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Dan Liu and Emanuel Todorov
Department of Cognitive Science, University of California, San Diego, La Jolla, California 92093-0515

Everyday movements pursue diverse and often conflicting mixtures of task goals, requiring sensorimotor strategies customized for the
task at hand. Such customization is mostly ignored by traditional theories emphasizing movement geometry and servo control. In
contrast, the relationship between the task and the strategy most suitable for accomplishing it lies at the core of our optimal feedback
control theory of coordination. Here, we show that the predicted sensitivity to task goals affords natural explanations to a number of novel
psychophysical findings. Our point of departure is the little-known fact that corrections for target perturbations introduced late in a
reaching movement are incomplete. We show that this is not simply attributable to lack of time, in contradiction with alternative models
and, somewhat paradoxically, in agreement with our model. Analysis of optimal feedback gains reveals that the effect is partly attribut-
able to a previously unknown trade-off between stability and accuracy. This yields a testable prediction: if stability requirements are
decreased, then accuracy should increase. We confirm the prediction experimentally in three-dimensional obstacle avoidance and
interception tasks in which subjects hit a robotic target with programmable impedance. In additional agreement with the theory, we find
that subjects do not rely on rigid control strategies but instead exploit every opportunity for increased performance. The modeling
methodology needed to capture this extra flexibility is more general than the linear-quadratic methods we used previously. The results
suggest that the remarkable flexibility of motor behavior arises from sensorimotor control laws optimized for composite cost functions.
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Introduction
Humans interact with a diverse and uncertain environment re-
quiring flexible motor behavior. Here, we show that the optimal
feedback control theory that we (Todorov and Jordan, 2002a,b;
Todorov, 2004, 2005; Todorov et al., 2005) and others (Meyer et
al., 1988; Loeb et al., 1990; Hoff, 1992; Kuo, 1995; Scott, 2004)
have pursued affords the flexibility apparent in behavioral data,
in contrast with more traditional theories (Flash and Hogan,
1985; Uno et al., 1989; Bizzi et al., 1992; Feldman and Levin,
1995). We distinguish two forms of flexibility. From the perspec-
tive of motor planning or preparation, flexibility entails taking
into account multiple task requirements and properties of the
environment known before movement, and preparing a sensori-
motor strategy with both open-loop and closed-loop compo-
nents customized for the present task and circumstances. From
the perspective of motor execution, a strategy is flexible if its
closed-loop component makes on-line adjustments that exploit
the multiple ways in which a redundant musculoskeletal plant
can achieve the same behavioral goal. Both forms of flexibility are

obvious desiderata for a well designed estimation-and-control
system such as the sensorimotor system.

Previous work has emphasized the evidence for flexibility dur-
ing execution, in particular the structure of motor variability
(which is larger in task-irrelevant dimensions) and the goal-
directed nature of on-line corrections (Bernstein, 1967; Cole and
Abbs, 1987; Scholz and Schoner, 1999; Domkin et al., 2002;
Todorov and Jordan, 2002b). We explained such phenomena
with the minimal intervention principle, which states that task-
irrelevant deviations from the average behavior should be left
uncorrected to maximize performance (Todorov and Jordan,
2002a,b; Todorov, 2004). This argument is further advanced here
by showing that (1) target displacement can cause correction
before the hand has cleared an intermediate obstacle, ruling out
the imaginary via points postulated by alternative models, and
(2) end-point variability matches the shape of an elongated target
and feedback corrections in the redundant dimension are sup-
pressed, as the minimal intervention principle predicts. Apart
from these findings, however, our emphasis here is on flexibility
in motor planning/preparation.

With the exception of speed–accuracy trade-offs (Jeannerod,
1988), the systematic relationship between sensorimotor strate-
gies and mixtures of task goals (as well as properties of the envi-
ronment) has received surprisingly little attention. Optimal con-
trol models, which dominate the thinking on trajectory planning,
have traditionally optimized a homogeneous cost and treated all
other goals as hard constraints; the latter are supposed to be
specified externally, outside the scope of such models. The ho-
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mogeneous cost could be energy consumption (Nelson, 1983;
Anderson and Pandy, 2001), derivative of hand acceleration
(Flash and Hogan, 1985), derivative of joint torque (Uno et al.,
1989), endpoint variance (Harris and Wolpert, 1998). The con-
straints include endpoint position, final velocity and acceleration
(typically zero), movement time, intermediate points along the
trajectory. However, these hypothetical constraints are rarely ex-
plicit in real-world tasks, raising two questions: (1) how are their
values being chosen; (2) are their values “chosen” in the first
place, or are they stochastic outcomes of the complex interactions
among sensorimotor strategy, noise, musculoskeletal dynamics,
and environment, like any other feature of individual move-
ments? Our previous analysis (Todorov and Jordan, 2002a,b)
showed that choosing desired values for movement parameters
that are not explicitly specified by the task is suboptimal, no
matter how the choice is made. This answers question 2 and
renders question 1 irrelevant. Instead of satisfying self-imposed
constraints, we propose that the CNS relies on sensorimotor
strategies optimized for composite cost functions. In the present
experiments, the relevant cost components encourage energetic
efficiency, endpoint positional accuracy (measured as bias and
variance), endpoint stability (defined as bringing the movement
to a complete stop), and movement speed (avoiding the time-out
errors incurred when duration exceeds a threshold). We show
that, as the relative importance of these components is varied by
the experimenter, subjects modify their strategy in agreement
with our theory. As in previous stochastic optimal control models
(Harris and Wolpert, 1998; Todorov, 2002; Todorov and Jordan,
2002b), taking into account the empirically established signal-
dependent nature of motor noise (Sutton and Sykes, 1967;
Schmidt et al., 1979; Todorov, 2002; Hamilton et al., 2004) turns
out to be important.

Although our focus is on effects taking place before move-
ment, the effects in question correspond to changes in a control
strategy with both open-loop and closed-loop components,
which in turn is best studied using perturbations. Perturbing the
target of a reaching movement in an unpredictable direction has
been a productive paradigm for investigating the mechanisms of
on-line visuomotor corrections (Pelisson et al., 1986; Prablanc
and Martin, 1992; Desmurget and Grafton, 2000). Most previous
studies have introduced perturbations around the time of move-
ment onset, and found that the hand path is smoothly corrected
to reach the displaced target, in agreement with multiple models
of motor control (Hinton, 1984; Flash and Henis, 1991; Hoff and
Arbib, 1993; Torres and Zipser, 2002). However, perturbations
introduced late in the movement may be more informative be-
cause they are not fully corrected, in contradiction with alterna-
tive models and, somewhat paradoxically, in agreement with op-
timal feedback control. Such phenomena have been observed
with both visual target perturbations (Komilis et al., 1993) and
mechanical limb perturbations (Popescu and Rymer, 2000). In
the case of limb perturbations, the correction reflects both neural
feedback and musculoskeletal impedance, which are seamlessly
integrated (Nicols and Houk, 1976) and difficult to disentangle.
Therefore, we focus on target perturbations. We first design a
two-dimensional reaching experiment to rule out the trivial ex-
planation that the incomplete correction is simply attributable to
lack of time. We then replicate the phenomenon in our model,
and find that it reflects a previously unknown trade-off between
endpoint accuracy and stability. This yields a novel prediction: if
stability requirements are decreased, then accuracy should in-
crease. The prediction is confirmed in three-dimensional obsta-
cle avoidance and interception experiments. The latter experi-

ments give rise to rich motor behavior, allowing us to make a
number of additional observations consistent with our theory.
These include shaping variability patterns to buffer noise in re-
dundant dimensions, adjusting movement duration to take ad-
vantage of temporal error margins, exploiting target impedance
and surface friction to achieve endpoint stability, reallocating
corrective action among redundant actuators to balance signal-
dependent noise and inertial constraints, and correcting for task-
relevant perturbations before having reached the task-irrelevant
subgoals hypothesized by alternative models.

Materials and Methods
Experiment 1. Seven subjects made planar reaching movements on a table
positioned at chest level. A 21 inch flatscreen monitor was mounted
above the table facing down and was viewed in a see-through horizontal
mirror. In this way, computer-generated images could be physically
aligned with the hand workspace. Movement kinematics was recorded
with an Optotrak 3020 infrared sensor at 100 Hz. A small pointer, which
had an Optotrak marker and a light-emitting diode (LED) attached near
its tip, was held in the dominant right hand. The task was to move the
LED to a starting position, wait for a target to appear, and move to the
target when ready. Movement onset was detected on-line using a 1 cm
threshold on the distance between the pointer and the starting position.
Analysis of speed profiles (see Fig. 1b) revealed that the actual movement
started �100 ms before the distance threshold was reached. Therefore we
define the origin of the time axis to be 100 ms before the on-line detection
of movement onset and report all times relative to this corrected origin.

The end of the movement was defined as the first point in time when
the hand speed had remained �0.5 cm/s for 40 ms. The LED was turned
off at movement onset, turned on at the end of the movement, and
remained on in the repositioning phase. The room was dark. The target
was always visible. Thus, movements were made without visual feedback
of the hand, although subjects could see their endpoint error as soon as
the movement ended. Movement duration was required to be between
600 and 800 ms. If the duration on any trial fell outside these boundaries,
the computer displayed a “slow down” or “speed up” message, respec-
tively. Movement amplitude was 30 cm. The main movement was in the
lateral direction from right to left (although in Figs. 1a and 2a, we plot the
movements from left to right, for consistency with the space–time plots).

After a brief familiarization session, every subject performed 240 trials.
Within each trial, the target could either remain stationary or jump 5 cm
forward or backward, orthogonal to the main movement direction. Sub-
jects were instructed that jumps may occur, and asked to always move to
the final target position and stop there within the allowed time interval.
The jumps occurred at 100, 200, or 300 ms. There were 180 perturbed
trials (30 for every possible latency– direction combination) and 60 non-
perturbed trials, presented in random permutation order.

Experiment 2. Eight subjects made three-dimensional arm movements
around a horizontal obstacle while aiming for the center of a vertical
target (see Fig. 4a). Movement dimensions are illustrated in Figure 4b.
The target was a 20 � 5 cm wooden board with a bull’s-eye pattern, and
was mounted on a 3DOF robot (Delta Haptic Device; Force Dimension,
Lausanne, Switzerland). Subjects held in their right hand a 7 cm wooden
pointer with an electromagnetic Polhemus (Colchester, VT) Liberty sen-
sor attached to it. The sensor measured three-dimensional position and
orientation (at 240 Hz), making it possible to compute the position of the
tip of the pointer. The latter is referred to as the “hand.” Another sensor
was attached to the target (which was also tracked via the encoders of the
robot at 1000 Hz). Before each trial, the robot moved the target away and
waited for the subject to initiate the trial, by inserting the tip of the
pointer in a small receptacle mounted below the obstacle and remaining
stationary for 100 ms. Then, the robot “presented” the target by moving
toward the subject, at which time the subject was free to move when
ready. In case of an anticipation error, the computer played a sound and
aborted the trial. Hand movement onset was detected with a 1 cm posi-
tion threshold on the distance from the starting position. Subsequent
analysis of speed profiles revealed that the movement started �50 ms
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before it was detected. Therefore, we define the origin of the time axis to
be 50 ms earlier.

Movement end was detected when the hand speed remained �10 cm/s
for 40 ms, or when the target was displaced because of impact with the
hand by �0.4 cm. The maximum allowed movement duration was 900
ms. Time-out errors were signaled by moving the target away and playing
a loud sound. During the hand movement, the target was either station-
ary or rapidly displaced by the robot 9 cm left or right. The robot trajec-
tory is illustrated in Figure 4, c and f; it was generated by a model-based
controller with both open-loop and closed-loop components. The target
jump could be initiated at 50 ms (early) or 350 ms (late).

After brief familiarization, subjects performed 20 trials without per-
turbations, followed by two experimental conditions/sessions with per-
turbations, 120 trials each. Each experimental session included 40 early
jumps, 40 late jumps, and 40 baseline trials presented in random permu-
tation order. Left and right jumps were equally probable. Subjects were
instructed that jumps may occur and asked to always move to the final
target position within the allowed time interval. The two experimental
sessions differed in the stopping requirements of the task. In the stop
condition, subjects were asked to slow down their hand movement be-
fore contact and touch the target gently, so that the impact would not
displace the target by �0.4 cm. If it did, the computer played an explosive
sound and the target was moved away rapidly. This indicated to the
subject that the target has been hit too hard. In the hit condition, hitting
the target hard was no longer an error. The robot was placed in high-gain
servo mode (with carefully chosen nonlinearities to avoid instability) and
was able to absorb the impact with the hand. The maximum force output of
the robot is 25 N. Subjects were not explicitly asked to hit the target harder,
but they quickly discovered the benefits of using such a strategy. One-half of
the subjects performed the hit condition first and then the stop condition;
the order was reversed for the other one-half of the subjects.

Experiment 3. Ten subjects performed a task similar to experiment 2,
with the following modifications. A pressure sensor (FSR; Interlink Elec-
tronics, Camarillo, CA) was installed inside the starting position recep-
tacle and used to detect movement onset earlier and more reliably. An
ATI Mini-40 six-axis force-torque sensor (2000 Hz sampling) was
mounted behind the target. It allowed more reliable detection of contact
(which was now defined as the movement end) as well as direct measure-
ment of contact force. Subjects still initiated the movement when ready.
As soon as hand movement was detected, the robot began to move down-
ward at a constant speed (6.67 cm/s). This motion continued until the
trial ended because of hand–target contact, or until the target hit the
horizontal edge of a wooden board mounted underneath. This happened
900 ms after movement onset and was defined as a time-out error. The
downward motion was repeatable and easily predictable, providing sub-
jects with an explicit representation of allowed movement duration.
When the target jumped (9 cm left or right), the rapid lateral motion was
superimposed on the slow downward motion. Instead of the bull’s-eye
pattern, the target now had a pattern of vertical stripes (5 � 1 cm each),
with gray levels increasing with lateral distance from the center stripe
(which was white). Subjects were asked to make contact with the target as
close to the center stripe as possible. In the stop condition, the threshold
for hitting too hard was now defined in terms of force rather than dis-
placement (0.8 N in the first 8 ms after contact). The bookshelf obstacle
from Figure 4a was now replaced with a horizontal bar, and moved
backward to induce a more curved hand movement (dimensions are
illustrated in Fig. 5c). Early jumps were triggered at movement onset; late
jumps were triggered at 400 ms after movement onset; allowed move-
ment duration was 900 ms. Every subject still participated in two condi-
tions, hit and stop, in counterbalanced order. In each session, we sched-
uled 25 baseline trials, 25 early jumps, and 25 late jumps in random
permutation order. Any failed trials (time-out errors or hitting-hard
errors) were now rescheduled at a random time later in the same session,
yielding a more balanced database of analyzable trials. Instead of 20
no-perturbation trials before the experiment, we now had 10 trials before
and 10 trials after the experiment. These were used to compute variability
in the absence of perturbations (see Fig. 8, “baseline”).

In experiments 2 and 3, the wrist was immobilized with an orthopedic
brace to avoid corrective movements using the wrist. There were two

reasons for this restriction. First, pilot experiments revealed different
involvement of the wrist in early versus late corrections (see Fig. 6c),
making the comparison between conditions difficult. Second, our mod-
els assume point-mass dynamics and do not capture wrist movements.

Statistical analysis. In experiments 2 and 3, both the time-out errors
and the hitting-hard errors were signaled immediately, in a way that
disrupted the behavior, and therefore error trials could not be included in
the analysis. Only no-error trials were analyzed. They constituted 79% of
all trials in experiment 2 and 58% in experiment 3. The higher overall
error rate in experiment 3 is because we repeated failed trials, and so
subjects performed more trials in the more difficult conditions (late/stop
in particular). In experiment 1, errors were signaled by the computer
only after the movement had stopped. Thus, the error signals could not
disrupt the behavior, allowing us to include trials whose duration was
slightly over the time limit (up to 100 ms). Presumably these movements
were generated by the same underlying mechanism and the longer dura-
tion was simply attributable to trial-to-trial variability. Ninety-three per-
cent of all trials in experiment 1 were analyzed.

All statistical tests were based on n-factor ANOVA (“anovan” in the
Matlab Statistics Toolbox). We avoided averaging to the extent possible.
In the comparisons of undershoot and duration (see Figs. 1d,g, 4d,e,g,h)
and wrist contribution (see Fig. 6c), individual trials were treated as
repeated measures, and the factors were the experimental conditions
(perturbation time, stop vs hit when applicable) as well as the subject
identity. Thus, we had two factors in experiment 1 and three factors in
experiments 2 and 3 and the pilot experiment in Figure 6c. The subject
identity was modeled as a factor with random effects because subjects are
drawn randomly from the population. In the comparisons of SDs (see
Figs. 3e, 6a), time-out error rates (see Fig. 1h), and lateral velocities (see
Fig. 6b), all trials that a subject performed in a given condition were
combined to obtain a single number. All comparisons of means were
based on Tukey’s criterion for post hoc hypothesis testing. Differences are
reported as significant when p � 0.05. The error bars shown in the figures
correspond to �1 pooled SE of the mean, as computed by the multiple-
comparison function used to perform Tukey’s test (“multcompare” in
the Matlab Statistics Toolbox).

Optimal feedback control model (linear-quadratic-Gaussian). We
model the hand as an m � 1 kg point mass moving in a horizontal plane,
with viscosity b � 10 Ns/m approximating intrinsic muscle damping.
The point mass is driven by two orthogonal force actuators that can both
pull and push (approximating two pairs of agonist–antagonist muscles).
The actuators act as muscle-like first-order low-pass filters of the control
signals, with time constant � � 0.05 s. These settings of m, b, and � were
chosen to be compatible with biomechanics and were not adjusted to fit
the data.

Let p (t), v (t), a (t), u (t) be the two-dimensional hand position,
velocity, actuator state, and control signal, respectively. The correspond-
ing units are meters, meters/second, newtons, and newtons. The time
index is t � [0, tf]. The final time tf is specified (taken from the experi-
mental data in Fig. 1g). The plant dynamics in continuous time are mod-
eled as follows:

dp�t� � v�t�dt

mdv�t� � �a�t� � bv�t��dt

�da�t� � �u�t� � a�t��dt � M�u�t��dw�t�.

w (t) is standard Brownian motion. M (u (t)) represents control-
multiplicative or signal-dependent motor noise, and is given by the following:

M�u�t�� � � c1u1�t� c2u1�t�
� c2u2�t� c1u2�t�

�.

c1 � 0.15 corresponds to two-dimensional noise in the same direction as
the control vector u (t), whereas c2 � 0.05 corresponds to two-
dimensional noise in the direction orthogonal u (t). The parallel noise
component is larger because muscles pulling in the direction of net mus-
cle force are more active and therefore more affected by signal-dependent
noise. The parameters c1, c2, as well as the sensory noise magnitude �
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described below, are adjusted so that the baseline variability predicted by
the model (see Fig. 2e) is similar to the experimental data (see Fig. 1e).
Note that the shape of these curves cannot be fully captured by three
scalar parameters, and so the good fit mostly reflects the quality of the
model. Denoting the target position p* (t), we can assemble all variables
into an eight-dimensional state vector as follows:

x�t� � 	p�t�;v�t�;a�t�;p*�t�
,

and write its dynamics in general first-order form as follows:

dx�t� � �Ax�t� � Bu�t��dt � C�u�t��dw�t�,

with A, B, and C obtained from the above equations.
To define an optimal control problem, we also need a cost function. As

in our previous work (Todorov and Jordan, 2002b), we use a mixed cost
function defined as follows:

�p*�tf� � p�tf��2 � wstop��v�tf��2 � �saa�tf��2� � wenergy�
0

tf

�u�t��2dt.

The three cost terms encourage endpoint positional accuracy, stopping at
the target, and energetic efficiency, respectively. The activations a (t) are
scaled by sa � 0.1 because their numerical values turn out to be an order
of magnitude larger than positions and velocities. The weight wenergy �
0.00005 of the control term is a free parameter (it is not clear how to
estimate this parameter independently). The weight wstop determines the
relative importance of coming to a complete stop (i.e., achieving zero
velocity and acceleration) at the end of the movement. We use wstop � 1
for the stop condition and wstop � 0.01 for the hit condition. These values
are chosen to capture the qualitative differences between the stop and hit
conditions. Note that we do not model the three-dimensional experi-
ments explicitly.

The state of the plant x (t) is not directly observable but has to be
inferred from noisy observations whose time integral y (t) satisfies the
following:

dy�t� � x�t�dt � Gdz�t�.

The sensory noise covariance is diagonal: G � �diag (1, 1, 1, 1, 1/sa, 1/sa,
0, 0) with � � 0.015 adjusted to reproduce the observed movement
variability. z (t) is standard Brownian motion. In comparison with our
previous model (Todorov and Jordan, 2002b), the present model is sim-
pler in that here we use first-order rather than second-order muscle
filters and do not explicitly represent sensory delays. We do not model
explicitly the visuomotor delays or uncertainty in detecting the target
observations. To obtain correct reaction times, we simply model each
target perturbation as occurring 120 ms later than the corresponding
experimental perturbation.

With these definitions, we discretize the time axis (with 1 ms time step)
and obtain a discrete-time linear-quadratic-Gaussian (LQG) optimal
control problem. The reason for formulating the model in continuous
time and then discretizing the time axis, as opposed to working in dis-
crete time all along, is that in a discrete-time formulation the model
parameters are affected by the time step. If one were to change the time
step, it would not be obvious how the model parameters should scale.
Continuous-time formulations have the advantage of being independent
of discretization time steps. For details on how to discretize a
continuous-time system, see Li and Todorov (2007).

The presence of signal-dependent noise complicates matters; however,
we derived an efficient algorithm for solving such problems previously
(Todorov, 2005). That algorithm is applied here to yield a modified
Kalman filter for computing the optimal state estimate, x̂(t), and an
optimal feedback controller of the following form:

u�t� � � L�t�x̂�t�.

Once the filter and controller are available, the state is initialized with the
experimentally defined starting position and v (0) � a (0) � 0, and the
system is simulated until the final time tf.

The time-varying matrix of feedback gains L (t) is 2 � 8 and is in

principle described by 16 numbers. However, in the present problem, it
turns out to have a lot of structure that can be captured by only three
independent parameters. In particular, the control law can be written as
follows:

u�t� � kp�t��p*�t� � p̂�t�� � kv�t�v̂�t� � ka�t�â�t�,

where kp, kv, and ka are time-varying scalar gains illustrated in Figure 3, a
and c.

When a perturbation is introduced in the model, the final time tf is
adjusted according to Figure 1g, and the optimal estimator and controller
for the remainder of the movement are recomputed (given the new final
time and target position). This is necessary because the optimal feedback
gains are originally scheduled up to the duration of the unperturbed
movement. Consequently, the predicted feedback corrections are not
generated by exactly the same feedback gains as shown in Figure 3, a and
c.

However, the change attributable to the recomputation is small, and so
our intuitive analysis of feedback gains is valid. Similar recomputation is
involved in the minimum-jerk feedback controller. A more general op-
timal feedback control model capable of predicting the changes in move-
ment duration is described later.

The model parameters, and the criteria for choosing their values, can
be summarized as shown in Table 1.

Modified minimum-jerk model. The original minimum-jerk model
(Flash and Hogan, 1985) postulates that the hand moves from a starting
position p0 to a target position p* along a trajectory that minimizes the
time integral of the squared jerk (third derivative of position) as follows:

min
p���

�
0

tf

�p��t��2dt.

To make this optimization problem well posed, one has to specify the
velocity and acceleration at the endpoints. Let v0 and a0 be the initial
velocity and acceleration (possibly nonzero) and suppose the final veloc-
ity and acceleration are 0. Then the constraints are as follows:

p�0� � p0,ṗ�0� � v0,p̈�0� � a0,p�tf� � p*,ṗ�tf� � 0,p̈�tf� � 0.

One can find the solution to this minimization problem using the calcu-
lus of variations (Flash and Hogan, 1985). The expression for the optimal
trajectory p (t) is a somewhat complicated function of t, tf, p0, v0, a0, p*.
Differentiating that function with respect to t three times yields the
following:

p��t� �
60

�tf � t�3�p* � p0� �
36

�tf � t�2v0 �
9

�tf � t�
a0,

where tf � t is the remaining movement time. The rationale for working
with third derivatives is that we are given all derivatives up to second
order at the initial time, and if have a way of computing the third deriv-
ative at each time, we could simply integrate and obtain the entire trajec-
tory. This suggests a feedback-control formulation (Hoff and Arbib,
1993) in which p� is only computed at the current time and is treated as an
instantaneous control signal u as follows:

u�t� � p��t� �
60

�tf � t�3�p*�t� � p�t�� �
36

�tf � t�2ṗ�t� �
9

�tf � t�
p̈�t�.

Table 1. Parameters of linear-quadratic-Gaussian model

Parameters Criteria

m � 1 kg, b � 10 Ns/m, � � 0.05 s Compatibility with biomechanics
sa � 0.1 Order-of-magnitude normalization
c1 � 0.15, c2 � 0.05, � � 0.015 Fit to variability of unperturbed trials
wenergy � 0.00005 Overall fit to data
wstop � 13 0.01 Qualitative predictions regarding stop versus hit
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The three scalar coefficients in the above expression are time-varying
feedback gains for a third-order system with state vector

x�t� � 	p�t�;ṗ�t�;p̈�t�
.

Note that the feedback-control formulation allows us to make the target
position time varying.

In the absence of perturbations, the trajectory predicted by this mod-
ified minimum-jerk model is identical with the prediction of the original
minimum-jerk model (Hoff and Arbib, 1993). The advantage of the
modified formulation is that it can generate feedback corrections and
thus serve as a model of perturbation experiments. Note that the modi-
fied minimum-jerk model reflects a very different philosophy compared
with the original model, because a trajectory plan for the rest of the
movement is no longer needed. In that sense, it is closer to our optimal
feedback control model (Todorov and Jordan, 2002b). The empirical
success of jerk minimization has often been interpreted as evidence for
trajectory planning. Such interpretations are unjustified given that the
same predictions can be made without the assumption of trajectory
planning.

Optimal feedback control model (Markov decision process). Here, we
describe a different optimal feedback control model in which movement
duration is no longer predefined and task constraints are enforced more
explicitly. It is constructed using the more general but less efficient meth-
odology of Markov decision processes: the continuous state and action
spaces are discretized (Kushner and Dupuis, 2001) and the resulting
discrete optimization problem is solved via dynamic programming
(Bertsekas, 2001). Discretization methods suffer from the curse of di-
mensionality and only apply to low-dimensional problems. This neces-
sitates a simplification of the dynamics model: the arm is now modeled as
a fully observable second-order plant with state vector containing hand
position p and velocity v and control vector u corresponding to hand
acceleration. All quantities are expressed in units of centimeters and
seconds. The initial state is p (0) � v (0) � [0;0]. The default target
position is p* � [20;0] but can be perturbed to either [20;5] or [20;�5].
Instead of perturbing the target, we perturb the hand in the opposite
direction (without changing hand velocity) and then correct the hand
and target positions in the subsequent analysis. In this way, the target can
be treated as constant and omitted from the state vector.

Each trial ends when the horizontal hand position exceeds 20 cm (i.e.,
the hand reaches the target plane) or when the duration exceeds a max-
imum allowed duration of 0.6 s, whichever comes first. Let tf denote the
duration of a given trial. The total cost to be minimized is defined as
follows:

total_cost � final_cost � wenergy�
0

tf

�u�t��2dt.

The final cost, computed at the end of the movement, is defined as
follows:

final_cost � ��p* � p�tf��2 � wtimetf, if tf � 0.6 and �v�tf�� � vmax

100, otherwise .

The endpoint velocity threshold vmax is 5 cm/s in the stop condition and
20 cm/s in the hit condition. These values were chosen to match the
observed endpoint velocities. The main movement amplitude (20 cm),
perturbation amplitude (5 cm), maximum movement duration (0.6 s),
constraint violation cost (100), and other simulation parameters de-
scribed below were chosen in advance and were not adjusted. The only
parameters that were adjusted to fit the data were wenergy � 0.00003 and
wtime � 20. This was done by solving the problem multiple times for
different points in wenergy � wtime space. The qualitative pattern of results
shown in Figures 7 and 8 depended weakly on wtime but was sensitive to
wenergy. The latter parameter, denoted r in other studies, has proven to be
important in almost every optimal control model we ever constructed.

The sizes of the discretization grids were 101 � 61 points in position
(20 � 12 cm; step size, 0.2 cm), 25 � 25 points in velocity (80 � 80 cm/s;
step size, 3.33 cm/s), 11 � 11 points in acceleration (1666.67 � 1666.67

cm/s 2; step size, 166.67 cm/s 2), and 31 points in time (0.6 s; step size,
0.02 s). These numbers were carefully balanced so that the grid density
was sufficient to allow accurate approximation, the grid range was suffi-
cient to cover the optimal state-control trajectories, and yet the number
of grid points was not intractably large. The noise was uniform and
additive, and perturbed the hand velocity by up to �2 grid points in each
time step.

The feedback control law is in the following general form:

u � ��p,v,t�,

where u, p, v, and t are constrained to the corresponding grids. Unlike the
LQG framework in which the function � is linear and can be represented
with a small number of feedback gains, here we do not know in advance
the form of �. Instead, we represent it as a lookup table that specifies the
value of u for every possible combination of p, v, and t. This table consists
of �220 million numbers computed by the dynamic programming algo-
rithm in about one-half an hour of CPU time. To speed up the compu-
tation and be able to explore the effects of various parameters, we also
implemented the algorithm on an nVidia GeForce 8800 GTX videocard
with 128 parallel processors. This reduced the running time of the algo-
rithm by about a factor of 30. Because the videocard only supports single-
precision floating point arithmetic, we used it for model exploration and
run the final model on an Intel CPU with double precision. Once the
control laws for the stop and hit conditions were obtained (the only
difference being the value of vmax), we applied them to the stochastic
plant and simulated 3000 movement trajectories per condition: 1000
without perturbation, 1000 with perturbation at 0.1 s, and 1000 with
perturbation at 0.3 s.

Although perturbations were applied in the testing phase to character-
ize the response of the optimal feedback control laws, the control laws
themselves were optimized for an environment without perturbations.
To study possible adaptation effects, we computed a second pair of feed-
back control laws optimized for a perturbed environment. In the latter
environment, the target could jump either up or down (at 0.2 s) or
remain stationary. The three types of trials had equal probability. Target
perturbations were taken into account in the optimization process by
incorporating an appropriate position noise term (with trimodal distri-
bution) in the dynamics model.

Results
Undershoot in reaching to perturbed targets
We define “undershoot” as endpoint error in the direction in
which the target was displaced. In reaching movements, under-
shoot (or incomplete correction) for late target perturbations has
already been demonstrated (Komilis et al., 1993). However, a key
question remains unanswered: is the effect simply attributable to
lack of time, or is there a more subtle reason? Experiment 1 was
designed to rule out the first possibility. Subjects made lateral
reaching movements on a horizontal table, without vision of the
hand, while the target was displaced in an orthogonal direction
(forward or backward relative to the subject) at different times
during movement. Reach duration was experimentally con-
trolled to ensure that even the latest perturbation could have been
fully corrected if that was the only objective of the underlying
control strategy. More precisely, the remaining time after the
onset of the latest correction was substantially larger than the
time necessary to make the same movement in isolation.

Figure 1a shows the average hand paths for different pertur-
bation times as well as for baseline (unperturbed) movements.
Note the undershoot for 300 ms perturbations. In the rest of the
analysis, the backward-perturbed trials are mirrored around the
horizontal axis and pooled with the corresponding forward-
perturbed trials. Figure 1b shows the tangential speed profiles.
The early correction is incorporated so smoothly that its effect on
the speed profile is hardly visible. The late correction, in contrast,
causes a clear deviation from the bell-shaped baseline profile.

9358 • J. Neurosci., August 29, 2007 • 27(35):9354 –9368 Liu and Todorov • Flexible Motor Control



One could interpret this as a discrete submovement superim-
posed on the main movement; however, we will see below that the
same effect can arise from a continuous optimal controller. The
corrective movement, defined as movement in the forward direc-
tion, is shown in Figure 1c. The undershoot for the 300 ms per-
turbation is significantly larger than the undershoot for the 200
and 100 ms perturbations (Fig. 1d). Note that subjects are moving
without visual feedback of the hand, and therefore some mis-
alignment between vision and proprioception (Van Beers et al.,
1999) should be expected. This may be the cause for the slight
overshoot in the 100 ms conditions (indeed no overshoot was
observed in the remaining experiments that were performed with
visual feedback). Such misalignment should not depend on the

time of the target perturbation, and so the
comparison between conditions is mean-
ingful. There is also some systematic end-
point error in the lateral direction, al-
though it shows a weaker and opposite
trend (Fig. 1d); we return to it later.

Figure 1f shows the acceleration profile
of each corrective movement, aligned on
the time when forward acceleration first
exceeds 5% of peak forward acceleration.
The correction for the late perturbation
lasts �400 ms, which is more than suffi-
cient to make a movement with the ampli-
tude needed for complete correction. In-
deed, an accurate 5 cm movement to a
1-cm-diameter target should take a little
under 300 ms according to Fitts’ Law
(Jeannerod, 1988). Thus, the lack of com-
plete correction is not simply attributable
to lack of time. Yet it has something to do
with time: the overall movement duration
was significantly increased in late-
perturbation trials, all the way up to the
800 ms time limit (Fig. 1g), and conse-
quently the percentage of time-out errors
was increased (Fig. 1h). Although we asked
subjects to treat the time limit as a hard
constraint, they treated it on equal footing
with the instruction to reach as close as
possible to the center of the target and
found a balance between these two task re-
quirements. It is reasonable to assume that
if we had convinced subjects to avoid time-
out errors at all cost, the undershoot
would have been even larger.

Optimal feedback control versus
alternative models
The undershoot phenomenon is inconsis-
tent with all previous models of motor
control we are aware of. One such model
(Flash and Henis, 1991) is an extension of
the minimum-jerk model of trajectory
planning (Flash and Hogan, 1985) to the
domain of feedback corrections. It postu-
lates that the hand tracks a planned
minimum-jerk trajectory, and if the target
is displaced, another minimum-jerk tra-
jectory connecting the original and dis-
placed target positions is added vectorially

to the original plan. Naturally, that model predicts full correction
in all cases (Fig. 2f). A related model (Hoff and Arbib, 1993),
discussed in more detail below, is a feedback-control version of
the minimum-jerk model. In our task, it makes the same predic-
tions as the additive model (Flash and Henis, 1991) in Figure 2f.
Another incompatible class of models consists of equilibrium-
point control (Feldman and Levin, 1995; Bizzi et al., 1992) as well
as other schemes (Hinton, 1984; Hoff and Arbib, 1993; Torres
and Zipser, 2002) in which the hand is drawn to the target by
some virtual spring. In such models, stopping can only occur
when the hand reaches the target, which is in general contradic-
tion with systematic endpoint errors that cannot be attributed to
sensory-motor misalignment. In addition to the undershoot

Figure 1. a, Average hand paths in experiment 1. The vertical marks show where the hand was at each perturbation time.
Trajectory averaging was done as follows. The trajectory data from each individual trial were smoothed with a cubic spline (“csaps”
function in the Matlab Spline Toolbox, smoothing parameter 0.001), and resampled at 100 points equally spaced in time. Ana-
lytical derivatives of the cubic spline were also computed at these 100 points, yielding velocities and accelerations. The resampled
data were averaged separately in each condition. b, Tangential speed profiles for the hand paths shown in a. c, Corrective
(forward) movement. The backward-perturbed trials have been mirrored around the horizontal axis and pooled with the corre-
sponding forward-perturbed trials. The color code is the same as given in the legend in a. d, Undershoot, defined as endpoint error
in the direction indicated in the plot. SEs are computed as described in Materials and Methods. e, Positional variance of the hand
trajectories in unperturbed trials. Variances at each point in time are computed separately for each subject (from the resampled
data), and then averaged over subjects, and the square root is plotted. f, Acceleration in the forward direction. For each pertur-
bation time, the corresponding curve is aligned on the time when forward acceleration reached 5% of peak forward acceleration.
g, Movement duration. h, Percentage of time-out errors, as signaled during the experiment. Note that for data analysis purposes,
we increased the threshold on movement duration by 100 ms.
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studied here, phenomena that are prob-
lematic for these models include the un-
dershoot of primary saccades (Harris,
1995), the overshoot of rapid wrist move-
ments (Hoffman and Strick, 1999; Haruno
and Wolpert, 2005), and the lack of equi-
finality (or failure to reach the target) in
certain adaptation paradigms (Lackner
and Dizio, 1994; Hinder and Milner,
2003).

Our optimal feedback control model
(Todorov and Jordan, 2002b), which we
have previously used to explain a number
of unrelated phenomena, turns out to be
compatible with the undershoot. One
might have thought (as we did) that an
optimal feedback controller should make
larger on-line corrections and get closer to
the displaced target than any other con-
troller. This is not so, for interesting rea-
sons explained in the next section. Here,
we only present the simulation results. The
model uses a linear approximation to arm
dynamics. This is justifiable because the
detailed nonlinearities of the arm are un-
likely to influence the response to visual
perturbations significantly (they are much
more relevant when it comes to resisting
mechanical perturbations). The model in-
corporates signal-dependent motor noise
(Sutton and Sykes, 1967; Schmidt et al.,
1979; Harris and Wolpert, 1998; Todorov,
2002) as well as sensory noise, and opti-
mizes a mixed cost encouraging endpoint
positional accuracy, endpoint stability
(stopping), and energetic efficiency.

The model predictions (Fig. 2a– e) are
plotted in the same format as the data (Fig.
1a– e). Note the close correspondence and,
in particular, the undershoot for the late
perturbation. When a target perturbation
occurs in the model, we increase the remaining movement time
as in the experimental data (Fig. 1g) and recompute the optimal
controller (see Materials and Methods). If we use the unmodified
optimal controller, which always ends the movement at the same
time, the predicted undershoot is greatly increased (Fig. 2c,
dashed lines). Thus, increasing movement duration is essential
for avoiding a much larger undershoot in late perturbations,
which may be why subjects were so reluctant to finish the move-
ment on time as instructed.

In Figure 2d, we also see endpoint error in the lateral direction,
but its magnitude decreases with increasing perturbation time, as
in the experimental data. This is because the target is not per-
turbed in the lateral direction, and yet the overall movement time
is increased, so the control costs that cause this endpoint error
(energy consumption, and reduced accuracy because of signal-
dependent noise) are effectively smaller. Note also the secondary
speed bump in Figure 2b, which could be mistaken for a discrete
submovement.

In addition to reproducing average behavior, the model faith-
fully captures the positional variability pattern of the hand trajec-
tories in unperturbed trials (Figs. 1e, 2e). The larger variability in
the lateral (main movement) direction reflects signal-dependent

motor noise, which is larger in actuators that are more active. The
reduction seen toward the end of the movement is an example of
structured movement variability consistent with the minimal in-
tervention principle (Todorov and Jordan, 2002b). Another
manifestation of signal-dependent noise is the increased variabil-
ity of the undershoot for late perturbations (Fig. 3e). This phe-
nomenon is observed in the model and all experiments, and is
only present in the corrective movement direction. Although any
corrective movement incurs signal-dependent noise in that di-
rection, the feedback controller has less time to suppress it when
the noise is introduced late.

Analysis of feedback gains and new predictions
The above simulation results show that the optimal thing to do is
make an incomplete correction. Why is this seemingly paradox-
ical strategy optimal? Such questions are often meaningless: the
solution to a complex optimization problem is what it is, and the
relationship between the problem and its solution does not have
to be intuitive. Nevertheless, analysis of the model yields intuitive
answers here. Key to our analysis is the fact that the optimal
feedback gains are time varying.

As explained in Materials and Methods, the optimal feedback
controller can be written as follows:

Figure 2. a– e, Same as the corresponding subplots of Figure 1, but for data generated by our optimal feedback control model.
The dashed lines in c show predictions of a different optimal control model, in which movement duration is not adjusted when a
perturbation arises. There is no dashed line for the 100 ms perturbation (red), because in that condition subjects did not increase
the movement duration. f, Corrective movements predicted by the modified minimum-jerk model.
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u�t� � kp�t��p* � p̂�t�� � kv�t�v̂�t� � ka�t�â�t�,

where kp, kv, and ka are the optimal feedback gains; p̂, v̂, and â are
the optimal estimates of hand position, velocity, and muscle ac-
tivation state (obtained by a modified Kalman filter); p* is the
target position; and u is the optimal control signal. The optimal
feedback gains are illustrated in Figure 3a. We see that the posi-
tional gain kp peaks early and then decreases in the last phase of
the movement. In that phase, the velocity gain kv as well as the
activation gain ka, which can be thought of as force feedback, are
large. Although these gain fluctuations are hard to understand
quantitatively, qualitatively they have a simple interpretation:
near the end of the movement the optimal controller enters a
regime in which it is less sensitive to positional errors and instead
aims to stop the movement in a stable manner. In retrospect, this
is not surprising. If we think of a mass–spring– damper system, a
large spring constant (or positional gain) will make the system

underdamped and cause oscillations,
which is in conflict with the requirement
to stop. The optimal controller effectively
makes the system overdamped, achieving
stability while compromising its ability to
fully respond to last-minute positional er-
rors. Thus, our analysis has uncovered a
trade-off between endpoint stability and
positional accuracy.

Another intuitive explanation for the
undershoot observed in the model is the
control cost associated with large and
rapid last-minute corrections. Large con-
trol signals are penalized in two ways. One
is a direct energy cost; the other is an indi-
rect accuracy cost resulting from the
signal-dependent nature of motor noise.
Increased noise is particularly undesirable
near the end of the movement when the
feedback loop no longer has time to cor-
rect for it (Fig. 3e). In agreement with the
latter interpretation, the undershoot pre-
dicted by the model increases when either
the energy cost or the signal-dependent
noise magnitude are increased (results not
shown).

Analysis of feedback gains is also illu-
minating with regard to the modified
minimum-jerk model and its failure to
predict the undershoot (Fig. 2f). Consider
the following feedback-control formula-
tion (Hoff and Arbib, 1993) of the
minimum-jerk model. At each point in
time, a new minimum-jerk trajectory is
formed, starting at the current hand posi-
tion, velocity, and acceleration, and end-
ing at the target with zero velocity and ac-
celeration. The initial portion of this
trajectory is used to control the move-
ment, and then the procedure is repeated,
making it possible to correct for on-line
disturbances. More precisely, the hand is
treated as a third-order system in which
the position p, velocity v, and acceleration
a are state variables, and the control signal
u is defined as the derivative of accelera-
tion (or jerk). It can be shown (see Mate-

rials and Methods) that the minimum-jerk feedback controller
has the same general form as the optimal feedback controller, but
with different feedback gains as follows:

kp�t� �
60

�tf � t�3, kv�t� �
36

�tf � t�2, ka�t� �
9

�tf � t�
.

We now see something that is in retrospect obvious: the only way
the minimum-jerk feedback controller can always make a full
correction, regardless of how late the perturbation arises, is to use
infinite feedback gains at the end of the movement. As the time t
approaches the final time tf, all three feedback gains go to infinity,
with kp increasing faster than kv and ka. Note that we could apply
this minimum-jerk controller to a partially observable system, in
which state estimates are obtained by a Kalman filter, and obtain
a control scheme that overall is very similar to optimal feedback

Figure 3. a, c, Optimal feedback gains, each scaled by its maximum value. The stop condition is shown in a; the hit condition
is shown in c. b, Corrective movements predicted by the optimal feedback controller in the hit condition. d, Velocity of the
corrective movements predicted in the hit condition. Note that velocity is not reduced to zero at the end of the movement,
especially for the 300 ms perturbation. e, SD of the undershoot in the model and all three experiments. The SD was computed
separately for each subject and perturbation time, and then averaged over subjects (by the ANOVA procedure) (see Materials and
Methods). In unperturbed trials (“none”), we computed variability along the perturbation axis for the corresponding experiment,
although these trials were unperturbed.
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control. The only important difference is
in the sequence of time-varying feedback
gains being used. The optimal feedback
gains (Fig. 3a) not only predict behavior
that better corresponds to the experimen-
tal data, but also guarantee minimal ex-
pected cost, and are finite rather than infi-
nite (which is more biologically plausible).

We now return to the stability–accu-
racy trade-off, and use the model to obtain
novel predictions reflecting this trade-off
more directly. In the above analysis, the
reason for the reduced sensitivity to posi-
tional errors was the need to stop at the
target. What would happen if the impor-
tance of stopping decreases relative to the
importance of reaching the target? In the
model, stopping is enforced with a cost
term quadratic in the final velocity and ac-
tivation. If we scale down this cost term,
then the optimal feedback gains change as
shown in Figure 3c. Note that the posi-
tional gain kp now peaks much later. Con-
sequently, the predicted undershoot is al-
most eliminated (Fig. 3b). The optimal
controller for the modified cost function
takes advantage of the relaxed stopping re-
quirement, and no longer brings the veloc-
ity to zero at the specified final time, par-
ticularly for late perturbations (Fig. 3d).

Experimental confirmation of
model predictions
The above predictions were tested in ex-
periment 2, which compared two condi-
tions: asking subjects to stop at the target
versus allowing them to hit the target. Sub-
jects made three-dimensional movements
around a horizontal obstacle and aimed
for a physical target attached to a three-
dimensional robot (see Materials and
Methods) (Fig. 4a). The obstacle was in-
troduced to increase movement duration
(so that we no longer had to impose a
lower limit) and also to test the different
predictions of optimal feedback control
and alternative models with regard to ob-
stacle avoidance (see next section). On randomly chosen trials,
the robot rapidly displaced the target, left or right, either 50 or
350 ms after movement onset. Exceeding the maximum allowed
duration (900 ms) resulted in a time-out error. Average move-
ment trajectories are shown in Figure 4b.

Each subject was now tested in two conditions. In the stop
condition, subjects were required to slow down their movement
and touch the target gently. The robot used a low-gain servo
controller so that the target could be easily displaced by the hand;
a displacement �0.4 cm resulted in a “hitting-hard” error. In the
hit condition, subjects were allowed to hit the target, although
they were not instructed to do so. The robot used a high-gain
servo controller and could absorb the impact with the hand; dis-
placing the target no longer resulted in an error. The difference in
target impedance made the distinction between the two condi-
tions more ecologically valid.

The experimental results confirmed our model predictions.
The undershoot for late perturbations was still present (Fig. 4c,d),
but it was significantly smaller in the hit condition compared
with the stop condition. For early perturbations, the undershoot
was smaller (compared with late perturbations) and the differ-
ence between the hit and stop conditions was not significant. As
before, late perturbations caused an increase in movement dura-
tion (Fig. 4e), and a substantial percentage of time-out errors in
late/stop trials (40%). Movement duration in the stop condition
was larger compared with the hit condition, and yet the correc-
tion was smaller (i.e., the undershoot was larger). Thus, as in
experiment 1, subjects could have made a larger correction in the
stop condition if that was their only objective.

Although at this point we had a convincing story, we remained
puzzled by subjects’ reluctance to treat the time limit as a hard
constraint, although in experiment 2 we made time-out errors

Figure 4. a, Setup for experiment 2. Subjects make a movement from the starting position receptacle to a target attached to
the robot, while clearing a horizontal obstacle (bookshelf). The robot may displace the target by 9 cm left or right during the
movement. b, Average hand paths in the stop condition of experiment 2. Trajectory averaging was done in a way similar to
experiment 1, except that we now used a zero-phase-lag fourth-order Butterworth filter. The color code is the same as before:
black, baseline; red, early perturbation; blue, late perturbation. c, Corrective movements in experiment 2. Dashed lines, Hit
condition; solid lines, stop condition. d, Undershoot in experiment 2. e, Movement duration in experiment 2. f, Corrective
movements in experiment 3. g, Undershoot in experiment 3. h, Movement duration in experiment 3.
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much more salient. We reasoned that this may be because the
time limit does not correspond to any physical property of the
environment, and instead is signaled by the computer on the
basis of an (invisible) timer. Could the outcome change if we
provided an explicit and ecologically valid time cue? More im-
portantly, could such a time cue reduce the uncertainty in the task
and somehow enable subjects to eliminate the undershoot? These
issues were addressed in experiment 3 in which we used an inter-
ception task rather than a pointing task (see Materials and Meth-
ods). The main change was that, as soon as hand movement was
detected, the robot began to move the target downward at a low
constant speed. Lateral target jumps were superimposed on this
downward motion. Subjects were instructed to make contact
with the target before it hit the horizontal edge of a board
mounted underneath. The downward motion was repeatable and
easily predictable, providing an explicit representation of allowed
movement duration.

The results from experiment 3 (Fig. 4f– h) were similar to
those of experiment 2 and in agreement with our model predic-
tions. The undershoot in the stop condition was again larger than
in the hit condition; the difference was now significant even for
early perturbations (perhaps because we modified the method for
detecting hitting-hard errors, making the threshold effectively
smaller). Movement duration was again increased in late-
perturbation trials and was larger in the stop condition compared
with the hit condition. The time-out error rate in late/stop trials
was reduced to 31%, indicating that the explicit time cue had an
effect, but this rate was still higher than what would be expected if
subjects treated the time limit as a constraint. The time-out error
rate in late/hit trials was much lower (12% in experiment 2 and
7% in experiment 3).

Absence of imaginary targets in obstacle avoidance
Optimal feedback control differs from most alternative models in
that it does not invent arbitrary subgoals, such as desired trajec-
tories or imaginary targets, but instead uses all available resources
to pursue the high-level movement goal. In obstacle avoidance
tasks, it predicts that the hand should clear the obstacle without
aiming for a specific imaginary target to the side of the obstacle.
In contrast, deterministic trajectory planning models (Flash and
Hogan, 1985; Uno et al., 1989) as well as other models (Rosen-
baum et al., 1999) need such imaginary targets to avoid obstacles
(and make curved movements in general). Note that stochastic
optimal control models can avoid this limitation by taking into
account the probability of collision attributable to random devi-
ations from the average trajectory (Hamilton and Wolpert,
2002).

Here, we present two lines of evidence that subjects do not use
imaginary targets in obstacle avoidance. First, we analyze the
variability pattern of the hand paths in unperturbed trials in ex-
periments 2 and 3. If subjects were aiming for an intermediate
target, their hand paths should be less variable in the vicinity of
that target, as we showed previously with real targets (Todorov
and Jordan, 2002b). The variability pattern is plotted spatially in
Figure 5, a and c, and as a scalar quantity (variability per dimen-
sion) in Figure 5, b and d. For both experiments, and for both the
hit and stop conditions, we see that the pattern is bell-shaped. In
particular, there is no evidence for a reduction of variability in the
middle of the movement in which the imaginary target should be.

Second, we analyze the onset of the lateral correction relative
to the time when the hand clears the obstacle and starts moving
toward the robot. If subjects were aiming for an imaginary target
to clear the obstacle, that target should be close to the reversal

point and should not move when the robot displaces the final
target. Therefore, the corrective movement should not start be-
fore the reversal point. We focus on experiment 3, which was
specifically designed to address this question by shifting the ob-
stacle farther away from the starting position (thus delaying the
reversal) and detecting the onset of hand movement with a pres-
sure sensor (allowing an earlier perturbation). Figure 5e shows
that the reversal occurs at �300 ms in both the hit and stop

Figure 5. a, Spatial variability of unperturbed hand paths in experiment 2. The ellipsoids
correspond to�2 SDs in each direction. Aligning three-dimensional trajectories for the purpose
of computing variance is nontrivial and was done as follows. We first resampled all movements
for a given subject at 100 points equally spaced along the path, and found the average trajec-
tory. Then, for each point along the average trajectory, we found the nearest sample point from
each individual trajectory. These nearest points were averaged to recompute the corresponding
point along the average trajectory, and the procedure was repeated until convergence (which
only takes 2–3 iterations). In this way, we extracted the spatial variability of the hand paths,
independent of timing fluctuations. That is why the covariance ellipsoids are flat in the move-
ment direction. b, Variability per dimension, for the stop (solid) and hit (dashed) conditions in
experiment 2. At each point along the path, this quantity was computed as the square root of
the trace of the covariance matrix for the corresponding ellipsoid, divided by 3. To plot variabil-
ity as a function of time, we resampled back from equal-space to equal-time intervals. c, d,
Same as subplots (a, b) but for experiment 3. e, Normalized target acceleration in the lateral
direction, lateral hand position, and hand position in the forward direction (positive is toward
the robot). Dashed lines, Hit condition; solid lines, stop condition. Note that the onset of hand
acceleration occurs before the movement reversal in the forward direction.
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conditions, whereas the corrective lateral acceleration in early
perturbations starts at 100 –150 ms. Given the filtering of the
musculoskeletal system, the neural command driving the correc-
tion must have been generated even earlier. Thus, subjects begin
to correct for the target jump before having reached the hypo-
thetical via-point, casting serious doubt on the existence of the
latter.

Flexible strategies for opportunistic control
The sensorimotor strategies predicted by optimal feedback con-
trol exhibit great flexibility, in the sense that they are adapted to
the task, body, and environment, and take advantage of every
opportunity for achieving higher performance. This is in sharp
contrast with traditional trajectory-planning models (Flash and
Hogan, 1985; Uno et al., 1989), which essentially view all tasks as
being the same as long as the average trajectory is the same. Here,
we make four additional experimental observations illustrating
the flexibility inherent in the optimal control framework.

First, in the hit condition in experiments 2 and 3, subjects
actually hit the target harder, although they were not instructed
to do so (and one-half of them had already performed the task in
the stop condition). In both experiments, the forward hand ve-
locity before impact was two to three times larger in the hit con-
dition compared with the stop condition. In experiment 3, in
which we used a force sensor, the normal force in the first 50 ms
after contact was approximately three times larger in the hit con-
dition compared with the stop condition. Both the model and the
experimental results suggest that the stopping requirement
causes decreased sensitivity to positional errors late in the move-
ment. Thus, the relaxed stopping requirement in the hit condi-
tion is exploited to increase positional accuracy. It should be
noted, however, that the stopping requirement was not fully
eliminated in the hit condition. In experiment 2 (unperturbed
trials, hit condition), subjects reduced their hand speed from 175
cm/s peak to 39 cm/s before contact, a 78% reduction; in exper-
iment 3, this reduction was 84%. For comparison, the speed re-
duction in the stop condition was 96 and 92%, respectively.

Second, subjects exploited the relaxed accuracy requirement
in the vertical direction in experiment 3, in which the target was a
vertical stripe rather than a circle. Focusing on unperturbed trials,
we see that lateral and vertical endpoint errors are equally vari-
able in experiment 2, but vertical “errors” are significantly more
variable than lateral errors in experiment 3 (Fig. 6a). Further-
more, in experiment 3, subjects did not fully use feedback to
adjust their vertical hand position relative to the falling target.
Indeed, variability of the vertical endpoint position in absolute
coordinates (relative to the room) was smaller than variability
relative to the target. We know that subjects are able to correct in
the lateral direction, not completely, but still the undershoot is
much smaller than the correction. Thus, the difference between
absolute and relative variance in the vertical direction does not
reflect an inability to correct, but rather an absence of a need to
correct, in agreement with the minimal intervention principle
(Todorov and Jordan, 2002b).

Third, subjects found a way to exploit the different methods
we used to detect the movement end in experiments 2 and 3.
Here, we focus on late perturbation trials and analyze the hand
velocity immediately before contact with the target. In experi-
ment 2, we used a speed threshold that required both forward and
lateral velocity to be reduced to end the trial. In the hit condition,
the necessary velocity reduction could result from contact with
the target, attributable to target impedance and friction, respec-
tively. In the stop condition, however, the target could not be

exploited to stop the movement in either direction, and thus the
lateral velocity in experiment 2 was small (Fig. 6b). In experiment
3, we used a force sensor to detect contact with the target, and
defined the time of contact as the movement end, so lateral ve-
locity did not have to be reduced as much. Subjects took advan-
tage of this: the difference in lateral velocity between the stop and
hit conditions in experiment 3 was much smaller than in experi-
ment 2, and was not significant (Fig. 6b). We already know that
the stopping requirement conflicts with positional accuracy. It is
then likely that finding a way to partially avoid this requirement
(in the lateral direction) afforded improved positional accuracy
in experiment 3.

Fourth, subjects exploited the biomechanical redundancy
of the arm when they had a chance. In experiments 2 and 3,
redundancy was reduced by bracing the wrist; however, we
performed a previous pilot experiment in which the wrist was
not braced (otherwise, it was similar to experiment 2). In that
case, the lateral correction was accomplished with a combina-
tion of wrist flexion/extension and humeral rotation. We
found that the percentage contribution of the wrist was larger
in late perturbations compared with early perturbations, in
both the hit and stop conditions (Fig. 6c). The fact that the
wrist contributes �30% in early corrections suggests that the
preferred strategy is to use humeral rotation. This may be
because for a given force level larger muscles are less affected
by signal-dependent noise (Hamilton et al., 2004). In late cor-
rections, however, it is perhaps more difficult to accelerate and
decelerate the entire forearm within the remaining time, and
thus the wrist contribution increases.

Modeling changes in duration and variability
The LQG framework, which we used in the above model as well as
in most of our previous work on optimal feedback control, is
computationally efficient but has a number of limitations. In the

Figure 6. a, Endpoint SD in different directions, experiments 2 and 3, unperturbed trials.
Black, Lateral direction; white, vertical direction (coordinates relative to the target); gray, ver-
tical direction (absolute coordinates). In experiment 3, the relative and absolute endpoint po-
sitions are different in the vertical direction, because the target is falling and the variability in
movement duration causes variability in vertical target position at the end of the movement. b,
Lateral velocity immediately before contact with the robot, in late perturbation trials. c, Wrist
contribution to the lateral correction, in a pilot experiment with 10 subjects. The main differ-
ence from experiment 2 was that the wrist was not braced. The lateral correction could be
accomplished with humeral rotation (resulting mostly in translation of the hand-held pointer)
or wrist flexion/extension (resulting in rotation of the pointer in the horizontal plane). The
pointer was held in such a way that the Polhemus sensor was near the wrist. Therefore, the
lateral displacement of the sensor on perturbed trials (relative to the average trajectory on
unperturbed trials) can be used as an index of how much humeral rotation contributes to the
correction. The displacement of the tip of the pointer is defined as the total correction. The
difference between the two is the contribution of the wrist. Dividing the latter by the total
correction, and multiplying by 100, we obtain the percentage wrist contribution.
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present context, its limitations are as follows: (1) movement du-
ration cannot be modified on-line in response to target pertur-
bations; (2) stopping constraints have to be modeled with qua-
dratic costs instead of more natural step-function costs; (3) the
controller cannot be adapted to the statistics of the target pertur-
bations. Here, we present an optimal feedback control model that
avoids these limitations.

The new model is constructed using more general but less
efficient discretization techniques that require a simpler second-
order model of arm dynamics. Movement duration is defined as
the point in time when the hand first reaches the target plane. A
term proportional to movement duration is included in the cost
function. Time-out errors and hitting-hard errors are penalized
with step-function costs. The trimodal distribution of final target
positions is taken into account in the optimization process. For
details, see Materials and Methods.

The new model (Fig. 7) accounts for the salient findings in
experiment 2 (Fig. 4c– e) and experiment 3 (Fig. 4f– h). The speed
of the corrective movement (slope of the positional traces in Figs.
7a and 4c,f) is smaller in early perturbations. The undershoot in
late perturbations is larger in the stop versus hit condition. The
undershoot in early perturbations is smaller compared with late
perturbations, in both stop and hit conditions. Movement dura-
tion in baseline and early perturbations is larger in the stop versus
hit condition. For late perturbations, movement duration in-

creases in both the stop and hit conditions. Note that the changes
in movement duration are now predicted by the model, as op-
posed to being taken from the data as in the LQG model. This is
possible because the new controller can adjust the duration on-
line, by modulating the speed in the main movement direction
and thus reaching the target plane at different times.

The new model allows us to address an additional phenome-
non that is beyond the scope of LQG models. The phenomenon
(Fig. 8) is that trajectory variability on unperturbed trials was
larger in experimental sessions with perturbations compared
with baseline sessions without perturbations. Results from the hit
and stop conditions are averaged in this analysis. Figure 8 shows
that frequent perturbations lead to some adaptive change in the
sensorimotor system, which in turn leads to increased variability
on trials without perturbations. The precise time course of such
adaptation is difficult to estimate because measuring variability
requires many trials.

What could be the nature of this adaptive change? One possi-
ble explanation is that, in sessions with perturbations, trial-to-
trial adaptation (Thoroughman and Shadmehr, 2000; Donchin et
al., 2003) causes the system to be in a different state every time an
unperturbed trial is encountered. However, in target perturba-
tion paradigms, trial-to-trial adaptation is negligible (Diedrich-
sen et al., 2005) (see also below). Another possible explanation is
that target perturbations are for some reason misinterpreted as an
increase in sensory noise, in which case the “optimal” thing to do
is reduce the reliance on sensory feedback, causing suboptimal
performance. A third explanation, which we pursue below, is an
adaptive change in the feedback controller.

In environments with large unpredictable perturbations, one
would expect the optimal feedback controller to be more con-
cerned with correcting the perturbations than the smaller errors
attributable to internal noise. This is confirmed by our simula-
tions. In Figure 8a, we compare the trajectory variability of two
feedback controllers, one optimized for an unperturbed environ-
ment and the other one for a perturbed environment matching
our task. As expected, the latter controller is better at correcting
for perturbations (data not shown); however, it allows higher
variability on trials without perturbations. This is broadly consis-
tent with the minimal intervention principle as well as with the
idea of Pareto optimality: improving any aspect of the behavior of
an optimal controller requires sacrifices elsewhere. Analyzing the
specific changes in feedback gains that lead to increased variabil-
ity is interesting but beyond the scope of the present paper.

Lack of trial-to-trial adaptation
Trial-to-trial adaptation has been found in perturbations of the
hand (Thoroughman and Shadmehr, 2000; Donchin et al., 2003)
but not the target (Diedrichsen et al., 2005). Here, we replicate
the latter finding: in our target perturbation experiments trial-to-
trial adaptation turns out to be negligible.

To quantify such adaptation we adopted a version of the state-
space approach, namely the following:

z�n � 1� � Az�n� � Bw�n� � 	�n�

y�n� � Cz�n� � Dw�n� � 
�n�.

The correction on trial n is denoted y (n) and has two elements:
distance in the corrective direction from the average unperturbed
trajectory, measured at the time of the late perturbation and at
the end of the movement. The perturbation w (n) has two ele-
ments specifying the target position (again in the corrective di-
rection) immediately before the late perturbation and at the end

Figure 7. a, Corrective movements of the more general optimal feedback control model. The
solid and dashed lines correspond to the stop and hit conditions, respectively. The hand is
restricted to a grid of discrete states; however, the dynamics are stochastic, and so the average
(over 1000 simulated trials) is smooth, although the individual trajectories have a staircase
pattern. b, c, Undershoot and movement duration in the stop and hit conditions for different
perturbation times. Same format as the experimental data in Figure 4.
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of the movement. The vector z (n) is the
internal learning state. It also has two ele-
ments that the model is free to use in what-
ever way is needed to fit the data. We
quantify the correction and the perturba-
tion using pairs of measurements to allow
the model the capture the difference be-
tween early and late perturbations. 	 (n), 

(n) are independent zero-mean two-
dimensional Gaussian random variables
with covariances Q, S.

The next learning state z (n � 1) may in
general depend on the current learning
state z (n), the perturbation w (n), and the
correction y (n). However, y is a linear
function of z, w, and so we do not include
a y term in the first equation. Note also
that if there is any trial-to-trial learning
here, it should be related to predicting the
final target position (and initiating a nor-
mal movement aimed at that position);
thus, it makes more sense to learn from w rather than y.

The sequences of corrections y (n) and perturbations w (n)
were measured. Given these measurements, the most likely values
of A, B, C, D, Q, S as well as the sequence of learning states z (n)
were computed using the expectation maximization (EM) algo-
rithm (Cheng and Sabes, 2006). Because EM can get trapped in
local minima, model fitting was run multiple times with different
initial conditions and the best result was used. We fit the model
separately for each experiment (2 vs 3), condition (stop vs hit),
and subject. The first two-thirds of the data in each experimental
session was used for model fitting and the last one-third for
model testing.

To evaluate the performance of the learning model, we re-
gressed each component of y either on z and w, or on w alone, or
on z alone. The first regression measures the performance of the
full model, whereas the latter two regressions measure the con-
tribution of feedback correction (w) and learning component
(z), respectively. The R 2 and p values for the regressions were
averaged over subjects, experiments, and conditions. The regres-
sions were first done on all trials, and then separately on the
baseline (no perturbation) trials, early jump trials, and late jump
trials, because the models are likely to perform differently on
different trial types. Table 2 shows the average R 2 values multi-
plied by 100 (to obtain a measure of variance explained), only for
the cases in which p � 0.05 on average. In the remaining cases, we
found p � 0.3; thus, there was clear separation between signifi-
cant and nonsignificant regression fits.

None of the regressions on z alone are significant, suggesting
lack of trial-to-trial learning. The regressions on w are as ex-
pected: given the target position at the middle and at the end of
the movement, one can predict the hand position at the end of the
movement ( y2) in both types of perturbations as well as the hand
position at the middle of the movement ( y1) in early perturba-
tions. Note that the combined model z, w is slightly but system-
atically better than w alone, suggesting that there may be a small
learning effect. Given how small this effect is, it is not surprising
that regressions on z alone were far from significant.

Discussion
The biological processes that continuously improve behavior
closely resemble iterative optimization. This makes optimal con-
trol theory a natural framework for studying the neural control of

movement. It is also a very successful framework in terms of
explaining the details of experimental data (Todorov, 2004).
However, one of its most appealing features remains mostly un-
tapped: the ability to predict task-specific sensorimotor strategies
and thereby changes in behavior that result from systematic task
variation. This is a gap not only in optimal control models but in
the field of motor control in general. A substantial number of
studies (including most of the literature on motor adaptation)
have used a single task: reaching. The emphasis on servo control
has created the impression that, as long as a desired trajectory can
somehow be planned, motor execution (and all sensorimotor
processing during movement) is the same no matter what the
organism is trying to accomplish. Planning models have focused
on the geometry of limb trajectories and have mostly ignored the
context that gives functional meaning to these trajectories. We
see this as a substantial gap in the current understanding of sen-
sorimotor function; the present paper is a step toward filling that
gap.

To vary the task systematically, we need a compact and exper-
imentally accessible representation of the task space. Optimal
control provides the perfect tool: composite cost functions. A
central argument of this paper is that subjects optimize a com-
posite cost as opposed to a homogeneous cost under multiple
hard constraints. Indeed, we did everything we could to enforce a
hard constraint on movement duration, and yet subjects never
treated it as such. Instead, they always found a balance between
undershoot and time-out errors. The changes in our experimen-
tal design affected the relative importance of these errors; in par-
ticular, the switch to the intercept task (which made the duration
threshold explicit) resulted in the lowest percentage of time-out
errors. In addition to accuracy and duration, we proposed that
the composite cost includes endpoint stability (stopping in par-

Figure 8. Hand positional variance on unperturbed trials, measured along the perturbation direction. Trajectories are aligned
at equal intervals along the movement path to compute variance. The solid line (baseline) is the variance in blocks without
perturbations. The dashed line (adapted) is the variance in blocks with 66% perturbations. Data from the hit and stop conditions
are averaged.

Table 2. Percentage variance explained

Variable Regressor All trials Baseline Early jump Late jump

y1 z,w 74.36 91.13
y1 w 71.50 86.33
y1 z
y2 z,w 99.34 99.85 98.15
y2 w 99.28 99.83 97.34
y2 z
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ticular) and energy consumption. We showed directly that stabil-
ity is part of the cost, by allowing subjects to interact with a
high-impedance target and finding that they take advantage of it.
The only evidence for the energy cost was indirect: it was needed
to make our model fit the data. However, other studies have
provided more direct evidence: increased muscle cocontraction
has been found to yield more accurate movements (Burdet et al.,
2001; Gribble et al., 2003), and yet this is not a strategy that
subjects normally use, suggesting that they care about energetic
efficiency in addition to accuracy. It is also notable that successful
optimal control models of full-body movements are predomi-
nantly based on energy minimization (Anderson and Pandy,
2001; Pandy, 2001). In obstacle avoidance tasks (experiments 2
and 3), there is likely to be a fifth component of the cost having to
do with avoiding the obstacle. Although we did not model this
cost, we showed that obstacle avoidance does not rely on hard
constraints such as fixed imaginary targets to the side of the
obstacle.

The main effect we analyzed, the incomplete correction for
late perturbations, reflects the closed-loop component of the sen-
sorimotor strategy. The fact that the effect decreased in the hit
condition means that the visuomotor loop operated differently,
as predicted by our model. Thus, changes in stopping require-
ments (as well as target impedance) caused changes in the way
visual feedback is used to make on-line corrections. This may be
the first demonstration that visuomotor feedback loops are af-
fected by the task and in particular by nonvisual components of
the task. In addition to demonstrating task sensitivity, we pro-
vided additional evidence that sensorimotor strategies are consis-
tent with the minimal intervention principle of optimal feedback
control (Todorov and Jordan, 2002b). We found that positional
variability is large during movement (especially three-
dimensional movement) and is only reduced near the end, where
accuracy is needed. We also found that, when the target is a
vertical stripe, endpoint variability is larger in the vertical direc-
tion and visual feedback is not fully used to suppress variability in
that direction. These results reaffirm the usefulness of looking
beyond average trajectories, studying variability patterns and re-
sponses to perturbations, and modeling the sensorimotor strate-
gies responsible for such effects.

Motor adaptation is a phenomenon that has not yet been
addressed in the optimal control framework, but in principle is
easy to address, as we showed in our model of increased variabil-
ity attributable to frequent perturbations. One can impose any
change in the task or environment, compute the new optimal
controller, and use it as a model of adapted behavior. Of course,
adaptation is rarely complete; thus, the predicted adaptation ef-
fect should be somewhere in between the baseline and fully
adapted optimal controllers. An interesting open question is how
to relate trial-to-trial dynamics of learning to asymptotic predic-
tions regarding optimal adaptation. One way to do this is to
model trial-to-trial changes as arising from an iterative optimiza-
tion algorithm, which in the limit converges to the adapted opti-
mal controller. This approach may yield richer models of learn-
ing dynamics than the linear state-space models currently used.
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