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Abstract— In previous studies it has been suggested that
optimal control is one suitable model for biological movement.
In some cases, solutions to optimal control problems are known,
such as the Linear Quadratic Gaussian setting. However, more
general cost functionals and nonlinear stochastic systems lead to
optimal control problems which theoretically model behavioral
processes, but direct solutions to which are presently unknown.
Additionally, in active exploration-based control situations,
uncertainty drives control actions and therefore the separation
principle does not hold. Thus traditional approaches to control
may not be applicable in many instances of biological systems.
In low dimensional cases researchers would traditionally turn to
discretization methods. However, biological systems tend to be
high dimensional, even in simple cases. Function approximation
is an approach which can yield globally optimal solutions in
continuous time and space. In this paper, we first describe the
problem. Then two examples are explored demonstrating the
effectiveness of this method. A higher dimensional case which
involves active exploration, and the numerical challenges which
arise will be addressed. Throughout this paper, multiple pitfalls
and how to avoid then are discussed. This will help researchers
avoid spending large amounts of time merely attempting to
solve a problem because a parameter is mistuned.

I. INTRODUCTION

Modeling biological sensorimotor control and learning
with optimal control[13][10], especially when uncertainties
are considered in exploration/exploitation situations leads
to strongly nonlinear and stochastic problems. These are
difficult to solve, being often nonlinear, second order, high
dimensional partial differential equations. Typical approaches
to such problems involve discretizing the equations, defin-
ing a set of transition probabilities, and solving the new
problem as a Markov Decision Process with Dynamic
Programming[2][6]. However, since biological systems tend
to operate in high dimensional (and often redundant) spaces,
another approach which is gaining favor is to approximate a
solution to the continuous problem using continuous function
approximators[3]. In a previous paper we derived a func-
tion approximation-based nonlinear adaptive control scheme
to model the exploration/exploitation tradeoff in biological
systems. Here we will elaborate on the method of state
augmentation to make a partially observable problem fully
observable as well as to address redundancy (a common
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issue in modeling biological systems, advanced robotics, and
decision making processes). In addition, several numerical
issues arise when attempting to fit a continuous function in
high dimensional space. These include fit quality, number of
required functions and feature shapes (if using Gaussians,
how one selects the center and variance of each Gaussian),
the method of collocation (including rapid convergence of
a solution in as little as one iteration and sparse matrices),
numerical stability, and performance measures.

II. STOCHASTIC OPTIMAL CONTROL PROBLEM

FORMULATION

Consider the following system (written as a stochastic
differential equation) where x ∈ <nx represents the state,
a(x) the (possibly nonlinear) system dynamics, Bu(x) the
controlled dynamics, with u(x) ∈ <nu , C(x) the covariance
matrix for the noise due to brownian motion ω.

dx =
(
a(x) +Bu(x)

)
dt+ C(x)dω, (1)

with observation process

y = h(x) + dν, (2)

where the observed quantity y is a function of additive
noise driven the brownian motion ν and h(·), the (possibly
nonlinear, again) observation transformation of x. We will
choose an infinite horizon formulation for the cost function,
which will take on the following form (where the exponential
term acts to discount future costs by a discount factor α > 0,
and keep the cost finite), with cost rate `(x, u):

V π(x) =
∫ ∞
t

e−α(s−t)`[x(s), u(s)]ds. (3)

This has the advantage of not being dependent on time, and
thus lends itself to creating function approximators which es-
timate the value function and optimal policy. The associated
discounted Hamilton-Jacobi-Bellman equation, given by the
principle of optimality is

αV ∗(x) = min
u

{
`(x, u) + (a(x) +Bu(x))V ∗x (4)

+
1
2
Tr(CCTV ∗xx)

}
,

where Tr(·) represents the trace operator, and subscripts
denote partial derivatives with respect to what is in the
subscript (i.e. Vx reads ’the partial derivative of V with
respect to x’). Thus, the problem is to find a control policy
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u∗(x) which minimizes the right hand side of (4). In this
paper we will consider cost rates of the form

`(x, u) = p(x) +
1
2
||u||2, (5)

where the first term represents the problem-specific cost
contributions, and the second term represents an energy cost
to keep control actions finite. With this cost rate defined, the
minimization in (7) can be performed analytically, yielding
the optimal feedback control law

π(x) = −B(x)Vx(x). (6)

We then substitute (6) into (4) to arive at the minimized HJB
equation,

αV (x) =p(x) + a(x)TVx(x) (7)

+
1
2
Tr(C(x)C(x)TVxx(x))− 1

2
||u||2.

The challenge lies in the following: how do we compute
Vx(x) for nontrivial problems?

III. SOLUTION CHALLENGES

The resulting Hamilton-Jacobi-Bellman equation is typi-
cally a second order nonlinear partial differential equation,
which is difficult to solve. In some cases it can be solved
using methods such as a viscosity solution, minimax solution,
and others. In general one has to presently resort to some
sort of approximation - either approximating the problem
then solving the approximation or approximating a solution
via a continuous function fit. Continuous functions offer the
advantage of differentiability, which is attractive.

In cases of exploration/exploitation tradeoffs, uncertainty
is part of the decision-making process (exploration can be, in
fact, driven by uncertainty), and so the separation principle
does not hold. In these cases, augmenting the state with
the filter dynamics results in a higher dimensional but fully
observable problem which we formulate within the stochastic
optimal control framework.

IV. RADIAL BASIS FUNCTION APPROXIMATION DEFINED

One way of fitting a function which approximates a solu-
tion to the problem at hand is a nonlinear black box method
based on radial basis functions. A radial basis function is a
function whose value depends on the difference of x from
some center point c or from the origin. More specifically, any
function that satisfies the relation θ(x) = θ(||x||) is referred
to as a radial basis function.

A typical function structure is a Gaussian which has the
following form:

θ(x, c) = exp
[
− 1

2
(x− c)TS(x− c)

]
(8)

Where S is the matrix of the inverse covariances of the
Gaussians in each dimension (this determines the ’width’
of the Gaussian in a particular dimension). In the present
paper we make the matrix S diagonal, thus making the
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Fig. 1. The top figure displays two different standard Gaussians, with
different scaling and centers. The bottom figure displays the sum of the two
Gaussians, forming a new function. Extending this methodology to many
many Gaussians, one can fit any function theoretically to any desired degree
of accuracy.

basis functions orthogonal with respect to each dimension. c
represents the location of the origin of the Gaussian, and w
are weights which are the parameters to be fit.

Given a particular point x, the output of the approximator
is then given by a sum over all the basis functions for each
different center and weight.

y(x) =
N−1∑
i=0

wiθi(x, ci) = θ(x, c)Tw. (9)

For this type of approximator, with the c’s and variance S
fixed, the function is nonlinear in the state but linear in the
parameters. Therefore the unknown weights can easily be
computed directly by linear regression.

For a sufficient number of basis functions, any function
can in theory be approximated to arbitrary accuracy.

One effective method for computing these weights (wi) is
to generate a set of input states (xi), decide upon a set of
centers (ci) compute the exponential theta functions for all
centers, then use linear regression to compute the weights.
This is referred to as the method of collocation. This can
be applied to compute a continuous approximation to the
Hamilton-Jacobi-Bellman equation, and thus, the resulting
optimal control policy for difficult problems.

V. SOLUTION METHOD - THE FAS (FUNCTION

APPROXIMATION SCHEME)

Here we will discuss a general method (the reader is
referred to [11] for an in-depth description and application
of this method to an exploration/exploitation problem for
biological control) for approximating an optimal control
policy in continuous space and time using collocation. The
basic idea follows.

Begin with (9), and compute the first and second deriva-
tives with respect to x,

V (x,w) =
∑
i

wiφ
i(x) = φT (x)w, (10)



Vx(x,w) =
∑
i

wiφ
i
x(x) = φTx (x)w, (11)

Vxx(x,w) =
∑
i

wiφ
i
xx(x) = φTxx(x)w. (12)

Substitute into (7) and simplify, then define

M =
{
Mj,i =

(
αφi(xj)T − a(xj)Tφix(xj)T (13)

− 1
2
tr{C(xj)C(xj)Tφixx(xj)T }

)
,∀i, j

}
,

d =
{
dj = p(xj)−

1
2
‖π(xj)‖2,∀j

}
. (14)

Now we have an iterative least squares problem,

Mw = d. (15)

The algorithm is initialized by generating a set of random
states (xi) which span the space of interest. There should be
at least as many states as the number of features (Gaussians,
quadratics, etc) and Gaussian centers cj . Then compute
φ(xi, cj), φx(xi, cj), and φxx(xi, cj) and all the results
stored. The weights are initialized, the initial guess for the
optimal policy computed and fixed, then the least squares is
performed and a new policy is computed. The normalized
difference between the left and right sides of (15) is used
as the stopping criterion, along with some sanity checks for
divergence.

VI. LIMITATIONS OF FUNCTION APPROXIMATION AND

COMPUTATIONAL METHODS FOR OPTIMAL SOLUTIONS

Though the method of collocation with radial basis func-
tions is an effective way to approximate an arbitrary function,
there are limitations. One such limitation is that the number
of Gaussians, given a fixed variance and location of centers
required to approximate a given function may be very
large[8]. This problem can be mitigated by including relevant
features of the system being studied (to be described in depth
below).

A second limitation is that, in the stochastic case, it is
challenging to know when a true minimum is reached versus
some local minimum far from the solution due to noise.
Additionally, one does not wish to fit the noise of a system,
only the relevant features. There are several approaches to
mitigate these types of problems. This is the well-known
issue of generalization and overfitting (namely, we want to
increase the generalization of our function fit, and reduce
overfitting).

A. Large number of parameters

If one uses some insight into the system being modeled
and then creates some features which have an appropriate
structure, function approximation can be performed with
many less parameters, and thus less computational expense.
In this way many less Gaussians can be used. A common
feature to use if the system has global and local fluctuations
is a polynomial term such as a quadratic (all terms xa ∗ xb
and xa)

It can be shown that there is a relationship between the
number of required Gaussians to achieve appropriate level
of coverage in all dimensions by

ng =
∏
i

pi
σi

(16)

where σi is the standard deviation of each Gaussian (as-
suming fixed widths) in dimension i and pi is the function
space width in dimension i. Thus, if the order of p is large
and small fluctuations are expected as well as large global
ones, it may prove useful to have a nonuniform Gaussian
variance in each dimension (by having sets of variances), or
include a global quadratic feature. The global quadratic’s
second order term weight matrix is symmetric, and thus
uniquely determined by its upper triangular portion. The
general equation is

yq = A+BTx+ xTCx, (17)

and

C = CT . (18)

To find the weights C, it helps numerically to compute the
coefficients for the upper or lower triangular parts of C, then
rebuild the matrix later for simulation by

C = CL + CU , (19)

CL = CTU .

B. Generalization/overfitting

The traditional method of maximizing generalization and
minimizing overfitting is by using validation sets. This
consists of splitting the randomized collocation points (or
randomly regenerating more sets), then testing the computed
fit on the new data set, since a good fit over a space should be
an effective minimum for all points within the space, unless
noise has been fit. In this case, it is best to reduce the number
of Gaussians or to compute an average over data points.

C. Numerical errors (differentiation, condition number, and
sparsity)

Numerical errors are likely to arise in many stochastic
problems due to the second order term. Differentiation is
an un-smoothing process and so functions with analytical
derivatives are always preferable to numerical differentiation
if possible. Fortunately Gaussians and quadratics are ana-
lytically differentiable. One must take care with the second
order derivatives however as dimensionality is such that the
matrices become tensors, and during implementation this is
typically a point where bugs delay results. Not only must
the equations be correctly computed on paper, but a double
check of the actual code will prevent many headaches.

Once the algorithm has been implemented, a computa-
tional check of the M matrix condition number gives a mea-
sure of the probable accuracy of the least squares operation
to be performed. If necessary, computational accuracy can
be improved without a significant loss of efficiency in cases
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Fig. 2. A low dimensional visualization of the space coverable by the
Gaussians for a function fit. The green dots represent the points covering
the space, and the red circles represent the standard deviation of the centers
of the Gaussians over the space scaled to minimize overlap. Too much
redundancy results in an indeterminate problem.

where the condition number is moderate to poor. See, for
example, [9],[4].

Finally, if the widths of the Gaussians are too large, the
weights will tend to alternate in a large and numerically
(the more Gaussians that overlap and the wider the overlap)
unstable fashion. Thus, considering Section (VI-A) and the
following section regarding simple visualization and numer-
ical overlap computation will be significant. If the widths of
the Gaussians are too narrow, there will be space that cannot
be covered by the function approximator (no matter what
weight is computed, the approximator will output zero). This
results in a sparse coefficient matrix (M), and so is easily
checked. The general rule is that some overlap is preferable
to open space if good approximation is desired.

D. How to determine unkown basis function constant pa-
rameters - centers and widths

In order to determine if the state space is completely
covered by the Gaussians, numerical computations can be
confirmed with visualization methods. One effective scheme
for setting the width of the Gaussians is to compute the mean
absolute distance between centers and set the covariance to
approximately 68% of the maximum value. The simplest way
to check that the Gaussians cover all the space with no gaps
is to plot the 2σ radius relative to the center of each Gaussian
as a circle about center points, plotting two dimensions at a
time (3). One can then extend this to include false color
representation with natural mappings which use the natural
processing of the human perceptual system to help - map
the ’quantity’ of covered space as colors (black - no cover,
green - one Gaussian, move towards red as more and more
overlap occurs, see figure 2).

Fig. 3. One typical colormap for Gaussian coverage - green is appropriate
overlap, yellow is some overlap, red is too much overlap. In other words,
black - no cover, green- one Gaussian, move towards red as more and more
overlap occurs.

E. Measures of numerical fit quality

Numerical consistency of the computed fit can be checked
by using the weights to attempt to recompute the right side
of the Mw = d fit equation. The two results d and d̂ are
plotted and compared. The number∣∣∣∣∣∣ Mw − d

max(||d||1)

∣∣∣∣∣∣
2

(20)

gives a single value measure of fit quality. The L1 norm
in the bottom of the fraction scales the fit to essentially a
proportion of fit. Otherwise the numerical value returned by
this check is deceiving since each iteration tends to grow.

F. Numerical stability

In order to assure numerical stability of the weights,
one can normalize the weights to one or another constant
maximum after computing the least squares fit. What this
does is prevent the next iteration’s d from exponentially
increasing in the norm of the amplitude. Then the maximum
amplitude scale of the w’s can be determined by another
least squares fit after convergence is achieved.

G. Visualize the value function and control

When a reasonable solution has been determined, or one
that appears reasonable, it is important to visualize the result-
ing value function and control actions mapped over the state
space. Though the system may be high dimensional, most
real-world applications have a low dimensional interpretation
which is possible. For example, in our recent work [11], we
applied this methodology to an eight dimensional problem.
A reasonable control solution could be visually confirmed
versus an unreasonable solution by creating a 3d surface
plot of the cost versus two-dimensional states in slices. An
unreasonable or poor solution would yield no consistent
shape, merely an appearance of noise, whereas a reasonable
solution would yield farely smooth shapes. A smooth shape
may not be the numerically optimal solution possible, but in
practice a smooth shape was produced only when a good fit
was found. Reasonable solutions tend to be logical.

Similarly, the control response surface provides a pos-
itive measure of consistency. Both surfaces should be of
reasonable maximum amplitude, though the control action
is more intuitive in terms of the programmer’s being able
to recognize a reasonable state-dependent action (i.e. if a
robot arm is being controlled, and given a particular state, if
a control action which is near infinite is computed despite
a penalty on control energy, it is likely that the designer is
witnessing an inconsistent solution).



H. Simulation performance, and repeated measures

The most important measure of a control’s goodness of fit
may be in terms of performance. This means that a control
should be computed, then a short simulation performed and
a performance criterion evaluated, such as the mean-square-
error or 2-norm of the error between reference and actual
output.

Given a stochastic system, it is important to perform
repeated solution attempts using the same parameters in order
to confirm a particular solution. For example, one setting of
initial conditions may lead to a poor solution in one solution
attempt, and a good solution in another. But averaged over
several solution attempts given the same parameters/initial
conditions, a good versus bad solution is evident since in
general the problem will be solved well for good settings.
It is in this way that repeated measures are essential in
stochastic problems for determining a solution’s validity.

VII. EXAMPLES

Two examples will be considered, and a third referred to
from another of the authors’ papers. The first example is
used to apply the function approximation solution to a well-
studied problem. This problem is the limited torque pendu-
lum swing-up problem. The second example demonstrates
the reduced sensitivity of the function approximation-based
solution to the curse of dimensionality by demonstrating a
high dimensional solution to an active exploration problem.
The problem is the same as the first pendulum example, but
with the added challenge that an unobservable mapping is
part of the cost functional, and must be estimated to make
the problem fully observable.

A. Example 1: 1-DOF Pendulum swing-up problem

Consider a bar-shaped pendulum with limited torque.
When the maximum torque the actuator can exert is less
than mgl/2, (where m is the mass of the pendulum bar, l
is the length, and g is the acceleration due to gravity), the
pendulum must undergo multiple swings in order to attain
the necessary momentum to swing to a vertical position.
Additionally, the controller must anticipate the peak of the
arc and begin deceleration at the appropriate time in order
for the pendulum to avoid over-rotating and falling again.

The dynamics of the system are given by

Jθ̈ +Hθ̇ +G(θ) = τ. (21)

In this case J = ml2 is the inertia of the link, Hθ̇ is the
velocity-dependent friction, G = mglcos(θ) is the torque
due to gravitational force, and τ is the torque applied to the
pendulum externally (via an actuator such as a motor). This
can be arranged in the optimal control framework we set out

l_
1

ø_1T (l
_1
)/
2

CM1

Fig. 4. Basic diagram of 1-link pendulum. The state space is a cylinder
with position range ±π

in the following way. Define the state x as

x =
[
θ θ̇

]T
(22)

a(x) =
[

θ̇

−J−1(Hθ̇ +G)

]
(23)

B =
[

0
J−1

]
(24)

u = τ (25)

Now we can write the dynamics in the standard form. Here
we make the problem deterministic to simplify comparisons
between ’what to do and what not to do steps:’ This makes
the second derivative drop out, leaving us with

ẋ = a(x) +Bu(x). (26)

with parameters m = 1kg, l = 1m, g = 9.81m/s2, and
H = 0.

The cost rate was determined by a combination of a
velocity penalty, a control energy penalty, and a position
penalty (for angles other than π/2). All trials had random
initial conditions, and were considered successful if the
pendulum achieved a vertical orientation for an indefinite
period of time (t > 15sec), achieving the vertical position
in under 10 seconds (this time is arbitrary depending on the
degree of under-actuation). The cost rate is then of the form:

`(x, u) = kθ(θ − π/2)2 + kθ̇(θ̇)
2 +

1
2
u2, (27)

where the k’s are gains which can be adjusted to tailor
behaviors if desired. In all example problems presented in
this paper, the constants are all the same value for simplicity.

B. Example 2: 1-DOF Pendulum problem with an uncertain
wandering mapping. Solving partially observable nonlinear
exploration/exploitation problems to which the separation
principle does not apply

Consider now the same problem with a slight change-
there is an unobservable and continuously wandering map-
ping between the observation of the base angle and the actual



angle. In physical terms this could be interpreted as the base
to which the pendulum is attached undergoing a continuously
random rotation about a parallel axis with the pendulum base.
This is similar to our previous study in [11]- except that the
motion is not damped, but instead undamped Brownian mo-
tion. Now we have a partially observable problem, since the
cost function includes the angle. By taking the expectation of
the uncertain term, and augmenting the state with the mean
and covariance of the estimated quantity, one can create a
fully observable, but higher dimensional problem solvable
with our FAS scheme.

`(x, u) ≈E(kθ||θ − π/2||2 + kθ̇||θ̇||
2 +

1
2
||u||2) (28)

=kθ(||m̂θ − π/2||2 + θ2Σ) + kθ̇||θ̇||
2 +

1
2
||u||2.

The observation process is given by

dy = m(t)θ(t)dt+ dωy. (29)

Assuming the prior over the initial state of the mapping is
Gaussian, with mean m̂(0) and covariance Σ(0), then the
posterior remains Gaussian for all t > 0 for m(t). Given
the additive white noise model (where the properties of the
noise and disturbances do not change over time, and dω is
a white, zero-mean Gaussian noise process with covariance
Ωy), the optimal map estimate is propagated by the Kalman-
Bucy filter[5][1][12],

dm̂ = K (dy − m̂(t)θ(t)dt) , (30)

K = Σ(t)θ(t)TΩ−1
y ,

dΣ = Ωmdt−K(t)θ(t)Σ(t)dt.

The mean of the estimate is m̂(t) and the covariance is Σ(t).
Ideally we would like to augment our state with m(t), but
we can only estimate m, so now our composite state vector
will be

x(t) = [θ(t); θ̇(t); m̂(t); Σ(t)], (31)

and our stochastic dynamics can be written in the form of
(1), with uncontrolled dynamics representing the pendulum
and the evolution of the covariance matrix,

a(x) =


θ̇

J−1(−Hθ̇ −G(θ, θ̇))
0

Ωm − Σ2θ2Ω−1
y

 , (32)

controlled dynamics,

Bu =
[

0 J−1τ 0 0
]
, (33)

and finally the noise-scaling matrix,

C(x) =


0 0 0 0
0 0 0 0
0 0 ΣθΩ−1

y 0
0 0 0 0

 . (34)

Now we have a nonlinear stochastic optimal control problem
defined by (1), (28), and (31)-(34). An approximation to
the optimal control policy can be created using our FAS
algorithm.

VIII. RESULTS

A. 1-link pendulum swing-up

The single link pendulum swing-up task results show that
the FAS can indeed perform nonlinear control for a nontrivial
problem quite effectively. Given one hundred trials with
random start points, the average time to vertical was under
five seconds, with a final error under 1e-3 Radians. A typical
policy function representation is shown in Figure 5(a), using
one hundred basis functions.
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Fig. 5. (a) Shows the surface of the control action space. (b) Shows the
random cloud of points used to fit the weights and thus a surface defining
the cost function in the method of collocation. (c) Shows a typical swing-up
trial, with the initial position in this case at -0.89 Radians. The final error
is 1e-3 Radians, and the swing-up time is under 5 seconds (measured as
ts.u.t. = t(error < 0.001rad) (d) Shows a plot of typical weight values if
the Gaussian variance is slightly too large for the distance between Gaussian
centers. Note that the weights have large opposing values to balance each
other.

B. 1-link pendulum swing-up with uncertainty

The pendulum was still able to perform the experimental
task when driven by the uncertain mapping, in addition
to the pendulum swing-up challenge. This problem is four
dimensional, which is difficult to solve with discretization
methods, yet our FAS could solve this with one hundred
basis functions (this suggests fewer bases could be effectively
used on the previous problem, but minimal basis function
application was not the goal). The Kalman filter effectively
estimated the unobservable mapping (Figure 6(a)), keeping
the pendulum swing-up task possible. The parameter is only
shown fluctuating in a small range, but positive or negative
values are acceptable and posed little problem for the FAS
algorithm during experimentation.

Figure 6(d) shows exploratory actions being injected into
the system by the policy after convergence to the vertical
position. This is done to highlight the pseudorandom behav-
ior triggered by the covariance term. By this time the map



parameter was being tracked well by the FAS algorithm, and
so the actions are small due to the covariance term being
small (Figure 6(b)).
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Fig. 6. (a) Map versus estimate for pendulum swing-up problem with
uncertainty. (b) Estimation error covariance. Note the rapid drop in un-
certainty during this trial. (c)position error (m(t)θ − π/2). (d) Small
exploratory movements in position-velocity space. (e) An example of the
typical numerical fit achieved in two iterations. The normalized fit error is
1.1e-14.

IX. CONCLUSION

In this paper we addressed several topics related to func-
tion approximation in continuous time and space applied to
nonlinear stochastic optimal control problems suitable for
modeling biological systems. The FAS algorithm can effec-
tively approximate optimal policies for active exploration-
type problems, as we demonstrated with the pendulum on
a randomly rotating base problem. The fact that the FAS
algorithm can produce a viable control policy in the latter
case, using the state augmentation method will be very
useful for modeling sensorimotor learning and control. In our
previous paper we showed that this method can effectively
deal with redundancy, a common issue in motor control, as
well as higher dimensional systems.

The shortcomings of these methods are due to the sig-
nificant human effort (parameter adjustment) that must take
place to implement them effectively. This paper also deals
with many of these shortcomings and suggests, where pos-
sible, numerical methods such as using performance criteria

to pose optimizations over those tuning parameters. This can
reduce the manual tuning that makes implementing many
reinforcement learning and approximately optimal control
policies difficult and time consuming.

Another future direction of this work is to combine global
and local methods. Previously, iterative quadratic approxima-
tion methods were developed in our laboratory [14], [7]. The
local methods suffer from the need for good initialization, but
are very effective when in moderately close proximity to a
solution. Thus it is reasonable to suggest that an effective
algorithm would use the global method to initialize the local
method and provide a check at each time step.

In the near future, we will be implementing these control
policies in several novel robots which the authors have
developed to further explore the benefits of active exploration
and to model human sensorimotor learning.

In some senses, all learning can be reduced to the es-
timation of observable or unobservable functions and pa-
rameters. Optimal control has been successfully applied in
many simple settings for modeling sensorimotor control.
This extension to redundant and unobservable systems is
very powerful. In this context, estimation and control not
only coexist, but they are also intermixed, driving each
other to achieve an otherwise impossible control objective.
A methodology such as presented here which specifically
makes use of rather than attempting to average out the
uncertainty allows a more broad range of problems to be
addressed.
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