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Abstract—Neural networks have recently solved many hard
problems in Machine Learning, but their impact in control
remains limited. Trajectory optimization has recently solved
many hard problems in robotic control, but using it online
remains challenging. Here we leverage the high-fidelity solutions
obtained by trajectory optimization to speed up the training
of neural network controllers. The two learning problems are
coupled using the Alternating Direction Method of Multipliers
(ADMM). This coupling enables the trajectory optimizer to act as
a teacher, gradually guiding the network towards better solutions.
We develop a new trajectory optimizer based on inverse contact
dynamics, and provide not only the trajectories but also the
feedback gains as training data to the network. The method
is illustrated on rolling, reaching, swimming and walking tasks.

I. INTRODUCTION AND RELATED WORK

While robots are able to perform increasingly impressive
tasks, designing the underlying controllers remains tedious.
Smooth and low-dimensional dynamical systems such as
quadrotors admit principled solutions based on nonlinear
control theory [8, 16]. But more complex domains such as
legged locomotion or hand manipulation still require adhoc
approaches, where the control problem is broken down into
multiple subproblems whose solutions are manually adjusted
and then pieced together.

Compare this to the rapid march towards automation taking
place in Machine Learning and related areas. It is now possible
to train neural networks to perform vision or speech recog-
nition tasks with remarkable accuracy [10, 27, 6]. Equally
remarkable is the level of automation and the simplicity of the
training procedures. And this is not just a recent phenomenon;
convolution networks have been among the top performers in
character recognition for years [12].

So why are we not enjoying the same benefits in control? It
is not because people have not tried. Indeed control was among
the early applications of neural networks [17], and there is still
intense interest in this topic in multiple communities. Rein-
forcement Learning and Approximate Dynamic Programming
[4, 32, 28] have given rise to many techniques for function
approximation in the context of control. These include indirect
methods based on value function approximation [11] as well as
direct policy search methods [31, 22]. Data-intensive methods
have also been pursued in imitation learning [26]. Some of
the most interesting robotic behaviors generated by neural
networks are swimming and crawling [9] but they do not
involve control hazards such as falling, dropping an object or
hitting an obstacle. When such hazards are present, we doubt

that any roboticist would leave their robot in the hands of a
neural network trained with existing techniques.

Our goal is to make automatic controllers based on neural
networks or other function approximators work better – par-
ticularly in complex domains that involve contact dynamics,
underactuation, potential instabilities and a general need for
precision. Is there any approach to automatic control that
actually works in such domains? The only answer we are
aware of is trajectory optimization [38]. We are not referring
to optimization through reduced models (such as inverted
pendulum models), but rather to full-state optimization taking
into account the full dynamics. Such optimization is rarely
used on real robots, even though model-free methods exist
for adapting a given trajectory to unknown dynamics [34].
But at least in simulation, recent advances suggest that many
problems in robotic control can be solved fully automatically
[19, 18, 23, 2]. This is done by specifying a high-level cost
(the same cost that would be used in policy search), and letting
the optimizer compute a detailed control sequence and corre-
sponding trajectory that accomplish the task optimally starting
at a given state. The underlying numerical optimization is by
no means easy, and only becomes feasible if contact dynamics
are handled carefully and suitable continuation is used. Nev-
ertheless these methods are now able to synthesize complex
and physically realistic movements such as walking, running,
climbing, acrobatics, dexterous hand manipulation as well as
cooperative multi-character behaviors. The CPU time needed
to perform the optimization (without good initialization) is
between minutes and hours depending on which method is
used. In some cases trajectory optimization is applicable online
in model-predictive control [1, 33], and Moore’s law will only
make it more applicable in the future. But even if brute-force
online computing is a viable option for control of complex
robots, it is still desirable to somehow cache the solutions and
train a function approximator that can operate at a fraction of
the computational cost.

Combining function approximation with trajectory opti-
mization should in principle be straightforward given that they
both aim to solve the same optimal control problem. Indeed
deterministic optimal control has two formulations [30], one
based on dynamic programming leading to function approxi-
mation, and the other based on Pontryagin’s maximum princi-
ple leading to trajectory optimization. In practice however it is
not easy to get a trajectory optimizer to help a neural network.
The obvious approach would be to generate many optimal
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Fig. 1. Factor graphs of various optimal control algorithms compared to our
method. Parameters being optimized are in circles and objective factors are
rectangles.

trajectories (for different starting states) and use them as
training data – similar to imitation learning but with synthetic
instead of motion capture data. This is related to DAGGER
[25], which in earlier comparisons [13] did not perform as
well as the type of approach we advocate here. We will see
below that straightforward learning from optimized trajectories
is problematic because in the early phases of training the
network is not sufficiently competent to utilize such complex
data. In general, if traditional learning from trajectory data
was going to produce good controllers for complex tasks, that
would have already happened since human motion capture
data has been abundant for a while. Alternatively one can
use the local value function approximations generated by the
trajectory optimizer to fit a more global approximator. This
was attempted recently [39], and even though the fit was
accurate the resulting control law was not; this is because value
function approximation errors are not monotonically related to
controller sub-optimality.

A. Our approach

The alternative which we consider is to use the trajectory
optimizer as a teacher rather than a demonstrator. A good
teacher adapts to the student, providing guidance in small steps
which the student is able to assimilate. Here this will be done
by modifying the cost for the trajectory optimizer, so that it
still solves the control problem but in a way similar to how the
student (fails to) solve it. On this level of abstraction our work
is closely related to [14, 13]. The differences are in the techni-
cal approach. Here we use the Alternating Direction Method of
Multipliers (ADMM) [5] to couple the network and trajectory
optimizer, while in [13] the coupling was done by casting the
control problem as a dual Bayesian inference problem [37]
and exploiting variational approximations. Furthermore, here
we utilize a recent method to trajectory optimization based on
contact-invariant optimization [19], while [14, 13] used the
iterative LQG method [35] through the forward dynamics.
Another difference is that we use not only the trajectories
but also the time-varying feedback gains produced by the
optimizer as training data for the network. This is based on an

older idea known as tangent propagation [29]. We will discuss
the implications of these differences in V-E.

Beyond training the neural network to act as an
approximately-optimal feedback controller, we aim to make
this controller responsive to changes in the task itself. The
structure of the task is of course fixed and is implicit in the
training that the network received. But if the task has real-
valued parameters – such as the location of a target, or the
desired speed of movement – we encode these parameters as
inputs to the network. In this way the same network can be
used to solve a continuum of related tasks. Figure 1 illus-
trates how the proposed approach relates to more traditional
optimization approaches in control.

II. PRELIMINARY DESCRIPTION

A. Problem Formulation

In this paper we consider deterministic, discrete-time dy-
namical systems xt+1 = f(xt,ut) and task cost functions
l(xt,ut). xt and ut are respectively the state of the system
and controls applied at time t. Let X and U denote an entire
trajectory of these quantities. In this work we assume the
model is known and the state is fully observable. If necessary,
we can encode any relevant task parameters into x. For
example, x could be joint angles of an arm and target location
we want an arm to reach, while u are arm muscle activations.
Given a specific initial state xinit and task (also encoded in
xinit), one can find an optimal trajectory

[
X̄ Ū

]
that achieves

the task and satisfies the dynamics constraints:

[
X̄ Ū

]
= argmin

u

T∑
t=0

l(xt,ut),

s.t. xt+1 = f(xt,ut) and x0 = xinit (1)

This is the deterministic trajectory optimization problem, and
several algorithms exist to solve it. But the solution is specific
to only one situation. We wish to learn a control policy
π(x|W ) = u parametrized by W , such that for any given
initial state and any task it outputs controls achieving the
task. The problem is then to find policy parameters that give
good performance in expectation – which we approximate with
sample average:

W̄ = argmin
W

1

N

N∑
i=0

[
T∑
t=0

l(xti, π(xti|W ))

]
,

s.t. xt+1
i = f(xti, π(xti|W )) and x0

i = xinit
i (2)

It is possible to derive a gradient for the above objective and
apply gradient-based optimization, but that presents a number
of challenges as discussed in [13].

B. Desired Joint Optimization Problem

We instead propose to jointly optimize a collection of
trajectories each achieving a particular task, and parameters



of a single policy that can reconstruct all these trajectories.

[
X̄ Ū W̄

]
= argmin

X,U,W

1

N

N∑
i=0

L(Xi, Ui) +R(X,U,W ),

s.t. xt+1
i = f(xti,u

t
i) and x0

i = xinit
i (3)

Where L(X,U) =
∑
t l(x

t,ut) is a total trajectory task cost
and R(X,U,W ) =

∑
i,t

1
2‖π(xti|W )−uti‖2 is the total policy

reconstruction cost.
In policy search methods, this can be viewed as relaxing the

constraint that controls can only come from a policy function.
In trajectory optimization methods, this can be seen as adding
an additional regularizer that trajectories have to be recreatable
by a policy. This is a very large optimization problem and is
intractable for anything but the simplest settings. Instead we
will distribute this problem into a collection of independent
subproblems that each have an effective, well-studied and
readily available solution method. There are a number of ways
to solve the resulting distributed optimization problem. In
this work we use Alternating Direction Method of Multipliers
(ADMM) [5].

C. Alternating Direction Method of Multipliers

ADMM is a method that can be used to efficiently optimize
objective functions composed of terms that each independently
have efficient solution methods. For our purposes, consider the
following problem:

min
a
f(a) + g(a)

We can make two copies of the unknown variable and con-
strain the two to be equal:

min
a,b

f(a) + g(b), a− b = 0

We can solve this constrained problem by minimizing its
augmented Lagrangian:

L(λ) = argmin
a,b

f(a) + g(b) + ρλT (a− b) +
ρ

2
‖a− b‖2

This Lagrangian can be minimized in an alternating Gauss-
Seidel manner, optimizing each variable holding others fixed
(updating λ by gradient descent). This gives the following
iterative update scheme:

ā = argmin
a

f(a) +
ρ

2
‖a− b̄ + λ‖2

b̄ = argmin
b

g(b) +
ρ

2
‖ā− b + λ‖2

λ = λ + (ā− b̄)

The resulting scheme can be more efficient if minimizations
of f and g independently have efficient (or closed-form)
solution methods. If f and g are convex, the resulting scheme
converges to a global optimum, however this method has also
successfully been applied to non-convex problems [3].

III. ALGORITHM DESCRIPTION

We now describe the application of ADMM to solving
problem (3). We introduce two versions of each state (xL and
xR) and control (uL and uR). These correspond to states and
controls minimizing trajectory cost and policy reconstruction
cost, respectively. The analogue of augmented Lagrangian for
this problem is:

L(Xλ, Uλ) = argmin
1

N

∑
i

L(XL
i , U

L
i ) +R(XR, UR,W )

+
ρ

2
‖XL −XR +Xλ‖2 +

ρ

2
‖UL − UR + Uλ‖2

s.t. xLi,t+1 = f(xLi,t,u
L
i,t) and xLi,0 = xinit

i

We update each of the variables in a block manner as before.
The update for the trajectory variables is:[

X̄L
i ŪLi

]
= argmin

X,U

∑
t

l(xt,ut)

+
ρ

2
‖xt − X̄R

i,t +Xλ
i,t‖2 +

ρ

2
‖ut − ŪRi,t + Uλi,t‖2

s.t. xt+1 = f(xt,ut) and x0 = xinit
i (4)

This is simply a trajectory optimization problem with two
additional quadratic terms in the cost function and can be
solved with existing trajectory optimization methods described
in III-A.

The update for the policy parameters is:

W̄ = argmin
W

R(X̄R, ŪR,W ) (5)

This is simply a regression problem for function π with inputs
X̄R and target outputs ŪR described in III-C.

The update for the reconstructed variables is:[
X̄R
t ŪRt

]
= argmin

x,u

1

2
‖π(x, W̄ )− u‖2

+
ρ

2
‖X̄L

t − x +Xλ
t ‖2 +

ρ

2
‖ŪLt − u + Uλt ‖2 (6)

This is a general but small optimization problem that can be
performed independently and in parallel for each trajectory.

The updates for the Lagrange multipliers are:

Xλ = Xλ + (X̄L − X̄R)

Uλ = Uλ + (ŪL − ŪR) (7)

We can think of λ as a running cost indicating where the
policy function makes prediction errors. The above algorithm
then changes the regression loss function and the trajectory
cost function to give more weight to regions where errors are
consistently made. Over time this has the effect of modifying
the optimal trajectory solutions, to that they become less
optimal at the task, but easier to learn a policy for.

Thus, we have reduced the policy learning problem to a
sequence of trajectory optimization and regression problems,
each of which are well-studied problems with efficient solution
methods. In principle any trajectory optimizer, policy and re-
gression method can be used. In practice however the selection
of methods is important, especially in harder problems. We



have used direct trajectory optimization and neural network
policies, which offer a number of advantages. The complete
algorithm is summarized below.

Algorithm 1: Distributed Policy Learning

1 generate N samples xinit
i ∼ X

2 initialize
[
XRUR

]
with trajectory optimization solutions

3 while not converged do
4 update

[
XLUL

]
by solving N trajectory optimization

problems (4) in parallel
5 update W by solving regression problem (5)
6 update

[
XRUR

]
by solving independent

minimizations (6)
7 update

[
XλUλ

]
using (7)

8 end

A. Trajectory Optimization

Trajectory optimization problems i are independent and can
be solved in parallel. While there exist several methods to find
an optimal trajectory [X U ] for equation (4), we have used di-
rect trajectory optimization because it was shown to solve very
difficult optimization problems [19]. The optimization solves
for a sequence of states, with controls recovered implicitly via
an inverse dynamics function ūt = g(x̄t, x̄t+1).

We use Mujoco library [36] to compute inverse dynamics
for all our experiments and contact-invariant optimization
approach [20] to handle experiment with contact (such as
walker). However, we stress that the only change to traditional
problem is two additional quadratic terms, which can easily be
incorporated into any existing trajectory optimization frame-
work.

Additional quadratic objectives introduced as part of
ADMM in (4) are easier to satisfy with direct optimization
methods than with indirect methods, such as DDP or ILQG,
because they can be used to directly warm-start the optimiza-
tion procedure, while initial guess for a control sequence for
DDP/ILQG may quickly diverge from its intended target. In
each ADMM iteration, we must re-solve N trajectory opti-
mization problems. Warm-starting the trajectory optimization
with solution from previous ADMM iteration greatly speeds
up convergence.

As we will see in the next section, we are also interested
in recovering a locally optimal feedback control law for
our optimal trajectories. While this a natural byproduct of
DDP/ILQG, it is not immediately clear how to recover it from
direct trajectory optimization.

B. Feedback Control Law from Direct Trajectory Optimization

We now show how a locally-optimal feedback control law
can be obtained within direct trajectory optimization. This
is needed here because our neural networks are trained to
reproduce not only the controls but also the derivatives of the
controls with respect to the states. Being able to obtain a feed-
back control law is of course valuable in itself, independent

of neural network training. DDP and iLQG methods do this
automatically – in fact computing the control law recursively
is how they find an improved trajectory. But in the context of
direct trajectory optimization we are not aware of prior work
where this has been done.

Changing notation slightly, let x denote the stacked vector
of states

[
xt;xt+1; · · · ;xT

]
where xt = c is fixed and the

remaining states are optimized. Let x∗ (c) be the (possibly
local) minimum of the trajectory cost. If we change the fixed
state xt the solution will change. For each solution we can
apply inverse dynamics and recover the control sequence.
Thus, in order to obtain a linear feedback control law, all
we have to do is differentiate x∗ (c) with respect to c. The
minimum is defined with respect to the local quadratic model
of the trajectory cost:

x∗ (c) = arg min
x

1

2
xTAx + xTb s.t. Ex = c

The matrix E extracts the first state from the stacked vector
x. This equality-constrained quadratic program can be solved
analytically using a Lagrange multiplier λ:[

x∗

λ

]
=

[
A E
ET 0

]−1 [ −b
c

]
Thus the derivative we seek is given by the second column of
the above block-inverse:

∂x∗

∂c
=

[
A−1E

(
ETA−1E

)−1(
ETA−1E

)−1

]
The resulting changes in control trajectories at time t are:

∂u∗

∂c
=
∂g

∂x

∂x∗

∂c

Where ∂g
∂x is a block Jacobian for the entire trajectory. Similar

procedure can be repeated to find feedback gains for other
timesteps. In the end, we gather all feedback gains in ŪLX .

C. Policy Fitting

As mentioned, update to policy parameters W in (5) in-
volves solving a regression problem for function π with inputs
X̄R and target outputs ŪR. As shown in the previous section,
we also have optimal feedback gains ŪLX , which provide ad-
ditional information on how target outputs change wrt inputs.
In this work, we make an approximation ŪRX ≈ ŪLX . If the
policy function we use are differentiable, we can incorporate
this information as additional objective in our regression loss
function:∑

i,t

1

2
‖π(xti|W )− uti‖2 +

α

2
‖∂π
∂x

(xti|W )− ∂u∗t
i

∂x
‖2 (8)

Where ∂u∗

∂x is an element in ŪRX . In this work, we choose
to neural networks, which can be differentiated wrt to inputs
and minimizing the above loss function is known as tangent
propagation [29]. This additional tangent data greatly helps in
network generalization performance and prevents overfitting,



while incurring only a modest computational overhead. Re-
cently a special case of tangent propagation has also been
reapplied for regularization in machine learning literature
under the name of contractive autoencoders [24].

IV. EXPERIMENTS

We have applied our method to learning control policies
for four different dynamical systems and tasks: rolling ball,
swimmer, arm, and planar walker.

A. Rolling Ball

The first experiment is a nonholonomic 3-dimensional ball
that is in contact with the ground. The ball has two actuators,
one along the spinning axis that can roll the ball in heading
direction and one along the vertical axis that can change head-
ing. The system has 5 degrees of freedom (3d position, heading
and spin). These degrees of freedom and their velocities are
the state input to the policy. The initial state is random for
each trial. The cost is to reach the origin while minimizing
actuation l(x,u) = ‖pos(x)‖2 + 0.01‖u‖2.

B. Swimmer

The second experiment is a 2-dimensional two-link swim-
mer that starts in a stationary random pose and must reach
and maintain a target forward velocity. The medium has water
density, which can create drag force and there is a current
force acting against the swimmer (so it cannot simply coast
forward). The system has 5 degrees of freedom and two
actuators. The cost is a quadratic around the target velocity,
and also includes penalties for actuation and high drag forces.

In order to perform this task, the policy must implicitly learn
two behaviors: discrete movement initiation to reach the target
velocity, and well as cyclic behavior to maintain that velocity.
In all cases, our method was able to produce these discrete
and cyclic motions.

Fig. 2. Example of actuation patterns produced by rolling out a policy pro-
duced by our method. Note both movement initiation and cyclic maintenance

C. Arm Reaching

The third experiment is a 3d humanoid arm that starts in
a random pose and must reach a spatial target with its end-
effector while minimizing actuation. The system has 4 degrees
of freedom (shoulder and elbow) and is fully actuated. Aside
from the degrees of freedom and their velocities, the actual
and target end-effector positions are also provided as inputs
to the policy.

We successfully learned a policy that was able to generalize
to new discrete reaching movements. The same policy (trained
on discrete movements) can also generalize to a continuous

movement task, where the target is dragged interactively.
Additionally, we tested the policy’s robustness against model
error by increasing the stiffness of the elbow joint, making it
very difficult to bend. The policy was still able to perform suc-
cessful reaching movement when possible. See supplementary
video for examples.

Fig. 3. Example of the arm model during an interactive reaching task

D. Planar Walker
The fourth experiment is a planar legs-and-trunk model with

7 degrees of freedom and 7 controls. The controls in this model
are reference joint angles (rather than joint torques), which
are then tracked with a PD controller in forward simulation.
We found this control space to work better than torque space.
Currently, there is a very small amount of root actuation (1e-3
the strength of leg actuators) in our model. Starting stationary,
the task is for the trunk to be displaced up to 3 body heights
in either direction. Our trajectory optimization is able to find
solutions that discover stepping motions and the policy is
trained to successfully recreate them. As with the swimmer,
the policy neural network in this experiment must learn to
capture both discrete movement initiation and termination, as
well as cyclic gait maintenance. Figure 4 shows the model and
a typical policy trajectory trail. As seen in the supplementary
video, the resulting trajectory rollouts change smoothly with
task parameters (target trunk location).

Fig. 4. Example of planar walker model and trajectory trail of a typical
policy rollout.

E. Policy Neural Network Details
We used the same neural network for all our experiments

except the walker. It consists of an input layer, two hidden
layers of 10 units each and an output layer. The walker used
three hidden layers with 25 units each. The hidden units use
smoothly-rectified transfer functions and the output units are
linear. We trained the network with LBFGS, but if the datasets
were to become larger, it is possible to use training methods
that scale better, such as stochastic gradient descent.

We trained the network on 100 trials, each of which lasted 2
seconds, consisting of 100 timesteps. Thus the training dataset
size is 10000 examples.



V. EVALUATION

A. Performance

We summarize the expected total cost for the different meth-
ods on the four problems we presented. The total cost over a
trajectory is evaluated by running the forward dynamics under
the different policies (trained with the different methods). The
expected total cost is an average over 1000 test trials.

The first method is Regression, which trains the neural
network on the training set once, using only controls as target
outputs. The second method is Regression+Gains, which also
trains on the dataset once, but includes optimal feedback gains
as additional target outputs. The third method, ADMM, is the
alternating algorithm we described above and also includes
optimal feedback gain target outputs. We can see that we
get a benefit out of using additional gain data and further
improvement from using our ADMM scheme.

Regression Regression+Gains ADMM

Ball 1.19e-2 1.92e-3 1.67e-3
Swimmer 1.03e+0 1.14e-1 7.43e-2

Arm 1.95e-2 9.03e-3 7.02e-3
Walker 9.92e-2 7.54e-3 5.24e-3

We further compare Regression+Gains and ADMM by
looking at the two cost terms in the joint optimization: task
and policy reconstruction. Both methods were given the same
computation time budget. The results for walker are shown
in figure 5. Adding a policy reconstruction term to trajectory
optimization can in theory degrade task performance, but that
does not happen here (both green curves are almost identical).
On the other hand, we see that policy reconstruction greatly
improves over ADMM iterations. However, these policy re-
construction improvements do not lead to drastic reduction
in overall policy performance as seen in table above. Indeed,
Regression+Gains is able to learn policies that function well,
indicating that we need to explore more challenging tasks.

Fig. 5. Two cost terms in 3 plotted against ADMM iteration for walker
experiment training. Green curves are task L(X,U) cost and black curves
are policy reconstruction cost R(X,U,W ). Solid curves are ADMM method
and dashed curves are Regression+Gains method given the same computation
time as ADMM.

We observed that the algorithm stops making significant
changes to the parameters after at most 15 iterations in
all our experiments. Below is a table of timing results (in
seconds) for various portions of the algorithm along with total

times. The hardware used for timing is a 24 core Intel Xeon
2.7GHz workstation. Note that the total time for ADMM is
smaller than the time for Regression+Gains multiplied by the
number of algorithm iterations. This is because warm-starts in
trajectory optimization and network regression greatly reduce
the number of iterations required by these methods to reach
sufficient optimality.

Ball Arm Swimmer Walker

Trajectory optimization 51 37 233 316
Network regression (no gains) 56 89 75 121

Network regression (with gains) 73 125 92 143
XR and UR minimization 6 8 6 8
Total time for Regression 113 126 315 437

Total time for Regression+Gains 131 170 331 467
Total time for ADMM 680 701 1411 2011

B. Effect of Training Dataset Size

In order to explore how our method performs with much
less training data, we revisited the reaching experiment and
reduced the number of trials from 100 to 10. Results are shown
in the table below. Performance of ordinary regression suffered
significantly (by an order of magnitude). On the other hand,
performance of our method degraded much more gracefully.
This makes our method very promising for data-impoverished
settings, which is often the case for complex, high-dimensional
problems.

Regression Regression+Gains ADMM

Normal Dataset 1.95e-2 9.03e-3 7.02e-3
Small Dataset 1.79e-1 1.45e-2 1.02e-2

C. Effect of Matching Feedback Gains

We further compared policies trained only on control target,
and those trained with additional feedback gain targets, in
the ball rolling task. In figure 6 we can see typical ball
trajectories generated by policies trained by Regression and
Regression+Gains respectively (results for ADMM were visu-
ally similar to the latter).

Fig. 6. Ball trajectories generated by training without (left) and with (right)
feedback gain targets

We find that even though the first type of network matches
the target controls very well, the derivatives of policy ∂π

∂x
behave very irregularly (red plot in 7). On the other hand,



the feedback gains ŪX (dashed green in figure 7) are a much
more regular signal that our method matches in additional to
the controls.

Fig. 7. Optimal feedback gains for a typical ball trajectory (dashed green)
and the corresponding ∂π

∂x
produced by a standard neural network (red). Gains

produced by our method are visually identical to dashed green curves.

D. Effect of State and Control Dimensionality

To investigate more systematically how the performance of
our learning method scales with state and control dimensional-
ity, we created an additional experiment where a planar N-link
arm (where N is 2, 5 or 10) reached to spatial targets. Training
and network size was similar to the other experiments. We
observed that performance did not suffer significantly when
the problem size increased. The task error averaged over 1000
test targets not seen in training was:

N=2 N=5 N=10

Task Error 3.44e-2 3.84e-2 4.22e-2

E. Comparison to Related Work

As noted earlier, the recent approaches of [13] and con-
current [15] are related to ours. That approach used DPP
for trajectory optimization. In problems involving contact
DDP needs good initialization, which in [13] was provided
via demonstration from a hand-crafted locomotion controller.
We use the contact-invariant optimization method specifically
designed for problems with contact, and are able to generate
policies (albeit for a simpler model at the moment) without
relying on prior controllers. Another important difference is
the regularity of trajectories produced by the optimizers. In our
experience, iLQG/DDP solutions may produce ill-conditioned
and noisy trajectories when contact is involved, whereas
direct methods tend to produce more regular and smoother
trajectories. While this is usually not a problem for achieving
the task, it makes training on this trajectory data more difficult.

Another difference is the way two methods modify the
trajectory optimization cost. [13] adds a nonlinear term mea-
suring divergence of controls from policy output under the
current state. This term requires the policy to provide first and
second derivatives with respect to the inputs, which in turn
requires differentiable policies. Even if they exist, the policy
derivatives may be sensitive quantities and take the trajectory
states outside the space the network is trained on. This issue
is ameliorated in [13] by averaging over multiple nearby state
samples. On the other hand, our ADMM method adds only

a quadratic objective on the states and controls and does not
require policies to be differentiable or even continuous.

VI. CONCLUSION AND FUTURE WORK

In this work we developed a new method for combining
the benefits of local trajectory optimization and global policy
(neural network) learning. The trajectory optimizer was given
an augmented cost, making it find solutions that resemble
the current output of the neural network – which in turn
makes training the network easier. The method was illustrated
on simple examples, focusing on assessment of the relative
benefits of the different improvements we made.

The next step is to scale this method to harder and more
interesting problems, which we have already been able to solve
in the context of trajectory optimization. One exciting appli-
cation is to recover movement policies that are interpretable.
Several hand-crafted locomotion laws have been proposed for
human walking and running that match human observations
[7]. It would be interesting if our method finds sparse policies
that are similar. This can be facilitated by introducing L1
regularization to the policy parameters, which can be easily
integrated into our ADMM method (and in fact is one of the
original applications of ADMM).

While conceptually policy search methods may be able
to find the same policies our method does, the intermediate
trajectories generated by policy search methods cannot be
outside the policy function class. Our method allows arbitrary
trajectories in the intermediate stages of optimization (because
they are not generated by the policy, but trajectory optimiza-
tion instead).

Currently, sampling a set of xinit (line 1 in the algorithm)
is done once and they are fixed for the duration of the
optimization. We would prefer to resample for new values
of these quantities as the optimization progresses. It would be
interesting to adapt recent work on stochastic ADMM [21] to
this problem.
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