

In this way, the high-level controller can exploit passive
dynamics of the plant while operating on a lower-
dimensional system. In addition, now we can apply Eq.

Fig. 2. A 7-DOF arm model.

8 to match the low-level control cost r(u,x) exactly on
the high level using some function r̃(v,y). Therefore,
the high-level controller can seek to solve the exact
optimal control problem with respect to both the true
plant dynamics and the true cost function. However,
since now the high level is no longer an autonomous
system, regular optimization tools are not guaranteed
to provide optimal solutions.

III. LOW-LEVEL DYNAMICS

Here we consider a 7-DOF arm with the same skeletal
structure as a human arm: the shoulder is modeled as a
3-DOF joint (only the glenohumeral joint is taken into
account here), with flexion-extension, abduction-adduction
and external-internal rotation; the elbow is modeled as a
2-DOF joint (humeroulnar joint and radioulnar joint), with
flexion-extension and pronation-supination movements; the
wrist is modeled as a 2-DOF joint, with flexion-extension
and abduction-adduction movements.

Low-level dynamics are modeled as a third-order system
resembling those in a human arm [8]. Low-level states
include joint angles (θ), joint velocities (θ̇), and muscle
activations (s). Although each joint is actually controlled
by a group of muscles which are also connected to other
joints, here we consider a simplified case where each joint is
independently controlled by two muscles acting in opposite
directions. So the complete system has a 28-D state vector
x .= (θ1, ..., θ7, θ̇1, ..., θ̇7, s1, ...s14)T and a 14-D control
vector u .= (u1, ..., u14)T .

Forward dynamics of the system can be expressed as

θ̈ = I(θ)−1
(
τ(θ, θ̇, s)− n(θ, θ̇)

)
(9)

where I(θ) ∈ R7×7 is a positive definite symmetric in-
ertia matrix, τ(θ, θ̇, s) ∈ R7 represents joint torques, and
n(θ, θ̇) ∈ R7 are Centripetal, Coriolis, gravitational, and
viscoelastic forces. Joint torques are generated by muscles
following

τ(θ, θ̇, s) = M(θ)T (s, l(θ), l̇(θ, θ̇)) (10)
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Fig. 3. (a), The total force produced by a muscle fiber at a given level of
activation depends on both its instantaneous length and velocity, which are
independent kinematic variables. (b), polynomial function to punish moving
towards joint limits.

where M(θ) ∈ R7×7 is the moment arm, defined as the
perpendicular distance from a muscle’s line of action to a
joint’s center of rotation. Although moment arms are posture
dependent, here we consider them constant. T (s, l(θ), l̇(θ, θ̇))
represents muscle tension. The tension produced by muscle i
depends on its physiological cross-sectional area (PCSA) and
activation state si, as well as muscle length l and velocity l̇.
The substantial length-and-velocity dependence is modeled
based on the Virtual Muscle model [9] which provides a
state-of-the-art fit to a range of physiological data, with slight
simplification for computational purpose, illustrated in Fig.
3(a) for maximal activation si = 1. Muscle activations s
have first-order low-pass filter dynamics

ṡi =
1
α

(ui − si) (11)

for i = 1, ..., 14 with α = 40msec. Each control ui is
constrained to the range [0, 1]. In this way, our arm model
captures most key features of a human arm even after some
simplifications.

The low-level dynamics described above can be summa-
rized as follows:

a(x) =

 θ̇

I(θ)−1
(
τ(θ, θ̇, s)− n(θ, θ̇)

)
− 1

αs

 ,B(x) =

0
0
1
α


(12)

IV. HIGH-LEVEL CONTROLLER DESIGN

The goal of movement in everyday life (e.g. to pick up
a cup of coffee) is, by most accounts, defined in spatial
coordinates rather than in joint coordinates, and some ev-
idence has shown that human movements are planned in
Cartesian coordinates [10]. Therefore, in the high level, we
only include 3-D position (p) and velocity (ṗ) of the end-
effector (i.e., the fingertip) in Cartesian hand coordinates, so
y .= [px, py, pz, ṗx, ṗy, ṗz]T . The high-level control, accord-
ingly, is defined as a 3-D force v .= [vx, vy, vz]T . Modeling
the high-level dynamics with a second-order system, rather
than a first-order system, is necessary because instantaneous
velocity commands are too far removed from muscles that
have to carry them out [2].

As introduced in Section II, there are two ways to design
the high-level controller. Using the explicit modeling, we can

simplify the entire arm into a point mass (m) and model its
dynamics using a simple linear system:

f(y) =
[
ṗ
0

]
,G(y) =

[
0
1
m

]
(13)

The transformation from low level to high level can be
represented as

H(x) =
[
J(θ) 0 0
J̇(θ) J(θ) 0

]
(14)

where J is the Jacobian J(θ) = ∂p/∂θ, and J̇(θ) =
d
dt (J(θ)).

We can also use the implicit modeling. Instead of explicitly
modeling the high-level dynamics, we use H(x)a(x) to up-
date the high-level dynamics at each time step. This is done
by augmenting y into y .= [px, py, pz, ṗx, ṗy, ṗz, 1, 1, 1]T and
constructing the high-level dynamics as

f(y) =

ṗ
e
0

 ,G(y) =

 0
I(y)−1

0

 (15)

where e is the 4th to 6th rows of H(x)a(x), I(y) is the end-
effector inertial matrix with I(y)−1 = J(θ)I(θ)−1J(θ)T .
The transformation from low level to high level becomes

H(x) =

J(θ) 0 0
J̇(θ) J(θ) 0
0 0 0

 (16)

A. Dynamic compatibility between levels of control

Since the high-level dynamics are second order whereas
the low-level dynamics are third order, dynamics from the
two levels are not compatible. In particular, the low-level
controls are muscle activations (see Eq. 12), which control
the torque change and cannot affect acceleration on the high-
level dynamics instantaneously (see Eq. 14 and Eq. 16),
causing H(x)B(x) = 0. However, the change of torque has
a predicable effect when applied over time, suggesting that
the ”instantaneous” a and B should be replaced with some
functions ã and B̃ that can incorporate temporal predictions.
Here we construct such functions using implicit integration
as explained in [2] and turn B̃ into the form

B̃ =

 0
∆
1
α

 (17)

resulting in HB̃ 6= 0.

B. High-level controller optimization

Ideally, we would like to minimize a cost function that
enforces both task performance and energy efficiency. That
is,

L(x,u) =
∫ T

0

(q(t,x) + r(t,u)) dt (18)

where q(t,x) and r(t,u) are instantaneous state-dependent
(or task-dependent) cost and control-dependent cost respec-
tively.



As assumed before, y contains enough information to
satisfy ∃q̃ s.t. q̃(t,y) = q(t,x). Thus the state-dependent
cost can be fully accounted for on the high level. Control-
dependent control, on the other hand, may not be fully cap-
tured for on the high level. In particular, control-dependent
cost is usually modeled using a quadratic form

r(t,u) =
γ

2
u(t)T u(t) (19)

If we can represent low-level controls u using high-level
controls v as

u(t) = K(x, t)v(t) (20)

then we can reformulate the control-dependent cost r(t,u)
in the high level again in a quadratic form:

r̃(t,v) =
γ

2
u(t)T K(x, t)T K(x, t)u(t) (21)

This can be archived by the implicit modeling but not the
explicit modeling. In particular, applying Eq. 15, Eq. 16, and
Eq. 17 to Eq. 8, we have

Pu = I(y)−1v (22)

where P = J(θ)∆ and P ∈ Rnv × Rnu . Since nv = 3
whereas nu = 14, Eq. 22 means that only a subspace
of the low-level controls will affect task performance and
is thus projected to the high level. Apply singular value
decomposition to P and get P = UΛV T . V T projects u
into task-relevant space (Ω) and task-irrelevant space (Ω̄).
Then minimizing r(t,u) becomes equivalent to minimizing
the controls in Ω and setting Ω̄ into 0. So we get

K = (U Λ̃)−1I(y)−1 (23)

where Λ̃ is the first nv columns of Λ.
Implicit modeling allows the high-level controller to cap-

ture both the passive dynamics and the true cost from the
low level. However, since the high level is no longer an
autonomous dynamical system, its optimization becomes
difficult. Indeed, we apply the iterative LQG (iLQG) method
[11], guaranteed to converge for autonomous system, to the
high-level controller, and find that it does not yield good
solutions. To make the high-level system slightly simpler
but still capture the natural dynamics of the low level,
we only include the skeletal structures of the low level in
the high-level dynamics while ignoring the complex muscle
properties. Under the assumption that muscles are strong
enough to achieve the torques required by the high-level
controller, the low-level controller can control the muscle
activations to match the high-level controls exactly. After
making this modification, the optimization process using
iLQG can converge to good solutions after several iterations,
which will be presented in numerical simulations.

V. DESIGN OF LOW-LEVEL CONTROLLER

In addition to generating energy efficient control u to
satisfy Eq. 5, the low-level controller also needs to take into
account the constraints of biological movements. First, ui

is constrained to ui ∈ [0, 1]. Secondly, each joint can only

move within a certain range, so θi ∈ [θmin
i , θmax

i ]. In order to
punish moving towards the joint limits, we use a polynomial
function:

g(θi) = (αiθi + βi)6/1006 for i = 1, 2, ..., 7. (24)

where

αi =
200

θmax
i − θmin

i

,βi = 100− 200
θmax

i − θmin
i

θmax
i

Here, αiθi + βi normalizes joint angle θi ∈ [θmin
i , θmax

i ]
into [−100, 100], and 1006 normalizes g(θi) into [0, 1].
Thus g(θi) increase dramatically when the joint angle (θi)
approaches its joint limits, shown in Fig. 3(b).

Now, low-level controls u at each time t can be considered
as the solution to the following constrained optimization
problem: given v and x, find u that minimize

γ

2
uT u + η (a(x) + B(x)u)T ∇x

7∑
i=1

g(θi) (25)

subject to

H(x)B(x)u = f(y) + G(y)v −H(x)a(x)

0 ≤ ui ≤ 1 (26)

where η specifies the weight on moving away from joint
limits. This optimization problem can be solved via quadratic
programming. Note in implicit modeling, f(y) = H(x)a(x)
is guaranteed automatically.

VI. NUMERICAL SIMULATIONS

Here we consider three tasks: reaching, orienting and
drawing. Our focus is to test the validity of the proposed
framework, and also explore the representation of high-level
states to account for different task requirements.

A. Reaching task

The task is to start from some initial position, move and
stop the end-effector (i.e., the fingertip) at a target p∗ defined
in Cartesian hand coordinates in a specified time interval T .
The cost can be formed in the high level as follows:

L(y,v) =
γ

2

∫ T

0

v(t)T v(t)dt+ω1‖p(T )−p∗‖2+ω2‖ṗ(T )‖2

(27)
where p(T ) and ṗ(T ) are the endpoint position and velocity
of the end-effector in Cartesian hand coordinates. γ, ω1 and
ω2 are the relative weights of the terms enforcing energy ef-
ficiency, endpoint accuracy and stopping at the target respec-
tively. These three parameters are usually adjusted manually
to fit movements with different distances. To automatically
scale these parameters, we do the following normalizations.
Accuracy and stopping requirements are assumed to be
independent of movement distance, therefor their weights (ω1

and ω2 ) are kept constant. The weight of control cost (γ), on
the other hand, needs to be scaled according to the distance
so that the contribution of energy consumption is relatively
the same with respect to that of accuracy and stopping. To get
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Fig. 4. Normalization. (a), Total control as a function of movement
distance. (b), Time duration as a function of movement distance.

this scaling, we apply an optimal feedback control model [12]
to reaching movements with different distances ranging from
10cm to 50cm, and fit the dependency of the total energy
consumption (Γ = 1

2

∫ T

0
v(t)T v(t)dt) on distance (d ≥ 5cm

) and mass (m) on the moving direction as

Γ = (3.1d− 12.8)m2 (28)

Fig. 4(a) shows Γ as a function of distance. Then we can
normalize the control cost by setting γ = 1

Γ .
Movement duration T is determined based on Fitt’s law

[13], which states that the time taken to acquire a visual
target should depend on both the movement distance (d)
and the accuracy requirement (w) in the form T = c1 +
c2 log2(

d
w + 1) where c1, c2 are experimentally determined

constants. Assuming finishing a movement of 30cm with an
accuracy of 1cm takes about 750msec, we set c1 = 0 and
c2 = 1.5. Fig. 4(b) shows T as a function of distance.

We first compare explicit modeling and implicit modeling
on a reaching movement from p = [48,−8,−15]T to p∗ =
[21,−21,−30]T . In explicit modeling, high-level dynamics
are modeled using a linear system and the optimization
problem is solved using LQG [12]. In implicit modeling,
on the other hand, the high level is not treated as an
autonomous system but accounts for the low-level dynamics.
The optimization problem is solved using iLQG. Since iLQG
is a local method and may get trapped in local minima,
initial controls are provided by LQG which treats the entire
arm as a point mass. Fig. 5(a) shows how the final cost
converges over iterations based on the two methods. As we
expected, LQG converges within one iteration. However, cost
estimated from the high level (blue star) does not match that
from the low level (red star). Cost from iLQG, on the other
hand, converges after 20 iterations, where the estimated cost
from the high level truthfully captures the cost from the low
level. Note iLQG guarantees converges only for autonomous
dynamical systems, which is why the cost here increases
occasionally rather than monotonically decreases. As we can
see, the low-level cost after optimization is much smaller
from implicit modeling than that from implicit modeling.
Fig. 5(b) further compares the end-effector trajectory during
both movement planning and movement execution from
both methods. In explicit modeling, the planned trajectory
(black line) is straight which is optimal with respect to the
linear dynamical system in the high level. However, due
to the discrepancy of the dynamics from the two levels,

this planned trajectory cannot be executed by the low-level
controller, causing big endpoint positional error (green line).
The implicit method, in contrast, takes into account the true
low-level dynamics and thus planned a curved movement
(blue line). This trajectory is tracked exactly by the low-
level controller during execution, leading to much better
endpoint accuracy (megenda line). Therefore, the implicit
method yields better performance although it takes more
computational time. The rest of results are all based on
implicit modeling.

Fig. 5(c) shows end-effector positions and velocities in
the Cartesian hand coordinates, as well as joint angles and
velocities in joint coordinates during the movement. As we
can see, end-effector velocities in Cartesian hand coordinates
are close to bell-curved profiles, and end-effector position
reaches the target in the end of the movement. Fig. 5(d)
shows the muscle activations during the movement. Note
each joint is controlled by two muscles acting in opposite
directions (solid lines vs. dashed lines). The two muscles in
each muscle pair are activated at different times to either
push the joint to move or to pull the joint to stop. Fig.
5(e) and (f) show the arm configurations at the beginning
and the end of the movement. Note although there are
many ways to accomplish the same end-effector position,
the arm configuration in (f) is a natural posture in the
sense that every joint stays in its movement limits. This is
archived by including the term g(θ) on punishing movements
approaching joint limits in computing low-level controls (Eq.
24 and Eq. 25 ). Fig. 5(g) compares the movement of joint
1 and joint 3 before (solid lines) and after (dashed lines)
including g(θ). As we can see, function g(θ) pushes joint 1
to stay away from its joint limits, and moves joint 3 further
to maintain the same end-effector position.

We further test this implicit modeling method with 77
targets evenly distributed in a 3-D space surrounding the
initial end-effector location. Fig. 6(a) shows target locations
(red circles) and the error vector on each target (blue line
connecting the end-effector and the corresponding target).
Each target location is determined by two parameters: height
and angle on the x-y plane. Fig. 6(b) and (c) show how error
vary over different heights (x axis) and angles (represented
by different colors of lines) during both movement planning
and movement execution. As we can see, since the high level
captures the natural plant dynamics, the planned movement
is well accomplished by the low-level controller. Also, the
normalization of the control cost mentioned before makes it
possible to generate movements ranging from 20cm to 50cm
with similar accuracy (although errors for bigger movement
are slightly bigger).

B. Orienting task

The task is to make a reaching movement and stop at a
target, again defined in Cartesian hand coordinates, with a
specific palm orientation. One way to solve this problem is
to consider a fixed-length pointer attached to the palm with
an orientation perpendicular to the palm. The goal of control
is to move the two ends of the pointer to two desired positions
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errors planned by the high-level controller. (c), Endpoint positional error
executed by the low-level controller. Lines with different colors represent
errors from movements towards targets with different angles.

respectively. The high-level states thus include 18 dimensions
with 9-D for each target defined as before. However, this
control problem is really hard to solve since now the high-
level dynamics become very complex and iLQG gets trapped
in local minia so easily. To make the task slightly simpler, we
directly provide the joint angles which will lead to different
palm orientations, and define the cost in the high-level as
follows

L(y,v) =
γ

2

∫ T

0

v(t)T v(t)dt

+ ω1‖p(T )− p∗‖2 + ω2‖ṗ(T )‖2

+ ω3‖p̃(T )− p̃∗‖2 + ω4‖˜̇p(T )‖2 (29)

where p(T ) and ṗ(T ) are the endpoint positions and veloc-
ities of the end-effector in Cartesian hand coordinate as de-
fined in reaching tasks. p̃(T ) and ˜̇p(T ) are the endpoint joint
angles and velocities of specific joints. p∗ and p̃∗ specify
target position and desired joint angles. γ, ω1, ω2, ω3, ω4 are
the relative weights of the terms enforcing energy efficiency,
endpoint accuracy, stopping at the target, getting specific
joint angles, and stopping moving the joints respectively. γ
is normalized to account for different moving distances as
explained before. ω1, ω2, ω3, ω4 are adjusted to get the best
result.

Fig. 7 shows arm configurations in the end of a reaching
movement aiming to the same target but with different palm
orientations. Fig. 7(a) is the neutral posture where the wrist
is not bended, Fig. 7(b)(c) are cases requesting for pronation-
supination of the palm (movement of joint 5), Fig. 7(d)(e)
are cases requiring flexion-extension of the palm (movement
of joint 7). Fig. 8 shows how movement of joint 1 is adjusted
automatically to accomplish different desired angles of joint
7, while keeping the endpoint end-effector position the same.

C. Drawing task

The task is to start from some point on a predefined ellipse
and track this ellipse as fast as possible. Suppose this ellipse
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Fig. 7. Arm configuration with the same end-effector position but different
palm orientations. (a), wrist is not bended. (b), positive pronation-supination
of the wrist. (c), negative pronation-supination of the wrist. (d), positive
flexion-extension of the wrist. (e), negative flexion-extension of the wrist.
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different palm orientations.

is defined in a 2-D plane (e.g., x-z coordinate in the Cartesian
hand coordinates with constant value in y coordinate p∗y),
with the two foci p1 and p2 and the sum of the distances to
these two foci a constant l. The control-dependent cost can
be defined as in Eq. 19, and the state-dependent cost can be
formed as follows:

q(t,y) = ω1‖d(t)‖2 + ω2
ṗ(t) · p⊥(t)
‖p(t)− o‖2

+ ω3‖py(t)− p∗y‖2

(30)
where d(t) is the tracking error measured as d(t) = ‖p −
p1‖+‖p−p2‖−2l, o is the center of the ellipse o = 1

2 (p1+
p2), p(t) = [px(t), pz(t)]T and ṗ(t) = [ṗx(t), ṗz(t)]T are
the current position and velocity of the end-effector in the
x-z coordinate, p⊥(t) is a vector on the tangential direction
defined as p⊥(t) = [pz(t),−px(t)]T , ṗ(t)·p⊥(t)

‖p(t)−o‖2 computes

the angular velocity. ω1, ω2, ω3 are the relative weights of
the three terms enforcing tracking the ellipse, circling fast,
and staying within the 2-D plane of the ellipse. As we can
see, we do not specify the end-effector position at each time
step as in a tracking task, which makes this drawing task
even harder.

We apply implicit modeling on a drawing task where the
ellipse is simply a circle with a radius of 10cm and a duration
of 6s. Fig. 9 (a) and (b) illustrate the arm configurations
before the movement and during the movement. Fig. 9
(c) shows the end-effector trajectories in Cartesian hand
coordinates. As we can see, the planned trajectory (light blue
line) tracks the desired circle (red line) closely even though
the position at each time step is not explicitly specified in
the task. This planned trajectory is also well accomplished
by the low-level controller (dark blue line). Fig. 9 (d) shows
the joint angles and velocities in joint coordinates, as well
as the end-effector positions and velocities in Cartesian hand
coordinates. The circular movement involves mainly the
movements of joint 2, 4, and 6. Although there are slight
oscillations in the beginning, movements become very stable
after 0.5s.

VII. DISCUSSION

A hierarchical control framework is designed for con-
trolling a 7-DOF arm model, which captures most key
features of a human arm. The high-level feedback controller
solves the original control problem but operates on more
abstract representations to avoid running into the curse of
dimensionality; the low-level feedback controller performs
an instantaneous feedback transformation to deal with the
details. We show that by allowing the high-level feedback
controller to mimic the low-level dynamics, the original
optimal control problem can be better captured from the
high level. To avoid making the high-level dynamics too
complex, the high level considers only the skeletal structures
of the joints rather than the full details of complex muscle
properties. Simulation results suggest that taking into account
the low-level dynamics in the high level generates better
results than treating the high-level dynamics as linear. We
also provide a scheme to shaping the task-irrelevant space
of low-level controls to solve the redundancy problem. In
particular, by punishing joint movements approaching their
limits, the low-level feedback controller generates natural
arm configurations to satisfy the task requirements mon-
itored by the high-level controller. Satisfactory results in
tasks such as reaching, orienting and drawing suggest that
this hierarchical control framework may not only provide
a solution to controlling complex redundant systems, but
also shed some light on understanding the neural control of
biological movements. Thus, this framework has the potential
to be applied to control a paralyzed patient’s arm via muscle
stimulations.

This hierarchical frameworks is more general than other
hierarchical schemes aiming to decouple task-level control
from details of plant dynamics. For example, the operational
space (OS) formulation [14] cannot handle systems other
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Fig. 9. Arm movements during drawing. (a) (b), arm configuration at the
beginning of and during drawing. (c), end-effector trajectory during both
planning and execution. (d), end-effector position/velocity in Cartesian hand
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than second order, whereas our hierarchical framework can
deal with third-order systems without any modification. This
makes it possible for our hierarchical framework to accom-
modate the true musculoskeletal dynamics of human body.
Comparing with feedback linearization (FL) [15], [16] which
usually assumes equal numbers of inputs and outputs, our
hierarchical framework is able to deal with the mismatch in
dimensionality and thus solve the redundancy problem with
many more inputs than task-relevant outputs. In addition,
instead of augmenting y to handle the mismatch between the
high-level and low-level dynamics, our hierarchical controller
uses the predictive version ã and B̃ without increasing the
dimensionality of the high-level states. Most importantly,
OS usually assumes linear dynamics in the high-level and
FL tries to linearize the high-level dynamics, both to some
extend ignore the complex nonlinearity in the low-level

dynamics. Our hierarchical framework, in contrast, aims
to have the high-level controller exploit the natural plant
dynamics and yet operate on reduced dimensionality to better
pursue optimality.
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