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Abstract

The traditional concept of the receptive �eld (e.g., [4, 6]) holds that each portion of
the receptive �eld (RF), in response to a stimulus element, has unitary (excitatory or in-
hibitory) inuence on neuronal response. Here, we argue: i) receptive �eld components
naturally have dual or vector (both excitatory and inhibitory) inuence; ii) neuronal inte-
gration is better understood in terms of local cortical circuitry than single neurons. Using
a large-scale model of primary visual cortex, we demonstrate that the net e�ect of a given
stimulus element within either the classical or extraclassical RF can switch between exci-
tatory and inhibitory as global stimulus conditions change. We analyze and explain these
e�ects by constructing self-contained modules (via a novel technique) which capture local
circuit interactions. These modules illustrate a new vector-based RF analysis which uni�es
notions of classical and extraclassical RF, treating long-range intracortical inputs on equal
footing with thalamocortical inputs.

Introduction

Neuronal receptive �elds in primary visual cortex (V1) have not only \classical" regions,
where visual stimuli elicit responses (presumably through thalamocortical axons), but also
have \extraclassical" regions, where stimuli largely modulate responses evoked by other
stimuli (presumably via long-range intracortical or inter-areal axons) [3, 16]. The traditional
view of integration holds that each portion of a neuron's receptive �eld in response to a
given stimulus element has either an excitatory or an inhibitory (i.e., a scalar) inuence
[4, 6, 15]. Although this approach has substantial explanatory power, it cannot account for
phenomena in which the net e�ect of a stimulus element in a given portion of the receptive
�eld appears to switch between excitatory and inhibitory as global stimulus conditions
change [8, 10, 17, 19]. Two such phenomena, involving local and long-range integration
respectively, are paradigmatic. First, increasing the luminance contrast of an oriented visual
stimulus causes responses in primary visual cortex to initially increase, but subsequently
saturate and even decrease (\super-saturate") [1, 10, 11] (see data of [10] in �g 1a). Second,
adding a distal stimulus facilitates responses to a weak central stimulus, but suppresses
responses to a strong stimulus [8, 9, 19, 17] (see data of [8, 17] in �g 1b).

Our goal is to develop an expanded notion of the visual cortical receptive �eld which
can explain stimulus-dependent responses such as these. Three basic features of cortical
anatomy, which are overlooked by the traditional receptive �eld view, are central to the
expanded view: i) receptive �eld regions (via either thalamocortical or long-range intra-
cortical axons) drive both excitatory and inhibitory cortical neurons [13, 25]; ii) di�erent
portions of the receptive �eld provide converging inputs to a shared population of cortical
neurons [3, 16]; and iii) these neurons form dense, recurrent local connections [3, 7, 25].
Based on this anatomy, we propose that: i) each RF region in response to a given stim-



ulus has both excitatory and inhibitory inuences on neuronal responses which in general
cannot be reduced to a scalar quantity but rather should be considered separately (i.e., RF
input is a vector); ii) receptive �eld inputs are integrated by the local cortical circuitry; and
iii) the net e�ect of a receptive �eld input depends both on the excitatory-inhibitory bias
of the a�erent inputs and on how other receptive �eld regions activate the local cortical
circuitry. First we demonstrate this approach by capturing the paradoxical local and long-
range phenomena within a large-scale visual cortical model, and later we present an analytic
explanation. In contrast, prior computational investigations of local circuit inuences either
have captured anatomical details only in simulations with little formal analysis [21, 22] or
have oversimpli�ed local cortical excitatory and inhibitory interactions in order to obtain
closed-form (scalar) analysis [5].

Methods

Cortical circuitry under a 2.5mm by 5mm patch of primary visual cortex was represented by
a model with 20,250 spiking cortical neurons and over 1.3 million cortical synapses. Neurons
were organized into a 45 by 90 grid of \mini-columns" based on an orientation map obtained
by optical recording of intrinsic signals of cat visual cortex (data from [23]). Each mini-
column contains 4 excitatory and 1 inhibitory neurons modeled separately as \integrate-and-
�re" neurons with realistic currents and experimentally-derived intracellular parameters [12]
(see methods of [21] for equations and parameters). Intracortical connections provide short-
range excitation (connection probabilities fall linearly from �excit�excit = 0:1, �excit�inhib =
0:1 at distance zero to � = 0 at d = 150�m), short-range inhibition (linear from �inhib�excit =
0:12, �inhib�inhib = 0:06 at d = 0 to � = 0:5�peak at d = 500�m; � = 0 elsewhere), and
long-range excitation (linear with orientation di�erence � between pre- and post-synaptic
columns, from � = 0:005 at � = 0� to � = 0:001 at � = 90�). Peak synaptic conductances, by
source, onto excitatory cells are gexcit = 7nS, ginhib = 15nS, glgn = 3nS, and glong = 1:2nS
and onto inhibitory cells are gexcit = 1:5nS, ginhib = 1:5nS, glgn = 1:5nS, and glong =
1:2nS. Cortical magni�cation is 1 mm/deg, cortical RF diameters are roughly 0:75�, and
thalamocortical spikes are modeled as Poisson processes. Each thalamic neuron projects
to cortical neurons over an area 0:6mm2 and responds linearly with log stimulus contrast.
Results are averaged over 20 networks constructed with these probability distributions.

Additional analysis was performed by constructing self-contained modules which capture
local circuit properties of the large-scale models. Given a local neuronal population P

whose mean �ring rate M = F(Id; Il) is a function F of the long-distance (intracortical
and thalamocortical) inputs Id and local (intracortical) inputs Il, we want to construct a
closed system (module) whose response approximates M as a function of Id only. All bold
face quantities denote vectors with components corresponding to excitatory and inhibitory
populations. Local inputs are de�ned as arriving from within a radius R, which is chosen to
minimize approximation error. Module construction is only possible if Il can be expressed
as a function of M and Id. To that end we use a local homogeneity assumption M = Il, i.e.
neurons within R (not just P ) have mean �ring ratesM. Thus the module outputM� is the
solution ofM = F(Id;M). This equation can be solved numerically if we model the response
functions of integrate-and-�re neurons [18, 24]. Here, we compute M

� by simulating a
module composed of excitatory and inhibitory neurons, in which neurons receive the same
average number and strength of synapses as neurons in P receive from within the radius
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Figure 1: Experimental (a,b) and Simulation Results (c,d) for \super-saturating" contrast
response functions (a,c) and surround facilitation/suppression of contrast responses (b,d).
Solid and dashed lines in (d) are model and module responses, respectively.

R. The homogeneity assumption is equivalent to isolating P and compensating for the
\cut" connections from R by adding extra connections within P . Inhibition is treated as
purely local (long-distance inhibition can be addressed by doubling the system dimensions).
The radius R that minimizes approximation error is a balance between two conicting
constraints: homogeneity of local �ring, which favors smaller R, and inclusion of cortical
inhibition, which favors bigger R.

Results

Physiological responses to oriented grating stimuli of di�ering contrasts within the classi-
cal RF are captured by the model (see �g 1c). The responses shown here and below are
for the excitatory subpopulation. Responses saturate at contrast levels below which tha-
lamic responses saturate [11], can decline for high contrasts (super-saturation) [1, 10, 11],
and have �ring rates well below maximal cellular �ring rates [12]. Inhibitory neurons,
on average, saturate at higher contrasts than do excitatory neurons (not shown). While
preserving classical RF properties, our model also captures paradoxical extraclassical RF
modulations [8, 9, 19, 17]. The modulatory inuence of (�xed contrast) \surround" gratings
on responses to optimal orientation \center" stimuli shifts from facilitatory to suppressive
as center stimulus contrast increases (see �g 1d; see also [22]). These e�ects emerge from



the local intracortical interactions (as will be shown below) and do not require synaptic
plasticity or complex cellular properties. Our model is the �rst to provide a uni�ed account
of these classical and extraclassical RF phenomena.

We understand the integration of classical and extraclassical RF inuences by analyzing
local circuitry as a unit. Neuronal responses in the model depend not only on thalamo-
cortical and long-range intracortical inputs [3, 16], but also on recurrent local inputs. We
simplify analysis by isolating nonlinear local interactions within a closed system (module)
which receives only long-distance (thalamocortical and long-range intracortical) inputs and
generates approximately the same mean responses as a local neuronal population embedded
in the model. This task is non-trivial, because intracortical connections form a continuum.
Simply isolating a small group of cells (together with the connections among them) will re-
move many local connections from across the group boundary, and thus lead to inaccurate
responses. The module we construct preserves the distribution of cellular properties and
interactions within the local population, and compensates for the missing local connections
by making extra connections within the isolated group (see methods). This module will
produce correct responses whenever mean �ring rates are locally homogeneous. Note that
the method can easily incorporate multiple distinct neuronal subpopulations (e.g. cell types
and/or layers), and multiple sources of long-distance input (e.g. feedback projections). This
technique di�ers from \mean-�eld" approximations (e.g., [20]) in that analysis is local and
does not require oversimpli�cation of cellular and network properties.

We construct a module consisting of two interacting homogeneous populations, exci-
tatory and inhibitory neurons (see methods). A�erent inputs to the module excite both
neuronal populations and thus must be treated as two-dimensional vectors; this contrasts
with standard single neuron RF analyses in which inputs are scalars [4, 5, 6, 15]. Tha-
lamocortical and long-range intracortical inputs are combined linearly (summed) for each
subpopulation. Since these two input sources activate excitatory and inhibitory neurons in
di�erent proportions, the corresponding input vectors have di�erent angles; vector magni-
tudes vary directly with stimulus strength. Module responses are a function of the summed
input vectors, and mean �ring rates of the module's excitatory neurons are completely
characterized by the surface plotted in �gure 2a. Increasing the contrast of the classical
RF stimulus (in the absence of extraclassical stimulation) scales inputs to both cell popu-
lations, de�ning a straight line in the input plane (bottom plane of 2a). Presentation of a
�xed surround stimulus activates long-range intracortical inputs; the e�ect of these inputs
can be understood as a simple translation of the contrast input line via vector addition
(surround stimulus e�ects mediated by feedback projections from area V2 can be treated
similarly). Contrast response functions (CRFs) predicted by the module are obtained by
projecting the resulting input line onto the surface. These predicted CRFs are also shown
as the dashed lines in �gure 1d. Note that they closely approximate the CRFs generated
by the model for all tested stimulus conditions (see �g 1c,d) as well as experimental CRFs
(see �g 1a,b). Thus, the paradoxical classical and extraclassical RF integration phenomena
are captured by local circuit interactions alone.

Local interactions are described by module response surface shapes. The surface shape
shown in �gure 2a is characteristic of a large class of recurrently connected excitatory-
inhibitory circuits and can be thought of as providing generalized gain control. Note that
integrate-and-�re neurons have approximately threshold-linear feedforward responses (�g
1c), and thus the module output (�g 2a) is a smoothed version of an underlying piecewise-
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Figure 2: Responses of self-contained module (a) and a linear approximation of module (b).
Axes represent total excitatory input to the two module populations, in units of average
synaptic conductance. Total long-distance input converging on the center of the full model
is plotted in the input plane for all stimulus conditions (medium - center only; light -
orthogonal surround; dark - iso-orientation surround). Surround stimulation provides a
vector input that translates the thalamic input line (which represents the set of vectors
for all center contrasts). Module response curves are obtained by surface projection (also
shown on backplane and in dashed lines of �g 1d).

linear surface. This underlying surface can be obtained from a simpli�ed module, composed
of interconnected threshold-linear neurons - a typical example is shown in �g 2b. Assume ex-
citatory and inhibitory neurons have thresholds �ex; �in, and gainsKex; Kin; total a�erent in-
puts to the two populations are Iex =MtTex+MhHex; Iin =MtTin+MhHin, whereMt; Ht

are thalamic and long-range horizontal inputs, and Tex; Tin; Hex; Hin are the corresponding
synaptic e�cacies. The synaptic weights among excitatory (e) and inhibitory (i) cells in the
module areWee;Wei;Wie;Wii. Then the mean �ring rates in the module satisfy the following
piecewise-linear system of equations: Mex = Kex(Iex +WeeMex �WieMin � �ex); Min =
Kin(Iin + WeiMex � WiiMin � �in). The response surface in �g 2b is Mex(Iex; Iin), as
obtained from the above system. The surface has three planar regions, corresponding
to (A) no excitatory �ring, (B) recurrent self-excitation with no inhibition, and (C) bal-
anced (competing) excitatory and inhibitory �ring. Response saturation occurs when the
contrast input line crosses region (B) and is parallel to the contours in region (C), i.e.
�in=�ex > Tin=Tex = (Wii + 1=Kin)=Wie (shown with red curve). Super-saturation results
from increasing the slope of the contrast input line, so that Tin=Tex > (Wii + 1=Kin)=Wie.
The surround facilitation/suppression e�ect (compare blue curve to red curve) is obtained
when the translation vector resulting from surround stimulation has a bigger slope than the
contrast input line, i.e. Hin=Hex > Tin=Tex. This corresponds to the physiological predic-
tion that long-range intracortical inputs are less biased towards excitatory (vs. inhibitory)
neurons than are thalamocortical inputs.

Conclusions

Modularity has long been proposed as a means of resolving the complexity of cortical
function [14, 2]. Here we have constructed modules (corresponding to dense local cortical



circuitry) which are quasi-autonomous: their response properties, as studied in isolation,
are preserved in the larger system. Our modular analysis illustrates an expanded concept of
the cortical receptive �eld: each portion of the RF has a dual excitatory-inhibitory inuence
whose net e�ect on a neuron depends on how other RF components activate the recurrent
local cortical circuitry. This vector-based RF integration fully encompasses the traditional
(scalar) view as a special case. Furthermore, this approach uni�es notions of classical and
extraclassical RFs by showing how long-range inputs can be considered on equal footing
with thalamocortical inputs and how the e�ects of both can be analyzed together. Based
on this analysis we predict that for di�erent types of stimulation (involving, for example,
luminance, orientation, or motion contrast), the inuence of extraclassical stimulation shifts
from facilitatory to suppressive as center RF drive increases. Since the properties of neurons
and connections in visual cortex exploited here are common to other cortical areas, vector-
based integration appears well-suited to other cortex as well.
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