
Real-time State Estimation with Whole-Body Multi-Contact Dynamics:
A modified UKF Approach

Kendall Lowrey1, Jeremy Dao2, and Emanuel Todorov1

Abstract— We present a real-time state estimator applica-
ble to whole-body dynamics in contact-rich behaviors. Our
estimator is based on the Unscented Kalman Filter (UKF),
with modifications that proved essential in the presence of
strong contact non-linearities combined with unavoidable model
errors. Instead of the standard UKF weighting scheme, we use
uniform weighting which is less susceptible to samples that
violate unilateral constraints. We also develop a rich model
of process noise including noise in system parameters, control
noise, as well as a novel form of timing noise which makes the
estimator more robust. The method is applied to an enhanced
Darwin robot in walking as well as pseudo-walking while lying
on the floor. Estimation accuracy is quantified via leave-one-out
cross-validation, as well as comparisons to ground-truth motion
capture data which is not used by the estimator. A full update
takes around 7 msec on a laptop processor. Furthermore we per-
form the computationally-expensive prediction step (involving
210 forward dynamics evaluations in the MuJoCo simulator)
while waiting for sensor data, and then apply the correction
step as soon as sensor data arrive. This correction only takes 0.5
msec. Thus the estimator adds minimal latency to closed-loop
control, even though it handles the whole-body robot dynamics
directly, without resorting to any of the modeling shortcuts used
in the past.

I. INTRODUCTION

Accurate state estimation is a prerequisite for developing
robust and efficient feedback controllers for modern robots.
Such robots have high-dimensional dynamics that cannot be
modeled exactly, and are subject to strong non-linearities
(particularly due to contact phenomena) which make estima-
tion challenging. Our goal is to develop a general estimator
that works in real-time and yields results that can be safely
fed into a whole-body feedback controller.

The starting point of our work (as well as almost every
other approach to estimation) is recursive Bayesian inference.
However, with the exception of a few special cases, we can
not represent the true Bayesian posterior. Thus, we must
resort to some approximation, seeking a favorable trade-
off between approximation accuracy and computational effi-
ciency. The two most popular approximations are the sample
approximation used in particle filters, and the multivariate
Gaussian approximation used in Extended Kalman Filters
(EKF) and Unscented Kalman Filters (UKF). Particle filters
have the theoretical advantage that in the limit of infinitely
many samples, they converge to the true posterior, but the

This work was funded by the US National Science Foundation.
1Department of Computer Science and Engineering, University of Wash-

ington, and Roboti LLC. {klowrey,todorov}@cs.washington.edu
2Department of Applied Mathematics, University of Washington.

jdao913@uw.edu

number of samples required for high dimensional models
many samples proves difficult for real-time computation.

Gaussian approximations on the other hand can become
very inaccurate and cause filter divergence. The UKF is
known to alleviate this problem compared to the EKF, how-
ever it comes without any stability or optimality guarantees
for general nonlinear systems, and can diverge in practice.
Filter divergence if often caused by over-confidence, which
in turn reflects insufficient uncertainty in the dynamics or
sensor models. Indeed we have found that the traditional
UKF in our setting usually diverges. In order to make the
filter stable and accurate, we introduce two modifications.
First, we weight the samples computed by the UKF uni-
formly, instead of using the standard weighting schemes
derived from considerations of higher-order accuracy. Uni-
form weighting increases robustness to samples that violate
contact constraints and require the filter to postulate very
large external force in order to explain them. Second, we
develop a stochastic dynamics model with several noise
sources: system parameter uncertainty obtained from system
identification; timing noise that models the fact that sensor
measurements accumulate during the time step; and control
noise that models the fact that our actuator model is not
perfect and there is some backlash. We show empirically
that including all three noise sources results in more accurate
estimation than including any two, any one, or none of them.

Another important concern is real-time performance. Even
though the UKF is much faster than a particle filter, it
still requires 2N + 1 evaluations of the system dynamics
where N is the state space dimensionality. Even a relatively
simple humanoid such as the Darwin robot we use here has
26 DOFs (6 of them are unactuated torso DOFs) resulting
in N = 52. Thus we need 105 dynamics evaluations per
update, or in other words, our simulator has to run 100
times faster than realtime. We achieve this partly through
parallel processing. The remaining speedup reported here
is due to the efficiency of the MuJoCo simulator we use,
and the way we warm-start the iterative contact solvers
(which are found in all modern physics simulators, and are
usually the computational bottleneck). Our estimator is able
to handle the whole-body dynamics of the robot, and perform
an update in about 7 msec on a laptop processor. Importantly,
we hide most of that latency in the time when the computer
is waiting for the next sensor data to arrive. This is possible
because the UKF has the usual predictor-corrector form, and
the predictor step does not require the new sensor data.

Fig. 1. A picture of the Darwin-OP robot used in experiments.

II. RELATED WORK

Although estimation is utilized in almost every robotic
platform, performance and operating limitations frequently
lead to compromised accuracy. This is usually the case
when the dimensionality of the state starts increasing, or
the dynamical system is difficult to model, such as during
frequent contacts. We limit this section to the discussion of
applied estimation techniques to humanoid robots instead of
estimation in general.

A. Simplified Models

Frequently simplified models are used. Humanoids are
often approximated as an inverted pendulum model that
shifts its base during footsteps [1] [2]. This technique was
originally developed to simplify the planning of walking, but
similarly extends to estimation. Some model simplification
makes the inherent assumption that the robot’s movements
are quasi-static in its manipulation of the environment, which
is a common strategy [3] [4] [5]. This of course drops
information about more complicated dynamic actions and
motions. Additional information may be provided to the
estimator through contact location [6]. As contacts are a
critical phenomena of an under-actuated robot, planning
trajectories featuring contact and providing this contact in-
formation allows an estimator to perform better, but requires
prior planning.

B. Split Estimation

Another technique is to split the estimate between root ori-
entation, using a high quality inertial measurement unit, and
the joint state of positions and velocities [7] [8] [9][10]. This
results in information loss between the joint configuration
and the root, and may also be used in addition to a reduced
model. This type of split estimation allows for increased
drift as the root has less information to integrate regarding
the joint’s contacts with the world; this is usually overcome
with vision and LIDAR systems providing accurate root
position and orientation [11]. In a similar way, [12] is able

to track a high degree of freedom human hand in a cluttered
environment utilizing information dense vision and contact
physics. However, these are expensive solutions to the prob-
lem, with LIDAR systems being relatively cost-prohibitive.
These systems also rely on extremely information dense
sensors, a prime example being [13] which runs at 1000Hz.

Many of the above techniques use optimization as the
workhorse underlying the estimation. This may provide an
accurate measurement, but may require additional data to
increase accuracy, such as in a Moving Horizon framework
[14]. This limits performance as now multiple optimization
minimizations are needed; in non-linear systems this is often
non-trivial. Prior work performing fixed lag estimation in this
way meant that estimation updates had high latency after
acquiring new sensor data, and sensor data may even be lost
due to the computation time [15].

C. Non-linear Dynamics

While the Kalman Filter framework works exactly for
linear systems, under-actuated robotics in the presence of
contacts make for highly non-linear state transitions. Each
contact is a discontinuous constraint upon some configura-
tions of the state vector. These may be so non-linear that an
Extended Kalman framework may be insufficient to describe
state transitions: linearization near a contact may not capture
the physical phenomena of an actual contact. This may be
alleviated by ’softening’ the contacts to allow for action at a
distance, but this reduces the realism of the simulated robotic
system and may reduce estimation accuracy. Prior work [15]
required the use of softened contacts to remain differentiable,
which allowed for incorrectly estimated sliding in some
configurations. [16] uses contact switching to deal with
contacts, but this method requires dynamically changing the
model.

III. OUR METHOD

We define the problem as follows: we wish to estimate
a robotic system’s state xk = [qk; vk] where qk and vk
are the generalized configuration (positions) and velocities
of the degrees of freedom of the system at some time k.
We utilize an Unscented Kalman Filter (UKF) to propagate
sample points through the non-linear state transition function.
We briefly describe our UKF as follows. We wish to estimate
our state and state covariance matrix at some time k given
our previous state at time k− 1, which we denote as x̂k and
Pks.

We generate a set of 2N+1 sigma points–which we denote
as χi for the ith point–where N is the size of our state vector
xk−1. Our sigma points are the set of points perturbed from
the original as below; we may drop the k−1 term for clarity.

χ0 = x̂k−1

χi=1:N = x̂k−1 + (
√

(N + λ)Pk−1)i

χi=N+1:2N = x̂k−1 − (
√
(N + λ)Pk−1)i−N

where
(
√

(N + λ)Pk)i

is the ith column of the matrix square root (we use a
Cholesky Decomposition), and λ is a constant. We then
propagate each χ through the state transition function f
which accepts the sigma point and controls u to find our
state at time k + 1.

χi,k = f(χi,k−1, uk)

The first step in a Kalman process is the prediction. In a
UKF, we sum each sigma point χi to create our apriori state
xk|k−1 and covariance Pk|k−1 estimate:

x̂k|k−1 =

2N∑
i=0

Wiχi

Pk|k−1 =

2N∑
i=0

Wi[χi − x̂][χi − x̂]T

where Wi are the chosen weights applied to each sigma
point.

Similarly the vector of sensors measurements γi,k can
also be gathered through this Unscented transform process
where the observation function h is used instead of the state
transition function f .

γi,k = h(χi)

These predicted sensor measurements and sensor covariance
are also combined with a weighted sum, in addition to the
cross covariance matrix.

ẑk =

2N∑
i=0

Wiγi

Pzk,zk =

2N∑
i=0

Wi[γi − ẑk][γi − ẑk]T

Pxk,zk =

2N∑
i=0

Wi[χi − x̂k|k−1][γi − ẑk]T

These values along with the observed sensor data zk
are used to calculate the Kalman gain matrix Kk and
subsequently calculate the a posteriori state and covariance
estimate.

Kk = Pxk,zkP
−1
zk,zk

x̂k = x̂k|k−1 +Kk(zk − ẑk)
Pk = Pk|k−1 −KkPzk,zkK

T
k

A. UKF Weights

While there are many techniques to choose the weights
Wi used in the Unscented transform, we eventually set-
tled upon even weighting as the most stable for our use
case. Traditionally, any weights may be chosen so long as∑
Wi = 1, including negative weights in many use cases

[17]. However, we found that the use of weights less than
0 or greater than 1 exacerbate unrealistic forces induced by
the discontinuous state constraints that a robot experiences
through contact. Said another way, if a particular sigma
point χi is in violation of the contact constraints, there is
no particular rule to prevent it from inducing bad data into
the prediction and correction of the UKF except by having
weights 0 < Wi < 1 where Wi = 1/N .

We attempted to preserve the traditional weighting scheme
by adjusting those sigma points known to be in violation of
contacts by using an adaptive line search style re-weighting
of the perturbance (

√
(N + λ)Pk)i whilst also adjusting the

particular weights Wi according to [18], but this proved to
not be as successful as the even weighting scheme.

B. Modeling Error & Process Noise

Modeling error is an ever present difficulty in accurately
predicting robotics. Simple errors can manifest themselves
as constant biases in the system’s state transition function
xk = f(xk−1, uk) + ε such as Gaussian noise; these can be
readily reduced in standard system identification procedures.
More systematic errors, especially those involving modeling
the physical phenomena of contact can dramatically affect
state transitions with even minor changes.

Additionally, the real world also suffers from the affliction
of process noise, which is any difficult-to-model effects that
affect the state vector. While known sources of process noise
can be estimated along-side the state in an augmented UKF
[19], complicated physical systems such as under-actuated
robotics may not be able to quantify this relationship. Thus
we have two sources of discrepancy between our modelled
state transition function: the process noise and modeling
error. To accurately estimate a robot’s state we need to
overcome these sources of error.

We may represent an ideal state transition function as
fideal, which is a function of the state and controls that is
dependent on our model. We can rewrite it as such:

xk = fideal(xk−1, uk) = fmodel(xk−1, uk) + qk(xk−1, uk)

where fmodel is our known, modeled state transition and
qk is our unknown process noise function that may be time
varying. We first make the observation that forces applied
along the degrees of freedom of the robot can mimic the
process noise or overcome the difference between real and
modelled state transitions, similar to the changes induced
by qk. Other sources of error could be changed through the
modification of the underlying model governing fmodel, if
only we knew better model parameters.

These two ideas coupled with the UKF’s sample points
gives us the opportunity to sample from these sources of
noise:

χi,k = f(χi,k−1+Nk
, uk + nu,M + nm)

where nu and nm are control noise and model noise
respectively.

The parameters that we add noise to are the control
vector, model mass parameters, and the time index as zero

mean Gaussian noise. The time aspect is inspired by the
knowledge that our sensor readings are not instantaneously
time synced across all sensors coming from hardware. As
such the variance of the Gaussian noise is the variance of the
dt (delta timestep) of the collected sensor data. The model
mass noise parameter was determined from a system identi-
fication procedure of measuring the robot mass in different
configurations to discover any measurement discrepancies.
This mass noise is distributed randomly among the different
body components of the model whilst still normalizing to
the expected mass of the robot (2.97 kg). Mass, of course,
is an underlying parameter that effects all aspects of the
state transition, and from prior work [20], we found it to be
critical in generating robust trajectories. Finally, varying the
controls is most analogous to changing the degree of freedom
forces to mimic process noise, but also helps to overcome
the difficulty of modeling backlash and deadbands found in
geared, position controlled motor systems.

TABLE I
APPROXIMATING PROCESS NOISE

Noise Source Standard Dev.
Time 0.00096 seconds
Mass 0.012 kg
Control 1e-4 radians

In the end, these noise sources serve two functions. One
is to approximate the stochastic process noise and overcome
the modeling error inherent in real world robotics, and
secondly, to encourage our UKF formulation to develop
appropriately descriptive state covariance matrices. Although
these parameters could be included in the xk state vector of
positions and velocities as additional state terms, sampling
from a distribution for the noise does not increase compu-
tational load (as we do not have additional sigma points)
as well as encourage the state covariance matrix to richly
describe the state variability at time k. If all the samples
in a simulator integrate forward in time with the same
deterministic state transition function, the covariance matrix
hardly provides useful information. While process noise is
frequently sampled and added to each sigma point’s state
vector, this approach leads to constraint violations which can
contribute additional inaccuracies to the estimate.

It should be noted that adding this kind of modelling noise
is not apparent in estimation techniques that are not sampling
based. Control and time noise are able to be included in
frameworks such as a Moving Horizon Estimator or EKF,
but it is less obvious to include mass noise when your
framework depends on state and control linearization to
calculate Jacobian matrices.

C. Sensor Noise
Another critical detail of any estimator is quantifying

the sensor noise. As highly accurate sensor hardware is
prohibitively expensive, we overcome sensor noise through
a combination of system identification and sensor weight-
ing. Gathering statistics on sensor noise such as mean and

variance is standard procedure for any robotics application.
Using these values, we have a baseline for the diagonal of
the sensor covariance matrix Pzk,zk . This, in effect, tells
the estimator how much to trust the sensor readings from
the robot hardware, and is a set of tunable values acting
as sensor weights. Some values need to be adjusted due to
large dynamic range of the sensed values during operation,
as well as the sensitivity of the estimator to some sensors.
For example, force and torque sensors can capture highly
discontinuous events that can cause an estimate to over-
correct, while a gyroscope is an intrinsic sensor centered
at zero.

TABLE II
ASSUMED SENSOR NOISE VARIANCE. WE FIRST MEASURED THE SENSOR

VARIANCE FROM COLLECTED DATA, AND ADJUSTED THESE VALUES

EMPIRICALLY TO BENEFIT ESTIMATOR PERFORMANCE.

Accelerometer 1e-4
Gyroscope 1e-6
Force 1e-3
Torque 1e-2
Joint Position 1e-7
Joint Velocity 1e-5

IV. PRACTICAL CONSIDERATIONS

Estimators need to provide data accurately and quickly to
allow for successful robot operation of dynamic controllers.
As such, we utilize the UKF over other means due to the
performance benefits of a specific, controlled sample set
– unlike a Particle Filter – while maintaining accuracy in
dynamic situations such as making and breaking contact.
In the following section we describe a few methods used
to achieve real-time performance, which we define here
as completing all estimator computations within the time
between sensor updates.

V. ROBOTIC PLATFORM

TABLE III
ESTIMATOR TIMING

Machine Prediction Time (ms) Correction Time (ms)
Desktop 5.2± 1.46 0.57± 0.18
Laptop 6.74± 1.22 0.66± 0.21

Our simulation environment is based on the MuJoCo
physics engine, which allows for fast evaluation of dynamical
systems even with contact [21]. While MuJoCo is nominally
designed to allow for fast finite differencing, the UKF style
of estimator is computationally similar to a finite difference
procedure. Our UKF needs to evaluate 2N+1 sample points
centered on one centroid point through forward dynamics. As
such the accelerations calculated for the centroid point can
be used to warm-start the dynamics evaluations for the rest of
the sigma points, reducing computational overhead through
data reuse.

Fig. 2. Shown is the Root Mean Squared Error for a walking trajectory with the estimator utilizing different sources of noise. Lines that leave the plot
area usually have experienced an estimation divergence. The Phasespace markers used to calculate the RMSE were located on the Darwin-OP torso to
isolate any drift, as limb deviations could contribute to high RMSE without causing drift. It should be noted that the estimation performed here did not
use the Phasespace data in the estimation loop; drift would be nearly inevitable without some similar position based sensor.

Fig. 3. Our estimation loop consists of a prediction phase and correction
phase that must happen within the sensor measurement loop. As the sensing
happens consistently, we can perform our prediction step before receiving
sensor data (where normally we would use the measured time delta to
integrate in our state transition), which leaves the Kalman correction step to
happen after the sensors have provided data. As our process loop happens to
be fast enough, we have time to evaluate from a feedback controller based
on the calculated estimate between the correction and prediction steps.

Further performance improvements arise from full utiliza-
tion of modern CPU architectures. As each sigma point is
evaluated independently from the others, our computations
are highly parallelizable which we take advantage of through
multithreading the dynamics evaluation. Finally, because our
robotic platform’s sensor updates have consistent timings,

we opt to complete the prediction step of the Kalman Filter
before the arrival of new sensor data, allowing a new state
estimate to be completed in less than 1 millisecond after new
data. This is intended to benefit future dynamical control
efforts by being able to utilize our estimated state as soon
as possible after new sensor data is received.

The Darwin-OP humanoid biped produced by Robotis
Ltd. is a 26 degree-of-freedom robot – 3 root positions, 3
root orientations, and 20 actuated joints. Each actuator is
a MX-28 servo motor with position measurement of 12-bit
resolution over 2π radians that is position controlled. Prior
work utilizing this platform led us to encounter a number of
technical difficulties in using the platform as is, as such we
modified the original hardware to increase sensing capability
and compute performance as follows.

The original on-board low-power x86 CPU was removed
to make way for a higher performance inertial measure-
ment unit (IMU), the PhidgetSpatial High Resolution, which
connected to an installed USB hub alongside the original
Darwin-OP motor sub-controller board. Additionally, the
original force resistive sensing feet were replaced with two
ATI Nano-25 6-axis force/torque (F/T) sensors. These F/T
sensors need to be connected to large signal amplification
boxes off the robot; as such their cables were routed to the
back of the Darwin-OP torso and bundled with the USB
cables necessary to communicate with the IMU and sub-
controller. These amplification boxes were then routed to
a analog to digital signal converter which also communi-
cates over USB. Finally, 16 Phasespace Impulse IR tracking
markers were installed on the torso and limbs of the robot
to serve as ground truth tracking for estimator verification.
These markers needed to be powered by a large wireless pod
which was also off the robot platform.

As the motors, IMU, and F/T sensors all communicate
over USB, we have the option to link our modified Darwin-
OP platform to any computer system we would like. For our
purposes we developed and tested our estimator on both a
desktop with an Intel Core-i7 5930k CPU as well as a laptop
containing a Core-i7 4710HQ processor. While our estima-
tor’s evaluation proved quick enough on the laptop, we also
tested on the larger desktop processor to gauge additional
performance improvements. These details are discussed in
section IV.

VI. EXPERIMENTS
We tested our estimator on data collected from our robotic

platform through an open-loop, fast, ZMP-style walking
(software provided by the manufacturer) across a flat surface
as well as the same walking process while the robot was
lying face down. The walking takes approximately three
steps every two seconds. The face down test was to examine
reduced sensor usage – as the robot was not standing on its
contact sensors – as well as increasing the contact surface. As
an estimator attempts to find an accurate state configuration
given sensor data, we stressed our estimator with these kinds
of contact phenomena during dynamic motion.

A good estimator would have good sensor accuracy while
also avoiding drifting of the robot. Accuracy is examined
with Leave-One-Out tests that regenerate specific sensor
values when those sensors are left out of the estimation
process.

We validated our drifting tests by using the Phasespace
markers as ground truth (and not in the estimator) after
appropriately filtering out poor marker readings as not all
markers were visible all the time. We attempt to validate two
things. First, our estimator should not have a high root mean
squared error between its predicted Phasespace markers and
the actual measured marker data, where the error at time k is
the average Euclidean distance for the set of used markers.

RMSEk =
1

Nmarkers

∑
markers

‖zk − ẑk‖

To show our estimator also works over longer periods of
time as well, we perform the same RMSE test with our
process noise model and including the Phasespace markers
in the estimator. Without the markers in the estimator, any
estimator would be likely to drift over time.

Where here the zk terms are only the marker measure-
ments instead of the full sensor vector. We calculate this
RMSE for different configurations of model noise to show
the combined effects. Secondly, we attempt to validate our
model noise parameters by scaling its values and calculating
an average RMSE for the entire trajectory to show how
changing these model noise terms affects the drift amount.

As we did not utilize the external position tracking of
the Phasespace markers in our estimator, we initialized the
estimator with our simulated models data after the simulation
was configured with the same initial control vector of the
actual robot. This meant that the estimator initialization
began close to the actual true starting position – we assume

the initialization of the robot hardware begins near the
origin of the simulator’s coordinate system in a robot centric
fashion. Without any root position and orientation tracking
system, divergence would be otherwise inevitable as the root
of the robot is not directly observable.

VII. RESULTS

Our estimation technique utilizing modeling noise suc-
cessfully tracks our robot through dynamical motions with
numerous contacts. Importantly, it does so while keeping
drift low even while walking across a flat surface without
external position sensing used for the estimate. We had
implemented a basic EKF for comparison, but the filter
diverged almost instantly due to heavy non-linearities from
contacts. Thus, for brevity we only include data from our
main UKF in this paper.

Figure 2 shows the effects of different configurations of
model noise; the best performing configuration was with
time, mass, and control noise all utilized for both the walking
trajectory and fallen position. This intuitively makes sense
as allowing for more noise in the estimator gives it more
possible states to correct for. The plot shows one particular
walking sequence of eight steps over five seconds with a
drift of about 4 cm; the total distance travelled was 35.2
cm. Additionally, some estimator configurations with less
noise would actually diverge. This is especially apparent in
the configuration without contributing noise: the robot falls
over in a configuration the Kalman update cannot correct
for, leading to an over-correction and blow-up. However, it
is important to note that the estimator does perform very
well when given all sources of noise. In a fallen position,
there are many contacts occurring, with even more dynamic
motion and contacts coming from the walking sequence. It
is a great example of the estimator’s strong ability to deal
with multiple contacts.

TABLE IV
AVG. RMSE WITH MISSING SENSORS. WE FIND THAT OUR ESTIMATOR

IMPROVES FROM USING ALL AVAILABLE SENSORS (STILL NOT

INCLUDING THE PHASESPACE MARKERS).

Sensor Avg. RMSE (Meters)
All 0.0407
No Accl 0.0493
No Gyro 7.76e+14
No Force 0.0434
No Torque 0.0809
No J.Pos 2.86e+9
No J.Vel 0.4215

Figure 4 shows the estimator’s attempts to predict missing
sensor values. The ability to predict these are necessary
to demonstrate the physical consistency of the estimated
state. This shows which sensors are critically necessary for
accurate estimation. For example, the gyroscope is poorly
estimated when left out causing large errors, but predicted
almost exactly when provided to the estimator. This is
because the gyroscope is a low variance sensor, and can

Fig. 4. We show the results of a Leave-One-Out (LOO) test where the walking robot was estimating its state without the use of the indicated sensor,
and we plot the prediction for the missing sensor. The thick blue line is the recorded sensor value from the hardware, while the red line is the value
predicted when the sensor was disabled during estimation. For reference, the black line is the predicted sensor value with full sensors. This LOO test
shows a correspondence between the sensor weighting and how closely it is matched.

Fig. 5. As drift is likely without high fidelity positional sensors, such
as LIDAR, we include this example of our UKF tracking over a minute
including the Phasespace sensors in the estimator. RMS error of this size can
most likely be attributed to Phasespace calibration and system identification
errors.

thus be trusted more. Further insights are to be had when
looking at the F/T sensors. The matching is poor, but not
off base when the sensor is left out, especially along the
X, Y axes. The Z axis values match more closely as they
are more critical to drift-free forward walking and standing;
these terms match more closely. The discrepancy of the
X, Y axes can be partially explained by the sensitivity of
modelling errors regarding these particular sensors. Small
errors in contact geometry, hardness, or frictional coefficients
may greatly affect these predicted values. By performing
the Leave-One-Out test on all sensors, we gain insight on
to how well they can be trusted, and thus how large the
variance should be in the estimator. We also show how the
noise parameters used by the estimator can also hurt the
performance in figure 6 and table IV. The plot shows how

scaling the sources of noise can actually increase RMSE
values when too small or too large. Too little noise restricts
the estimator’s possible states, preventing it from making
accurate corrections. Too much noise will throw off the
estimator, causing it to diverge. The table calculates the
average RMSE when specific sensors are not used in the
estimation; there is divergence when the joint position and
gyroscope sensors are not used.

VIII. CONCLUSIONS AND FUTURE WORK

We demonstrate our full body modified UKF estimator on
a 26 DOF humanoid robotic in dynamic tasks with contacts.
We are able to achieve low drift and accurate state and sensor
reproduction with real-time performance characteristics. This
was achieved without needing to ’soften’ the rigid body
contacts or splitting the estimate into two for root and joints,
and without a reduced model. We were also able use only
kinematic sensors at a reasonable sampling rate.

Further improvements could still be made. Though our
attempt at handling estimate constraint violations (see section
III-A) resulted in inaccurate estimates, adjusting the UKF’s
sigma points to avoid un-realistic violations could improve
the estimate. Instead of the line-search style approach, one
idea is to project the sigma points from the previous timestep
towards their new positions; this may allow some of the
benefits of a MHE to occur.

Additionally, as our estimator works in real-time, future
work should use this UKF estimator for dynamic feedback
controls instead of the open-loop ZMP style walking we used
here. More dynamic behavior may stress the estimator in its
current configuration more; additional sources of modeling
noise, including geometry, inertia orientations, and actuator
parameters may be needed to improve its performance.

Fig. 6. Here we show how our noise parameters contribute to estimator
performance. Too little or too much added noise from time, control, and
mass can cause a reduction in performance – in this case more drift. The
RMSE values are averaged along the time of the trajectory to give us a
measure of the mean deviation for the entire run.

Fig. 7. RMSE plot of when the robot was started in a fallen position.
The walking sequence was still applied to induce dynamic motion and
additional contacts. The effects of our estimator are not as apparent in this
plot, although the configuration with all sources of noise still performs the
best. This may be due to the fact that the robot does not traverse any
distance, thus creating less chance for drift. It should be noted that some
configurations of noise lead to blow-up in this fallen position; the extra
contacts of the robot laying on the ground may have allowed estimator to
go unstable from the noise inducing increased constraint violations.

REFERENCES

[1] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Yokoi, and
H. Hirukawa, “Biped walking pattern generation by a simple three-
dimensional inverted pendulum model,” Advanced Robotics, vol. 17,
no. 2, pp. 131–147, 2003.

[2] T. Sugihara, Y. Nakamura, and H. Inoue, “Real-time humanoid motion
generation through zmp manipulation based on inverted pendulum
control,” in Robotics and Automation, 2002. Proceedings. ICRA’02.
IEEE International Conference on, vol. 2. IEEE, 2002, pp. 1404–
1409.

[3] A. Bicchi and V. Kumar, “Robotic grasping and contact: a review,”
in IEEE International Conference on Robotics and Automation, 2000.
Proceedings. ICRA ’00, vol. 1, 2000, pp. 348–353 vol.1.

[4] Y. Wang and S. Boyd, “Fast model predictive control using online
optimization,” IEEE Transactions on Control Systems Technology,
vol. 18, no. 2, pp. 267–278, Mar. 2010.

[5] A. Okamura, N. Smaby, and M. Cutkosky, “An overview of dexterous
manipulation,” in IEEE International Conference on Robotics and

Automation, 2000. Proceedings. ICRA ’00, vol. 1, 2000, pp. 255–262
vol.1.

[6] M. Bloesch, M. Hutter, M. A. Hoepflinger, S. Leutenegger, C. Gehring,
C. D. Remy, and R. Siegwart, “State estimation for legged robots-
consistent fusion of leg kinematics and imu,” Robotics, vol. 17, pp.
17–24, 2013.

[7] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Per-
menter, T. Koolen, P. Marion, and R. Tedrake, “Optimization-based
locomotion planning, estimation, and control design for the atlas
humanoid robot,” Autonomous Robots, vol. 40, no. 3, pp. 429–455,
2016.

[8] X. Xinjilefu, S. Feng, W. Huang, and C. G. Atkeson, “Decoupled
state estimation for humanoids using full-body dynamics,” in 2014
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2014, pp. 195–201.

[9] B. J. Stephens, “State estimation for force-controlled humanoid bal-
ance using simple models in the presence of modeling error,” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on. IEEE, 2011, pp. 3994–3999.

[10] M. Benallegue, A. Mifsud, and F. Lamiraux, “Fusion of force-
torque sensors, inertial measurements units and proprioception for
a humanoid kinematics-dynamics observation,” in 2015 IEEE-RAS
International Conference on Humanoid Robots, Nov. 2015.

[11] M. F. Fallon, M. Antone, N. Roy, and S. Teller, “Drift-free humanoid
state estimation fusing kinematic, inertial and lidar sensing,” in 2014
IEEE-RAS International Conference on Humanoid Robots. IEEE,
2014, pp. 112–119.

[12] N. Kyriazis and A. Argyros, “Physically plausible 3d scene tracking:
The single actor hypothesis,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2013, pp. 9–16.

[13] M. Falln, M. Antone, N. Roy, and S. Teller, “Drift-free humanoid state
estimation fusing kinematic, inertial and lidar sensing,” in 2014 14th
IEEE-RAS International Conference on Humanoid Robots, Nov. 2014.

[14] E. L. Haseltine and J. B. Rawlings, “Critical evaluation of extended
kalman filtering and moving-horizon estimation,” Industrial & engi-
neering chemistry research, vol. 44, no. 8, pp. 2451–2460, 2005.

[15] K. Lowrey, S. Kolev, Y. Tassa, T. Erez, and E. Todorov, “Physically-
consistent sensor fusion in contact-rich behaviors,” in 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2014, pp. 1656–1662.

[16] N. Rotella, M. Bloesch, L. Righetti, and S. Schaal, “State estimation
for a humanoid robot,” in 2014 14th IEEE/RJS International Confer-
ence on Intelligent Robots and Systems, Sept 2014.

[17] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear
estimation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422,
2004.

[18] P. Vachhani, S. Narasimhan, and R. Rengaswamy, “Robust and reliable
estimation via unscented recursive nonlinear dynamic data reconcil-
iation,” Journal of process control, vol. 16, no. 10, pp. 1075–1086,
2006.

[19] Y. Wu, D. Hu, M. Wu, and X. Hu, “Unscented kalman filtering for
additive noise case: Augmented versus nonaugmented,” IEEE Signal
Processing Letters, vol. 12, no. 5, pp. 357–360, May 2006.

[20] K. Mordatch, I. anbd Lowrey and E. Todorov, “Ensemble-cio: Full-
body dynamic motion planning that transfers to physical humanoids,”
in 2015 IEEE/RJS International Conference on Intelligent Robots and
Systems, Sept 2015.

[21] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

