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Abstract— We apply path integral reinforcement learning to
a biomechanically accurate dynamics model of the index finger
and then to the Anatomically Correct Testbed (ACT) robotic
hand. We illustrate the applicability of Policy Improvement with
Path Integrals (PI2) to parameterized and non-parameterized
control policies. This method is based on sampling variations in
control, executing them in the real world, and minimizing a cost
function on the resulting performance. Iteratively improving the
control policy based on real-world performance requires no
direct modeling of tendon network nonlinearities and contact
transitions, allowing improved task performance.

I. INTRODUCTION

We demonstrate control and learning of tendon driven
bio-mechanical and robotic systems, under difficult-to-model
real-world conditions. This work is part of a bigger project
in which the ultimate goal is twofold. First, we aim to use
biologically inspired control and design principles to improve
the state of the art robot control and design. Secondly,
we seek to better understand the underlying computational
principles of neural and bio-mechanical systems.

Although there have been a number of studies of neural
motor control and robotics, there still remains much progress
to be made in bridging the gap between these two areas.
Most studies are limited to applications of control algorithms
to simulation, due to the difficulty of interfacing with real-
world robotic hardware and biological motor systems. One
of the main reasons for this discrepancy between simulations
and real systems is that tendon-driven systems are very
complex. In tendon driven systems, torque around the joints
is created through a network of tendons attached to the links.
These tendons produce only positive force since they must
pull and not push. Nonlinearities due to friction and control
constraints contribute to the complexity of the underlying
robotic dynamics. Control and reinforcement learning algo-
rithms which perform well in simulation may not perform
well on real robotic systems due to factors like dependence
on accurate models and the “Curse of Dimensionality.”

A promising strategy for overcoming the complexity of
robotic tendon driven control is to avoid modeling it directly,
but instead to learn a set of controls which achieves success
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by actually trying them. Beginning with a single example
or demonstration, reinforcement learning can be applied by
iteratively minimizing a cost function on the outcome of
sample trials. This strategy, then, is to explore variations of
control, observe the outcome of using that control, and revise
the controller accordingly.

Recent work on path integral reinforcement learning
[1] has demonstrated the robustness and scalability of the
method to robotic control in high dimensional state spaces.
The iterative version of path integral control, the so-called
Policy Improvement with Path Integrals (PI2), has been
applied for learning and control with torque-driven robotic
systems. PI2 may be classified as model based, semi-model
based or model free depending on how the learning problem
is formulated. This is useful for learning control applications
with complex robotic systems, for which modeling of the
underlying dynamics and contact phenomena is very difficult.

One of the main ingredients of the application of PI2 in
previous work has been the use of nonlinear point attractors,
called Dynamic Movement primitives (DMPs). DMPs were
used to parameterize trajectories for the case of planning
or gains for the case of gain scheduling and applications
of variable stiffness control. In this work we go one step
further by applying (PI2) to tendon-driven hand systems.
In particular we demonstrate the use of PI2 on an accurate
biomechanical model of the index finger, and go on to apply
PI2 to the Anatomically Correct Testbed (ACT) robotic hand
for the task of sliding a switch. As we show, PI2 is flexible
because 1) it may be extended to tendon-driven systems
and 2) its use does not rely on policy parameterizations,
though it can accommodate them if desired. With very
small algorithmic changes, PI2 can be used to either directly
compute control commands u(x, t) or learn parameters θ
which, when projected onto basis functions, represent desired
trajectories or control gains: u(x, t) = Φ(x, t)Tθ.

In Sections II-III we review the control framework and
parameterization. Section IV describes the tendon-driven
systems, first in simulation and then on the ACT robotic
hand. The experimental conditions and results are described
in Section V.

II. PATH INTEGRAL CONTROL

In this section we review the path integral control frame-
work [1], [2]. We consider the following stochastic optimal
control problem with the cost function under minimization
given by the mathematical expression:



V (x) = min
u
J(x,u) = min

u

∫ tN

to

L(x,u, t)dt (1)

subject to the nonlinear stochastic dynamics:

dx = F(x,u)dt+ B(x)dw (2)

with x ∈ <n×1 denoting the state of the system, u ∈ <p×1
the control vector and dw ∈ <p×1 Brownian noise. The
function F(x,u) is a nonlinear function of the state x and
affine in controls u and therefore is defined as F(x,u) =
f(x) + G(x)u . The matrix G(x) ∈ <n×p is the control
matrix, B(x) ∈ <n×p is the diffusion matrix and f(x) ∈
<n×1 are the passive dynamics. The cost function J(x,u) is
a function of states and controls. Under the optimal controls
u∗ the cost function is equal to the value function V (x). The
term L(x,u,t) is the immediate cost and it is expressed as:

L(x,u, t) = q0(x, t) + q1(x, t)u +
1

2
uTRu (3)

The immediate cost has three terms1, the first q0(xt, t) is an
arbitrary state-dependent cost, the second term depends on
states and controls and the third is the control cost with R >
0 the corresponding weight. The stochastic HJB equation [3],
[4] associated with this stochastic optimal control problem
is expressed as follows:

−∂tV = min
u

(
L + (∇xV )TF +

1

2
tr
(
(∇xxV )GGT

))
(4)

To find the minimum, the cost function (3) is inserted into
(4) and the gradient of the expression inside the parenthesis
is taken with respect to controls u and set to zero. The
corresponding optimal control is given by the equation:

u(xt) = −R−1
(
q1(x, t) + G(x)T∇xV (x, t)

)
(5)

substitution of the optimal controls into the stochastic HJB
(4) results in the following nonlinear, second-order PDE:

−∂tV = q̃ + (∇xV )T f̃ − 1

2
(∇xV )TGR−1GT (∇xV )

+
1

2
tr
(
(∇xxV )BBT

)
with q̃(x, t) and f̃(x, t) defined as q̃(x, t) =

q0(x, t) − 1
2q1(x, t)TR−1q1(x, t) and f̃(x, t) =

f(x, t) − G(x, t)R−1q1(x, t) and the boundary condition
V (xtN ) = φ(xtN ). Solving the PDE above, especially for
high dimensional dynamical systems remains one of the main
challenges in nonlinear optimal control theory. To transform
the PDE above into a linear one, we use an exponential
transformation of the value function V = −λ log Ψ. By
inserting the logarithmic transformation and the derivatives
of the value function as well as considering the assumption

1The aforementioned immediate cost has the additional second term and
in that sense is more general than costs where only the first and third terms
are considered.

λG(x)R−1G(x)T = B(x)B(x)T = Σ the resulting PDE
is formulated as follows:

−∂tΨ = − 1

λ
q̃Ψ + f̃T (∇xΨ) +

1

2
tr ((∇xxΨ)Σ) (6)

with boundary condition: ΨtN = exp
(
− 1
λφtN

)
. Ap-

plication of the Feynman-Kac lemma to the Chapman-
Kolmogorov PDE (6) yields its solution in form of an
expectation over system trajectories

Ψ (xti) = Eτ i

(
e−

∫ tN
ti

1
λ q(x)dtΨ(xtN )

)
(7)

on sample paths τ i = (xi, ...,xtN ) generated with the
forward sampling of the diffusion equation dx = f̃(xt)dt+
B(x)dw. Thus, the Feynman-Kac lemma is crucial to
transforming the stochastic optimal control problem into a
problem of approximating a path integral. In discrete time,
the solution to 7 is approximated by:

Ψ(xti) = lim
dt→0

∫
P

(
xN , tN |xi, ti

)
(8)

× exp

−
(
φtN +

∑N−1
j=i qtjdt

)
λ

dxN
where the probability P

(
xN , tN |xi, ti

)
has the form of

path integral. After approximating the exponentiated value
function Ψ(x, t), the optimal controls can be recovered:

uPI(x) = R−1
(
q1(x, t) + λG(x)T

∇xΨ(x, t)

Ψ(x, t)

)
(9)

where the subscript PI stands for Path Integral. When
constraints in control are considered umin � uPI(x) �
umax the optimal control is expressed as:

uCPI(x) = max

(
umin,min

(
uPI(x),umax

))
The subscript CPI stands for Constrained Path Integral.

The min and max operators need to be applied element-wise.
In [1], [2] it has been shown that the path integral optimal
control takes the form:

uPI(xti) = lim
dt→0

∫
P (τ i) dwti (10)

with τ i is a trajectory in state space starting from xti and
ending in xtN , therefore τ i = (xti , ...,xtN ). The probability
P (τ i) is defined as

P (τ i) =
e−

1
λ S̃(τ i)∫

e−
1
λ S̃(τ i)dτ i

(11)

In the iterative version of path integral control framework,
dw can be thought as variations δu in the controls u.
An alternative formulation exists when control policies are
parameterized as u(x, t) = Φ(x, t)Tθ. In these cases, the
parameter θ plays the role of controls while dw can be
thought of as variations δθ in the parameters θ of the
parameterized policy u(x, t). Table I illustrates PI2 when



TABLE I: Policy Improvements with path integrals PI2-I.

• Given:
– An immediate state dependent cost function q(xt)
– The control weight R̃ ∝ Σ−1

• Repeat until convergence of the trajectory cost R:
– Create K roll-outs of the system from the same start state x0

using stochastic parameters u + δus at every time step
– For k = 1...K, compute costs and weights:

∗ S(τ i) = φtN +
∑N−1

j=i

(
qtj + δus R̃ δus

)
dt

∗ P
(
τ i,k

)
= e

− 1
λ
S(τ i,k)∑K

k=1
[e

− 1
λ
S(τ i,k)

]

– For i = 1...(N − 1), compute:
∗ δu(xti ) =

∑K
k=1 P

(
τ i,k

)
δus(ti, k)

– Update u← max

(
umin,min

(
u + δu,umax

))

TABLE II: Policy Improvements with path integrals PI2-II.

• Given:
– An immediate state dependent cost function q(xt)
– The control weight R̃ ∝ Σ−1

• Repeat until convergence of the trajectory cost R:
– Create K roll-outs of the system from the same start state x0

using stochastic parameters θ + δθs at every time step
– For k = 1...K, compute costs and weights:

∗ S(τ i) = φtN +
∑N−1

j=i

(
qtj + δθs R̃ δθs

)
dt

∗ P
(
τ i,k

)
= e

− 1
λ
S(τ i,k)∑K

k=1
[e

− 1
λ
S(τ i,k)

]

– For i = 1...(N − 1), compute:
∗ δθ(xti ) =

∑K
k=1 P

(
τ i,k

)
δθs(ti, k)

– Time averaging
∗ δθ =

∑N−1
i wiδθ(xti )

– Update θ ← θ + δθ

it is applied to constrained optimal control problems. Table
II illustrates PI2 for the case where parameterized policies
are used. The main difference is that in PI2-I there is no
time averaging of the control strategy changes as in PI2-II.
In addition, in the last step of PI2-I the controls are updated
such that constraints are not violated.

The assumption of Path integral control framework
λG(x)R−1G(x)T = B(x)B(x)T = Σ establishes a
relationship between control cost and variance of noise.
Essentially, high variance results in low control cost and
therefore increased control authority. Depending on the levels
of noise, the connection between noise and control authority
may result in noisy control commands. This characteristic
may be desirable when applying path integral control to bio-
mechanical and neuromuscular models, in order to match
observed noisy controls. For reinforcement learning applica-
tions to robotic systems, however, it may be preferable to
use smooth control commands. In that case, nonlinear point
attractors [5] offer a low dimensional parameterization of
trajectories and control gains. This parameterization reduces
the search space and also has a smoothing effect on the
control commands. In the next section we review nonlinear
point attractors and provide their mathematical formulations.

III. DYNAMIC MOVEMENT PRIMITIVES: NONLINEAR
POINT ATTRACTORS WITH ADJUSTABLE ATTRACTOR

LANDSCAPE

The nonlinear point attractor consists of two sets of dif-
ferential equations, the canonical and transformation system
which are coupled through a nonlinearity [5]. The canonical
system is formulated as 1

τ ẋt = −αxt. That is a first -
order linear dynamical system for which, starting from some
arbitrarily chosen initial state x0 , e.g., x0 = 1, the state x
converges monotonically to zero. x can be conceived of as a
phase variable, where x = 1 would indicate the start of the
time evolution, and x close to zero means that the goal g (see
below) has essentially been achieved. The transformation
system consist of the following two differential equations:

τ ż =αzβz

((
g +

f

αzβz

)
− y
)
− αzz (12)

τ ẏ =z

These 3 differential equations code a learnable point
attractor for a movement from yt0 to the goal g, where
θ determines the shape of the attractor. yt, ẏt denote the
position and velocity of the trajectory. αz, βz, τ are time
constants. The nonlinear coupling or forcing term f is
defined as:

f(x) =

∑N
i=1K (xt, ci) θixt∑N
i=1K (xt, ci)

(g − y0) = ΦP (x)Tθ (13)

The basis functions K (xt, ci) are defined as K (xt, ci) =
exp

(
−0.5hj(xt − cj)2

)
with bandwith hj and center cj of

the Gaussian kernels – for more details see [5]. The full dy-
namics of the point attractor have the form of dx = α(x)dt+
C(x)udt where the state x is specified as x = (y, z) while
the controls are specified as u = θ = (θ1, ..., θp)

T . Thus
α(x) and C(x) are specified as follows:

α(x) =

(
z

αzβz(g − y)− αzz

)
(14)

C(x) =

(
0

ΦP (x)T

)
(15)

The representation above is advantageous as it guarantees
that the attractor progresses towards the goal while remaining
linear in the parameters θ. By varying θ, the shape of the
trajectory changes while the goal state g and initial state yt0
remain fixed. These properties facilitate learning [6].

IV. TENDON-DRIVEN SYSTEMS

In this section we describe two tendon-driven systems used
in our work. The first is a dynamical model of the human
index finger, and the second is the ACT robotic hand.



A. Index Finger Biomechanics

The skeleton of the human index finger consists of 3
joints connected with 3 rigid links. The two joints (prox-
imal interphalangeal (PIP) and the distal interphalangeal
(DIP)) are described as hinge joints that can generate both
flexion-extension. The metacarpophalangeal joint (MCP) is
a saddle joint and it can generated flexion-extension as well
as abduction-adduction. Fingers have at least 6 muscles,
and the index finger is controlled by 7. Starting with the
flexors, the index finger has the Flexor Digitorum Profundus
(FDS) and the Flexor Digitorum Superficialis (FDP). The
the Radial Interosseous (RI) acts on the MCP joint. Lastly,
the extensor mechanism acts on all three joints. It is an
interconnected network of tendons driven by two extensors
Extensor Communis (EC) and the Extensor Indicis (EI), and
the Ulnar Interosseous (UI) and Lumbrical (LU).

The full model of the index finger is given by:

q̈ = −I (q)
−1

C (q, q̇) + Bq̇ + I (q)
−1

T (16)
T = M(q) · F (17)

Ḟ = −1

τ
(F−Gu) (18)

umax > u > umin (19)

where I ∈ <6×6 is the inertial matrix and C(q, q̇) ∈ <6×1
is matrix of Coriolis and centripetal forces and B ∈ <3×3

is the joint friction matrix. The matrix M ∈ <3×7 is the
moment-arm matrix specified in [7], T ∈ <3×1 is the torque
vector, F ∈ <7×1 is the force in Nt applied on the tendons
and u is the control vector in units of muscle stress Nt/cm2.
Equation (18) is used to model delays in the generation of
tensions on the tendons. The matrix G is determined by
the PCSA parameter [7] of each individual muscle- tendon
G = Diag (4.10, 3.65, 1.12, 1.39, 0.36, 4.16, 1.60) cm2. The
control constraints are specified as umin = 0 and the
maximum muscle stress umax = 35Nt/cm2.

For our simulations we have excluded the abduction-
adduction movement at MCP joint, so we examine the tendon
length and velocity profiles necessary for producing planar
movements. The quantities q and q̇ are vectors of dimen-
sionality q ∈ <3×1,q̇ ∈ <3×1 defined as q = (q1, q2, q3)
and q̇ = (q̇1, q̇2, q̇3). The inertia I(q) term of the forward
dynamics are given in the appendix.

B. The ACT robotic hand

Fig. 1: Anatomically Correct Testbed-ACT hand.

The Anatomically Correct Testbed (ACT) robotic hand
mimics the interactions among muscle excursions and joint
movements produced by the bone and tendon geometries of
the human hand. This mimicry results in a robotic system
sharing the redundancies and nonlinearities of the biological
hand [8] [9].

The ACT hand uses 24 motor-driven tendons to control a
thumb, index finger, middle finger, and wrist. Each segment
of these fingers is machined using human bone data, and
is accurate in surface shape, mass, and center-of-gravity to
the human equivalent. The extensor mechanisms are webs
of tendons on the dorsal side of the fingers, and are crucial
for emulating dynamic human behavior [10]. As each tendon
is pulled by a motor, it is routed through attachment points
mimicking human tendon sheaths and following the contours
of the bones. Since these bone shapes are complicated
surfaces, the effective moment arm the tendon exerts on the
joint varies with joint angle [11]. The hand may optionally
include a silicon rubber skin on its palmar surfaces. The ACT
motors are controlled at 200 Hz using real-time RTAI Linux,
and have encoders with a resolution of 230 nm, allowing for
precise control and sensing of tendon length.

V. RESULTS

A. Biomechanical model: learning to tap

We apply PI2-I on the biomechanical model of the index
finger presented in Section IV-A. The task is to move the
finger from an initial posture to final posture. In this work
there is no pre-specified trajectory incorporated in the cost
function, but there is a constraint in the terminal finger
position and velocity. Consequently, there is a terminal cost
that is a function of the desired position and velocity states,
and it is only the control cost that is accumulated over the
time horizon of the movement. In mathematical terms the
objective function is expressed as follows:

J = (q− q∗)TQp(q− q∗) + q̇TQvq̇ +

∫
uTRudt (20)

with Qp = 1000×I3×3, Qv = 10×I3×3 and R = 250×I3×3.
The desired target posture and desired velocity are defined as
q∗ = (7π/6, π/4, π/12) and q̇∗ = (0, 0, 0), while the time
horizon is T = 420ms.
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Fig. 2: Sequence of postures and control profiles for
FDS(blue), FDP(red), EI(black), EC(yellow), LUM (cyan),
RI(green) and UI(magenta).
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Fig. 3: Tension profiles and length of FDS(blue),
FDP(red), EI(black), EC(yellow), LUM (cyan), RI(green)
and UI(magenta).
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Fig. 4: Velocity profiles for FDS(blue), FDP(red), EI(black),
EC(yellow), LUM (cyan), RI(green) and UI(magenta) and
joint torques.

The results are shown in Figures 2-4. Figure 2a illustrates
the sequence of postures. Figure 2a presents the control pro-
files required for the finger to perform the tapping movement.
The controls are in units of stress Nt/cm2. Characteristi-
cally, the tendons FDS, UI, RI and LUM are activated during
the acceleration phase of movement, while the extensor
tendons EC and EI are involved in the second, deceleration,
phase of the movement. The same synchronization among
tendons is shown in Figure 3a that illustrates the tension
profiles in units of Nt. The only difference with respect
to stress profiles is that the tension applied to the LUM is
small relative to FDS, UI, and RI. This observation agrees
with studies of the index finger [7] showing that LUM is the
weakest tendon.

Tendon excursions are illustrated in Figure 3b. All tendons
besides EC and EI are acting as flexors since they are
moving inwards (towards the muscle) and therefore their
length increases. EC and EI act as extensors since they are
moving outward and towards the finger tip. The result of this
motion is that their lengths decrease. Figure 4 illustrates the
tendon velocities and torques generates at the MCP, PIP and
DIP joints.

The application of PI2-I on the constrained biomechanical
model of the finger reveals the efficiency of the method when
applied to constrained nonlinear stochastic dynamics. PI2 is
a sampling based method. In contrast to other trajectory
optimizers, the efficiency of PI2 is not affected by the
existence of control constraints. In fact, constraints in control

reduce the sampling space and improve performance.

B. ACT Hand: Sliding a switch

1) Experimental setup: The second experiment is a
switch-sliding task using real-world hardware. Before each
attempt, the index finger began in an extended position,
hovering over the switch in the air (Figure 5). The task
consisted of first making contact with the switch, and then
sliding it down, using mostly flexion of the MCP joint,
though this requirement is implicit in the switch movement
performance.

Fig. 5: Experimental setup. The finger begins extended, not
touching the switch, and must perform a contact transition.

For the simulation experiment, tendon tension profiles
were learned directly, but PI2 may also be applied to learn
other control formulations. For switch-sliding using the ACT
hand, we learned controls which drove a nonlinear point
attractor system (Section III). The point attractors for all
tendons share the same canonical system. The point attractor
outputs smooth target trajectories of tendon lengths for a
lower-level PID controller. The dynamics of the environment,
together with the control-induced dynamics of the hand and
the dynamics of the point attractor, may be combined into an
augmented plant [12]. In this way, the learning framework
encounters the lumped dynamics of robotic manipulator in
the context of the task. Figure 6 provides an overview.

A single example of task completion was demonstrated
by a human moving the ACT finger through the motion of
pushing the switch. The tendon excursions produced by this
externally-powered example grossly resemble those required
for the robot to complete the task, but simply replaying
them using the PID controller does not necessarily result
in successful task completion. Firstly, during demonstration
the tendons are not loaded, which changes the configuration
of the tendon network in comparison to when it is actively
moving. Secondly, and more importantly, the tendon trajec-
tories encountered during a demonstration do not impart
any information about the necessary torques required to
accommodate the dynamics of the task. For instance, at the
beginning of the task, the finger must transition from moving
through air freely, to contacting and pushing the switch. A
PID controller following a reference trajectory has no way
of anticipating this contact transition, and therefore will fail
to initially strike the switch with enough force to produce
the desired motion. The nonlinear point attractor provides a
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means for generating smooth reference trajectories based on
the demonstration but modulated by the learned controls u.

Controls take the form u = δθ, the change in the
parameter θ determining the shape of the attractor trajectory
(see Section III). Each revision of the control parameter
θ we refer to as a trial. A sample trajectory is queried
from the system by sampling δθ, and actually performing
a switch-slide using the resulting θ. We refer to one of these
exploratory executions of the task as a rollout. To revise θ at
the end of a trial, each sampled control strategy is weighted
according to the cost encountered by the corresponding
rollout (Table II). The results reported here use σ = 30 for
sampling. The smaller this exploration variance is, the more
similar rollouts are, so the magnitute of σ should depend on
the natural stochasticity of the plant, though here it is set by
hand. Convergence is qualitatively insensitive to the exact
value of σ, and has been confirmed for σ as low as 10 and
high as 50. Each trial consists of fifteen rollouts, and after
every third trial, performance is evaluated by executing three
exploration-free rollouts (σ = 0). The cost-to-go function for
a rollout having duration T had the following form :

Ct = qterminal(xT ) +

T∑
t

q(xt) + ut
TRut (21)

In this cost function, xt is the location of the switch at
time t. q(xt) is the cost weighting on the switch state, with
qterminal(xT ) referring to the terminal cost at the end of the
rollout. R is the cost weighting for controls. Results reported
here are for qterminal = 300, T = 300, q = 1,R = .3333I .
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Each trial consists of a revision based on fifteen rollouts.
On every third revision, three exploration-free rollouts were
evaluated, each using identical controls, to evaluate learning
progress. The bars indicate standard deviation for those three
rollouts.

2) ACT Hand Experimental Results: Performance is im-
proved, with decreasing costs as trials progress resulting
in the switch being moved further in less time. The sum
cost-to-go results for every third trial, begining with trial 0,
the “before learning” performance, are reported in Figure 7.
Before learning, the system is able to move the switch only a
small amount, 0.7 cm, but after 10 trials the switch is pushed
to the end of its range (2.75 cm).

Learning effects on the trajectories of the flexors are most
pronounced. Consider the change in reference trajectory for
FDS (Figure 8, the red lines beginning near 1cm). Before
learning, the reference trajectory undergoes extension before
flexing, but after learning it simply flexes, and more aggre-
sively. The dynamics of the underlying PID controller dictate
that reference and actual trajectories must differ in order to
exert forces on the switch. Tendons may not push, so only
differences in the negative direction contribute significantly
to forces in the system.

Contact with the switch occurs near 150 mS both before
and after learning, but after learning the contact is more
vigorous, resulting in greater switch displacement until the
end of the range is met near 250 mS, for the post-learning
example (Figure 8b).

VI. DISCUSSION

Animals are capable of impressive feats of motor con-
trol in novel and uncertain environments, and even major
changes to their own bodies due to growth, fatigue, and
injury. Through embodied experience of using their bodies to
interact with the world, they learn strategies for dealing with
the complexities of the sensorimotor landscape. We hope to
bring robots closer to this ability by using the world as its
own model [13], and emphasize the importance of moving
beyond simulation into the complex and uncertain real world.

In this work we perform reinforcement learning in tendon-
driven systems in simulation as well as a real robotic system.
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Fig. 8: Lengths before (a) and after (b) learning the switch-
pushing task. The bold lines are the actual tendon lengths
recorded, and the thin lines are the reference trajectories
selected by the learning algorithm. Tendon trajectories dis-
played are Palmar Interosseus (Blue), FDP (Green), FDS
(Red), LUM (Aqua), EI (Purple), and RI (Yellow). Figure
(b) corresponds to 15 revisions of the control parameter θ .

PI2 is a sampling based method in which variations in control
are generated, actually run, and then updated using scores
according to the cost of the outcome. We show that this
can improve the performance of a real-world task despite
the complexity of the underlying dynamics, using no models
and only sensors of tendon length and switch position.

The successes and limitations of these experiments suggest
a number of next steps. For instance, control variations (e.g.
δθ for the ACT experiment) were sampled from a Guassian
distribution having spherical covariance, but this sampling
strategy may be shaped according to observed costs or
plant characteristics. Alternatively, incorporatation of sensory
feedback for use in the cost function or feedback control
would allow for a variety of improvements, such as gain
scheduling and variable stiffness control.

VII. APPENDIX

In this section we provide the parameters of the inertia,
coriolis and centripetal forces matrices. More precisely, the
elements of the inertia matrix are expressed as follows:

I11 = I31 + µ1 + µ2 + 2µ4 cos θ2

I21 = I22 + µ4 cos θ2 + µ6 cos (θ2 + θ2)

I22 = I33 + µ2 + 2µ5 cos θ3

I31 = I32 + µ6 cos (θ3 + θ3)

I33 = µ3

The coriolis and centripetal forces C(θ, θ̇) are:

C1 = µ4 sin θ2

[
−θ̇2

(
2θ̇1 + θ̇2

)]
+ µ5 sin θ3

[
−θ̇3

(
2θ̇1 + 2θ̇2 + θ̇3

)]
− µ6 sin (θ2 + θ3)

(
θ̇2 + θ̇3

)
×
(

2θ̇1 + θ̇2 + θ̇3

)

C2 = µ5 sin θ2θ̇
2
1

− µ5 sin θ3

[
θ̇3

(
2θ̇1 + θ̇2 + θ̇3

)]
+ µ6 sin (θ2 + θ3) θ̇1

2

C3 = µ5 sin θ3

(
θ̇1 + θ̇2

)
+ µ6 sin

(
θ̇2 + θ̇3

)
θ̇21

The terms µ1, µ2, µ3 are functions of the masses
(m1,m2,m3) = (0.05, 0.04, 0.03)Kgr and the lengths
(l1, l2, l3) = (0.0508, 0.0254, 0.01905)m of the 3
bones of the index finger. They are specified as
mu1 = (m1 +m2 +m3) , µ1 = (m1 +m2 +m3) l21, µ3 =
m3l

2
3, µ4 = (m2 +m3) l1l2, µ5 = m3l2l3 and µ6 = m3l1l3.
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