
Physically-Consistent Sensor Fusion in Contact-Rich Behaviors

Kendall Lowrey†, Svetoslav Kolev†, Yuval Tassa†, Tom Erez† & Emo Todorov†

Abstract— We describe a computationally-expensive but very
accurate approach to state estimation, which fuses any available
sensor data with physical consistency priors. This is done by
combining the advantages of recursive estimation and fixed-
lag smoothing: at each step we re-estimate the trajectory over
a time window into the past, but also use a recursive prior
obtained from the previous time step via internal simulation.
We also incorporate a physics engine into the estimator, which
makes it possible to adjust the state estimates so that the
inferred contact interactions are consistent with the observed
accelerations. The estimator can utilize contact sensors to
improve accuracy, but even in the absence of such sensors
it reasons correctly about contact forces. Estimation speed
and accuracy are demonstrated on a 28-DOF humanoid robot
(Darwin) in a walking task. Timing tests and leave-one-out
cross-validation show that the proposed approach can be used
in real-time and is substantially more accurate than the EKF,
without any over-fitting.

I. INTRODUCTION
Accurate real-time estimation of a robot’s state is essential

for a feedback controller to accomplish its goals. Contact-
rich behaviors such as dynamic locomotion and dexterous
manipulation require particularly accurate state estimation,
not only in terms of kinematics but also contacts and contact
forces. Indeed manipulation occurs when the robot exerts
forces on its environment through contacts. Useful physical
manipulation requires precise planning of deliberate contacts
and graceful response to accidental contacts, much like how
humans move in the world. However, contact phenomena are
difficult to predict and even more difficult to plan through;
the binary nature of contacts makes them altogether different
from other physical effects. Even when contacts are correctly
detected, estimation is required to reason about them and
provide dynamically consistent state that can be used for
robust control.

The predominant strategy of robotic manipulation
is through quasi-static movements and rigid grasping
[1][2][3][4]. Similarly, the predominant strategy to robotic
locomotion is quasi-static ZMP control. Richer manipula-
tions and interactions can be achieved by understanding
contacts and using them for deliberate force transfer and
thus control. Forces are exerted on the environment through
contact points; contacts and friction are therefore a critical
component of successful control since the presence or ab-
sence of contact determines the feasibility of a proposed
maneuver. Furthermore, contact forces are highly non-linear
functions of robot configuration as tiny differences in a
robot’s state can make or break contacts. In completely stiff

This work was supported by the National Science Foundation.
†University of Washington, Seattle, USA
{klowrey,svetko,tassa,etom,todorov}@cs.washington.edu

Fig. 1: Left: Darwin robot. Right: Model of the robot. White
spheres are PhaseSpace markers. Colored lines are traces of
the markers during recorded walking sequence.

bodies, this nonlinearity introduces a discontinuity in the
dynamical model of the system together with hard constraints
of joint configuration space.

The best way to gather information about the state of
the contacts is via tactile sensors that measure force or
pressure. Here the strong nonlinearity works in our favor.
The signal from a tactile sensor is extremely informative
regarding the contact state and the configuration. Indeed, the
skin on human end-effectors (hands, feet, lips, tongue), is
densely covered with touch sensors. Even with this large
sensing organ, there is plenty of evidence that the brain uses
multiple modalities to refine predictive models of its body
and environment while using these models for movement
[5]. This sensing and the associated processing is critical for
contact based manipulation [6].

Much like the role of skin, a role of the estimator is to
identify what are the actual contacts among potential contacts
as the robot moves through its environment. Here we assume
that we start with a rough of estimate of the robot’s state;
it can come from a vision based system or IMU integration.
Given a rough estimate, there is a potential contact between
any two object within a certain spatial margin. This dis-
ambiguation is challenging because the difference between
a potential contact versus actual contact is very small in
joint space. In other words, contacts do not have a smooth
observation model. Even when tactile sensors are present,
there are often parts of the robot that lack them. A robotic
arm will usually have tactile sensors only the fingertips, while
the palm, forearm and elbows will not be covered. Since a

contact can significantly change the dynamical behavior of
the system, a dynamical model can be used to disambiguate
the system’s contact state. Any deviation from the expected
behavior is a strong indication that a contact is present.

Furthermore, dynamical models can use contact informa-
tion to better predict the future trajectory. With a correct
knowledge of contact state, a contact-aware forward dynam-
ics simulator can predict the state of the system. Knowing
how a system affects its environment along with the state
of contacts can be turned into an inference mechanism [7].
In essence, by giving the estimator a proper understanding
of the system dynamics, including the difficult nature of
contacts, a better prediction can be made to allow for
more successful control. For example, particle filters are one
technique used to localize contact phenomena using tactile
sensors [8], but as manipulation tasks become more complex,
the number of required particles grows exponentially with the
number of contacts.

This problem can be represented in a principled way
in a Bayesian framework, where the physical predictions
of the model are used as a prior with sensor readings as
observations. The most basic implementation of the Bayesian
maximum likelihood optimization is the Extended Kalman
Filter (EKF), where generative models of the dynamics and
the observations are used to predict and correct an estimate
of the system’s current state. The EKF algorithm uses a linear
approximation of the dynamic and observation models and
takes a single Gauss-Newton step [9] to update the posterior.

Our approach is best understood by contrasting it with the
EKF. There are two key differences: First, we employ multi-
ple iterations to find the maximum of the Bayesian posterior,
re-approximating the dynamics and observation models at
each iteration while taking multiple Gauss-Newton steps.
Second, while the EKF aims to estimate the system’s current
state given the previous state, we maintain a representation
of the system’s history over a fixed number of steps into the
past to estimate the likelihood of the entire trajectory. This
is known as fixed-lag smoothing, except here we combine it
with recursive estimation and use a recursively-defined prior
from the previous time step. Thus the system reconsiders its
past estimate in light of the new observations. Our approach
can thus be viewed as a strict superset of the EKF. The
question then is, can the added computation be done in real-
time and does it increase accuracy significantly. The answer
is yes and yes, as we will see in the results section.

A unique feature of our approach is that we use a
physics engine (MuJoCo) as part of the estimation process.
It is needed to provide a model of physical consistency,
and obtain the necessary derivatives for optimization. As
a result, the proposed estimator can give rise to advanced
“reasoning” as follows. Suppose we observe (through vision)
that a passive object is accelerating beyond what would be
expected from gravity. This implies that some active object
(i.e. the robot) must be touching it and applying contact
force. But what if the present position estimate corresponds
to a configuration where the robot is not touching the object?
Clearly this estimate is wrong. So the estimator will correct

the configuration in a way that it remains close to the
available position measurements but now the robot touches
the object – at the nearest point where a contact can be
created. It will further adjust the depth of the contact so that
the inferred contact force (from inverse contact dynamics
– see below) accounts for the observed acceleration. Of
course the estimator does not go through this reasoning
process explicitly; instead it simply optimizes the Bayesian
posterior defined with respect to the physics model. To
facilitate optimization in the presence of contacts, we allow
small contact forces from a distance – so that the optimizer
can detect a gradient which tells it that moving closer and
eventually creating contact will be beneficial in terms of
explaining all available sensor data.

II. FRAMEWORK

A. Definitions

We consider a system composed of robots, moveable
objects that the robots can interact with, and a static envi-
ronment with certain geometry and contact properties. Define
the following quantities:

symbol meaning
n number of DOFs
h time step duration
t discrete time index
tE estimation horizon
εt perturbation force
p(εt) prior over perturbations
ut control vector
But force generated by ut
τt applied force (εt +But)
qt generalized position
vt generalized velocity
xt = (qt; vt) system state
yt sensor data
ft contact force
pt(yt|xt, τt) data likelihood
p̄(x) estimation prior
p̂(x) estimation posterior

The time window for trajectory estimation (or fixed-lag
smoothing) at step t is [t − tE , t]. The vectors v, τ, Bu, ε
have dimensionality n, while q has dimensionality greater
than n because it contains quaternions used to encode root
orientations. Nevertheless we use qa − qb to denote an n-
dimensional displacement vector. Since different sensors can
operate at different rates, the dimensionality of yt varies
with t and so does the likelihood pt. The time step h
corresponds to the fastest update rate, and we assume that
all other time steps are multiples of h. The model also has
constant parameters that include inertial properties, sensor
mounting frames, contact properties, object geometry. In
this paper we assume that these parameters have already
been inferred through offline system identification, perhaps
using our earlier method [10] which combined system iden-
tification and trajectory estimation. Here our focus is on
physically-consistent real-time state estimation with respect

to a known model. The only parameters we will estimate here
(using the EM algorithm) are the sensor noise covariances.

We will use the framework of Bayesian inference. The key
quantity is the data likelihood – which is a probability density
over the sensor data space. The shape of this density depends
on the (modality-specific) sensor noise models, while its
mean is given by the corresponding generative models as
follows:

Sensor Type Generative Model
encoder corresponding element of qt
contact sensor corresponding element of ft
3D marker computed from qt via forward kinematics
force sensor computed from (qt, vt, v̇t) via eRNE
IMU computed from (qt, vt, v̇t) via eRNE

eRNE refers to an extended recursive Newton-Euler
method we have implemented, which computes not only the
joint interaction forces but also the expected measurements
from force sensors and IMUs mounted anywhere on the
system. This is done by augmenting the standard RNE
recursion with the necessary coordinate transformations.

B. Inverse contact dynamics

Key to the efficiency of the proposed method is the
new contact model we recently developed [11]. It is an
extension of our earlier work [12] where we showed how
the standard LCP model of contact can be relaxed to obtain
a convex optimization problem which still yields realistic
contact dynamics. We also showed that the inverse contact
dynamics are the solution to a related convex optimization
problem. Previously both the forward and inverse problems
were handled by an iterative solver. In our latest work [11]
we found that the inverse problem can in fact be solved
analytically, in time that scales linearly with the number
of contacts. Furthermore the new method does not require
computation or factorization of the generalized inertia matrix.
It only requires forward kinematics, collision detection, RNE,
and our new analytical formula – all of which are linear-time
(except for collision detection which in principle can be slow,
but in the problems we are studying it takes a small fraction
of the CPU time).

Armed with this new analytical machinery, we can now
simplify trajectory optimization in the presence of contacts.
This simplification applies both to dynamic motion planning
and to physically-consistent estimation, although the focus
of this paper is on the latter. The idea is to represent the
trajectory as a sequence of positions

zt = (qt−tE , . . . , qt)

and compute all other relevant quantities as functions of z.
In this way we avoid redundancy in the representation and
the need to impose equality constraints (except for under-
actuation which is imposed by the perturbation prior). The
velocity and acceleration are based on finite-differencing the
positions over time:

vt = (qt − qt−1)/h
v̇t = (qt+1 − 2qt + qt−1)/h2

The analytical inverse dynamics developed in [11] then
provide the mapping

(qt, vt, v̇t)→ (τt, ft)

Thus given a triple of positions (qt−1, qt, qt+1) we can
recover all relevant quantities at time t and define cost
functions (log-likelihoods and log-priors) of these quantities.
We will further impose a smoothness prior which depends on
the difference between controls at consecutive time steps; this
adds a cost term that depends on a quadruple of positions.

C. Predictor-Corrector

Trajectory-based estimation can be done in the Bayesian
framework using the predictor-corrector approach as follows.
The predictor maps the posterior at time t − 1 to a prior at
time t:

p̂(zt−1|y−∞, . . . , yt−1)
ut−1−−−→ p̄(zt|y−∞, . . . , yt−1) (1)

This mapping uses the known control signal ut−1 to simulate
the forward dynamics, starting at the marginal of p̂ at xt−1

and adding noise from a stochastic dynamics model. We use
Gaussian models of the trajectory probabilities so marginal-
ization as well as shifting the time window is straightforward.

The corrector is where almost all the processing time will
be spent. Instead of just correcting xt in light of yt as is
done in traditional recursive estimation, we will correct the
trajectory estimate over the entire time window [t − tE , t]
using all the data from that window. We will do so by
applying multiple Gauss-Newton iterations per time step, in
contrast with the Extended Kalman Filter which only applies
one iteration. This will increase estimation accuracy at the
expense of processing time; timing and accuracy statistics
are presented below.

D. Estimation

We use maximum a posteriori (MAP) estimation over the
entire time window. Using Bayes rule and the standard con-
ditional independence properties, the mean of the posterior
is found by minimizing

− log p̂(zt) = const− log p̄(zt)−
t−1∑

k=t−tE+1

log pk(yk|qk, vk, v̇k) + log p(τk −Buk) (2)

The first term on the right is the log of a normalizing
constant which does not affect the optimization. Then we
have the usual prior followed by the likelihood. The last term
enforces physics consistency and will play an important role
here. It arises because any physical inconsistencies in the
candidate trajectory zt are attributed to external perturbations
εt = τk −Buk, whose prior probability p(εt) must be taken
into account. The sharper this prior is, the more physically
consistent the estimates will become at the expense of
accounting for sensor data. We may not want it to be too

0

0.5

1

right knee
ra

d

−1.5

−1

−0.5

0

left hip pitch

ra
d

−5

0

5

accelerometer x

m
⋅
 s

−
2

0

10

20

accelerometer z

m
⋅
 s

−
2

−1

0

1

gyroscope x

ra
d
⋅
 s

−
1

−1

0

1

gyroscope z

ra
d
⋅
 s

−
1

2.8 3 3.2 3.4 3.6 3.8 4 4.2
0

0.1

0.2

right heel impulse

N
⋅
 s

time (s)
2.8 3 3.2 3.4 3.6 3.8 4 4.2

0

0.1

0.2

left heel impulse

N
⋅
 s

time (s)

Fig. 2: Leave-one-out prediction test. Blue thick lines are the collected sensor measurements. Black dotted lines correspond
to the estimate of that sensor using all available data. Red lines are the prediction of a sensor’s values when the sensor is
unavailable to the estimator.

sharp, because physical consistency is assessed through the
model which may be incorrect.

Since we use Gaussian probability models, the minimiza-
tion reduces to non-linear least squares:

min
zt

{
‖zt − z̄t‖2P +

t−1∑
k=t−tE+1

‖yk − ȳk(qk, vk, v̇k)‖2S +

‖τ̄(qk, vk, v̇k)−Buk‖2R
}

(3)

Here the functions ȳk, τ̄ denote the generative sensor model
and the inverse dynamics respectively. The matrices P, S,R
which appear in the weighted L2 norms are the inverse
covariances of the corresponding Gaussian densities. The
computationally-expensive phase is evaluating and lineariz-
ing the functions ȳk, τ̄ . Once this is done, we have a
(symmetric positive-definite) approximation to the Hessian
of the cost function and can apply one step of the Gauss-
Newton method, using the Levenberg-Marquardt procedure
for (adaptive) linesearch. After convergence the Hessian is
used to update the inverse covariance P .

Because the cost function decomposes into a sum of
costs over triples (or quadruples when using smoothing) of
positions, the Hessian is band-diagonal. This allows very fast
Cholesky decomposition without fill-in, implemented with
our custom code.

E. Recursive Prior

The prior term ‖zt − z̄t‖2P in equation (2) is derived from
the posterior of the last time step in a recursive fashion.
The oldest measurement qt−tE is dropped and the gaussian
is conditioned on its value. The first n elements of the
mean are just truncated. The covariance is updated using
the standard formula P−1 = Σt−tE+1:t = Σ̄t−tE+1:t −
Σ̄t−tE+1:tΣ̄

−1
t−tE Σ̄T

t−tE+1:t. Finally, a new configuration qt+1

is appended to the trajectory using the forward dynamics
model, with a large diagonal covariance σIn corresponding
to modeling error. As can be seen in the bottom left of
Figure 4, the double inversion produces fill-in in P , but the
additional terms are small. We have found that the simple
approximation

P =
[
P̄t−tE+1:t 0

0 σ−1In

]
which maintains sparsity (Figure 4, bottom left), does not
perceptibly harm the convergence of the estimator.

III. EXPERIMENTAL PLATFORM

A. Hardware overview

The data used to test our estimation algorithm was col-
lected from a Darwin-OP robot produced by Robotis Ltd.
The robot has 26 degrees-of-freedom: 3 positions, 3 orienta-
tions and 20 joints actuated with MX-28 servo-type motors.
Joint encoders have 12-bit resolution, measuring discrete
angles of 2π/4096 radians. An integrated IMU provides 3-
axis accelerometer and gyroscope readings and each foot
is equipped with four pressure sensors at the corners. The

1 2 3 4 5
0

0.01

0.02

0.03

0.04

0.05

Gauss−Newton iterations

n
eg

at
iv

e
lo

g
−

li
k
el

ih
o
o
d

t
E
 = 1

t
E
 = 3

t
E
 = 15

t
E
 = 30

0 50 100 150 200 250 300 350 400 450
−0.05

−0.04

−0.03

−0.02

−0.01

0

optimizations / second

lo
g
−

li
k
el

ih
o
o
d

t
E
 = 1

t
E
 = 3

t
E
 = 15

t
E
 = 30

Fig. 3: Performance of different window sizes and number
of iterations. A window length of 1 and a single Gauss-
Newton iteration corresponds to the EKF and is designated
with a circle. Top: Negative log-likelihood as a function of
iterations in the optimization step. Bottom: A Pareto-like
curve taking into account the optimization time, we show
log-likelihood as a function of optimization steps per second.

sensors are networked to a sub-controller ARM processor,
which communicates to an x86 CPU over a USB to serial
interface.

B. Data Collection

The data flow begins programmatically with querying a
sub-controller for the desired data from sensors through a
USB to serial interface. A feature of this robot is that all
sensors and actuators are connected through the same half-
duplex serial connection in a master-slave configuration. The
subcontroller broadcasts a command for a given device based
on a hard-coded ID across the network, and the appropriate
device responds. This is repeated one by one for all sensors,
and the returned data is aggregated for our use. This collected
telemetry is then time-stamped and either cached to a file
for offline analysis or streamed to an off-board computer.
Data from the robot was collected at 125Hz. This rate was
chosen to account for potential variability in reading the data
off of the serial network while maintaining consistent time-
steps between samples. Furthermore, this rate was also used
to apply desired positions to the actuators; the control loop
process consisted of taking a snapshot of data, calculating
and applying controls, and then sleeping before waking every
8 milliseconds to begin again.

Hessian Hessian with 3rd−order term

Exact recursive prior Approximate recursive prior

Fig. 4: Sparsity patterns. Top left: The Hessian (inverse
covariance) of a trajectory with tE = 8 timesteps or 10
configurations q. Top right: Adding 3rd-order terms which
penalize temporal variability of the applied controls. Bot-
tom left: The matrix P of the exact recursive prior term
‖zt − z̄t‖2P . Bottom right: The approximate recursive prior
induces no additional fill-in to the original Hessian.

C. Phasespace

An addition to the robot based sensors was our use of
a PhaseSpace Impulse motion capture system. This system
uses a network of high frame rate cameras tracking active
LED trackers placed on the robot. The active LEDs were
attached to the body of the Darwin-OP at known locations
to give us accurate position data at 240Hz. The robot’s data
and the PhaseSpace were both streamed to a networked
computer that would combine the newest PhaseSpace sample
with a sample from the robot as its data arrived. This was
necessary as the robot’s telemetry occurred less frequently
than the PhaseSpace system’s, but could still guarantee some
synchronization between data streams.

D. Behavior for Data Generation

The controls that were supplied with the robot and used
to generate complex movements. This included stepping in
place, walking, and even falling and recovery. As we were
intent on the design and validation of an estimator, this
behavior was open loop control. The walking and stepping
featured a ZMP-based cyclic pattern that could vary step
length and foot placement angle, but did not receive feedback
to adapt to changing state properties. Falling and recovery
were scripts that could be played back when the robot’s in-
ertial measurement unit detected a gravity vector sufficiently
far from axis orthogonal to the ground plane. While simple
in nature, these behaviors provided the base for rich sensor
telemetry to challenge our estimator.

IV. RESULTS

Figure 2 shows a snapshot of our results for the Darwin
platform during walking. We left out sensor data, and let the
estimator predict what the missing data should have been.
The only sensor whose measurements are not well-predicted
is the gyroscope, which we attribute to the small angular
velocities of ∼ 1rad/sec, which do not have significant
effect on the dynamics.

Figure 3 shows the improvement of out method relative to
the EKF, along with timing results. The “sweet-spot” appears
to be 3 iterations with a window of 3 timesteps.

V. FUTURE WORK

The models we use recently developed optimization meth-
ods for both kinematic and dynamic system identification
[10]. They will be applied here by attaching Vicon markers
to the robots, sending diverse-yet-safe sequences of control
signals, recording all available sensor data, and optimizing
the model parameters. These parameters include link and
armature inertias, joint friction and damping, control gains.
We will also attach known masses to the robot and repeat the
experiments, and then verify that the identification algorithm
correctly interprets the change in dynamics.

Fig. 5: The Phantom-based manipulation platform.

We plan to apply our estimation framework to a our ma-
nipulation system consisting of 4 Phantom Premium Haptic
devices (Sensable Technologies). Here the contact state is
of huge importance since we must actively make and break
the contacts. While both the object and the Phantom robots
themselves are instrumented with Vicon markers and the
Phantom encoders have very high resolution, the fingertips
currently lack tactile sensors making the contact estimation
a very hard task. Complications arise from compliant nature

of the long linkage (including the 3D-printed fingertip) that
makes it impossible to fully trust the joint encoders.

REFERENCES

[1] A. Bicchi and V. Kumar, “Robotic grasping and contact: a review,”
in IEEE International Conference on Robotics and Automation, 2000.
Proceedings. ICRA ’00, vol. 1, 2000, pp. 348–353 vol.1.

[2] Y. Wang and S. Boyd, “Fast model predictive control using online
optimization,” IEEE Transactions on Control Systems Technology,
vol. 18, no. 2, pp. 267–278, Mar. 2010.

[3] A. Okamura, N. Smaby, and M. Cutkosky, “An overview of dexterous
manipulation,” in IEEE International Conference on Robotics and
Automation, 2000. Proceedings. ICRA ’00, vol. 1, 2000, pp. 255–262
vol.1.

[4] C. Rosales, R. Suarez, M. Gabiccini, and A. Bicchi, “On the synthesis
of feasible and prehensile robotic grasps,” in 2012 IEEE International
Conference on Robotics and Automation (ICRA), May 2012, pp. 550–
556.

[5] R. Shadmehr, The Computational Neurobiology of Reaching and
Pointing: A Foundation for Motor Learning. MIT Press, 2005.

[6] R. S. Johansson, “Sensory control of dexterous manipulation in
humans,” Hand and brain: The neurophysiology and psychology of
hand movements, vol. 1, p. 381414, 1996.

[7] N. Kyriazis and A. Argyros, “Physically plausible 3D scene tracking:
The single actor hypothesis,” in 2013 IEEE Conference on Computer
Vision and Pattern Recognition, vol. 0. Los Alamitos, CA, USA:
IEEE Computer Society, 2013, pp. 9–16.

[8] M. Koval, M. Dogar, N. Pollard, and S. Srinivasa, “Pose estimation for
contact manipulation with manifold particle filters,” in 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Nov. 2013, pp. 4541–4548.

[9] D. P. Bertsekas, “Incremental least squares methods and the extended
kalman filter,” SIAM Journal on Optimization, vol. 6, no. 3, p. 807822,
1996.

[10] T. Wu, Y. Tassa, V. Kumar, J. Movellan, and E. Todorov, “STAC:
simultaneous tracking and calibration,” IEEE/RAS International Con-
ference on Humanoid Robots (HUMANOIDS), 2013.

[11] E. Todorov, “Analytically-invertible dynamics with contacts and con-
straints: Theory and implementation in MuJoCo,” in International
Conference on Robotics and Automation (ICRA), 2014.

[12] ——, “A convex, smooth and invertible contact model for trajectory
optimization,” in International Conference on Robotics and Automa-
tion (ICRA). IEEE, May 2011, pp. 1071–1076.

	INTRODUCTION
	FRAMEWORK
	Definitions
	Inverse contact dynamics
	Predictor-Corrector
	Estimation
	Recursive Prior

	EXPERIMENTAL PLATFORM
	Hardware overview
	Data Collection
	Phasespace
	Behavior for Data Generation

	RESULTS
	FUTURE WORK
	References

