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Computing the Newton-step faster than Hessian accumulation

Akshay Srinivasan 1 Emanuel Todorov 2

Abstract

Computing the Newton-step of a generic func-

tion with N decision variables takes O(N3)
flops. In this paper, we show that given the

computational graph of the function, this bound

can be reduced to O(mτ3), where τ,m are the

width & size of a tree-decomposition of the

graph. The proposed algorithm generalizes non-

linear optimal-control methods based on LQR to

general optimization problems and provides non-

trivial gains in iteration-complexity even in cases

where the Hessian is dense.

1. Introduction

Newton’s method forms the basis for second-order methods

in optimization. Computing the Hessian of a generic func-

tion f : RN → R, requires O(N2) flops; inverting this ma-

trix requires a further O(N3) flops. This super-linear scal-

ing in compute/memory requirements is a major obstacle

in the application of such methods despite their quadratic

convergence.

The iteration-complexity of second-order methods has ne-

cessitated the development of specialized algorithms for

restricted classes of problems. In particular, Differen-

tial Dynamic Programming (DDP) methods have been

proposed for solving nonlinear optimal-control problems,

and these methods, quite miraculously, achieve quadratic

convergence despite their linear iteration-complexities

(Jacobson & Mayne, 1970) (De O. Pantoja, 1988) (Wright,

1990).

DDP-methods were historically derived using Dynamic

Programming (DP) and resemble LQR control-design.

They were later, quite surprisingly, also found to be related

to both, the Newton-iteration on the unconstrained problem

(De O. Pantoja, 1988), and the SQP-iteration on the con-
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strained problem (Wright, 1990). Sadly, the method is not

trivially generalized to other objective functions.

Applications of DP to other domains, esp. the solution of

least-squares problems and inference in graphical models,

have seen great success, but such techniques are not ap-

plicable to problems in optimal-control or neural-networks,

due to their inability to handle function compositions.

In this paper, we develop a method that exploits the com-

positional structure in a given objective function in order to

automatically derive a fast Newton update. This is done by

extending the connections of DDP to constrained & uncon-

strained optimization using tools from Automatic Differen-

tiation (AD), and by using techinques from Sparse Linear

Algebra (SLA) to bound iteration-complexity.

2. Problem setup

2.1. Computational graph

Let G be a Directed Acyclic Graph (DAG). Define,

pa(u) , {v|(v, u) ∈ E[G]}, (parents)

ch(u) , {v|(u, v) ∈ E[G]}. (children)
(1)

Let every vertex v ∈ V [G] be associated with a state Xv ∈
Uv ⊂ R

nv for some open set Uv. Let XA be the (labelled)

concatenation of states associated with vertices in set A ⊂
V [G].

Let the input nodes Input , {u1, u2, . . . , un} ⊂ V [G] be

the parentless vertices in G. Let the states of the non-input

nodes be defined recursively by Xv , Φv(Xpa(v)) for some

given function Φv :
∏

z∈pa(v) Uz → Uv. Since G is a DAG,

it follows that XV [G] is uniquely determined from the input

state XInput and functions {Φv}v∈V [G]\X .

An objective function f : Ux1
× . . . Uxn

→ R

has the computational structure given by the tuple

(G, {Φv}v∈V [G]\ Input, {lv}v∈V [G]) if it can be written as

the sum of local objectives lv :
∏

z∈{v}∪pa(v) Uz → R

on the graph G in the following form (2),

f : (Xx1
, . . . , Xxn

) 7→
∑

v∈V [G]

lv(Xv∪pa(v)),

Xv ← Φv(Xpa(v)), ∀v ∈ V [G], pa(v) 6= ∅.

(2)

http://arxiv.org/abs/2108.01219v1
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u0 u1 u2 u3 un−1

x1 x2 x3 xn−1 xn

Figure 1. (Optimal control) The nodes {xi}, {ui} represent the

states and control inputs of the dynamical system.

The assignment operator, ’←’, is explicitly distinguished

from the equality operator, ’=’, which is taken to represent

a constraint in the program. We refer to the DAG G as the

computational graph of f(·).

NOTATION. The symbolism ∂uv , ∂Xv
∂Xu

∣

∣

XInput
, will

be employed for succintly denoting partial deriva-

tives. The derivative operator w.r.t the (labelled) set

A = {v1, v2, . . . } ⊂ V [G], will similarly be denoted by

∂A , [∂a1
, ∂a2

, . . . ].

2.2. Motivation.

Consider the canonical optimal-control problem,

min
u0,u1,...,un−1

[

J (u0, . . . , un) ,

n−1
∑

i=0

li(xi, ui) + ln(xn)

]

,

∀i, xi+1 ← f(xi, ui),
(3)

wherein, f(·, ·) denotes the system dynamics, and li(·, ·)’s
denote the losses incurred. The order of computation for

the objective (3) can be represented by a linear-chain as

shown in Figure 1.

The computational graph Figure 1, while sparse, does not

imply sparsity in the objective. Substitution of the symbol

assignments in the unconstrained objective, has a cascading

effect whereby variables get transported down G,

J (u0, . . . , un) =l0(x0, u0)+

l1(f(x0, u0), u1)+

l2(f(f(x0, u0), u1), u2) + . . . .

This results in a Hessian that is both fully dense and (very)

badly conditioned. These two properties render both itera-

tive and direct-factorization methods unsuitable for solving

this problem.

The computational graph does, however, fully encode the

sparsity of the Lagrangian of the constrained program; the

constrained form being obtained by replacing ’←’ with ’=’,

and including {xi}′s in the domain of optimization. This

results in a fast linear-time SQP (Sequential Quadratic Pro-

gramming) iteration for the optimal-control problem but in-

creases implementation complexity by requiring dual and

non-input updates.

This presents one with a strange set of choices: slow-simple

unconstrained optimization or fast-complex constrained

optimization. DDP-like methods resolve this dichotomy

for optimal-control problems (Jacobson & Mayne, 1970)

(De O. Pantoja, 1988) (Wright, 1990). Our goal is to do

the same for general problems.

3. Graphical Newton

Consider the objective function in (2), defined by the tuple

(G, {Φv}, {lv}). The optimization problem of interest is the

following,

min
{Xv|∀v∈Input}



f ,
∑

v∈V [G]

lv(Xv∪pa(v))



 ,

Xv ← Φv(Xpa(v)), ∀v ∈ V [G], pa(v) 6= ∅.

(4)

The corresponding constrained problem is obtained by sim-

ply replacing the operator ’←’ with ’=’ in (4) and enlarging

the domain of optimization.

min
{Xv|∀v∈V [G]}



f ,
∑

v∈V [G]

lv(Xv∪pa(v))



 ,

Xv = Φv(Xpa(v)), ∀v ∈ V [G], pa(v) 6= ∅.

(5)

The constrained program (5) induces the following La-

grangian function,

L(XV [G], λV [G]\ Input) ,
∑

v∈V [G]

lv(Xv∪pa(v)) +
∑

v∈V [G],
pa(v) 6=∅

λTvhv(Xv∪pa(v)),

where, hv(Xv∪pa(v)) , Φv(Xpa(v))− Xv, ∀v ∈ V [G], pa(v) 6= ∅.
(6)

The necessary first-order conditions for optimality are

given by,

∂V L(X
∗
V , λ

∗
V ) = 0, h(X∗V ) = 0. (7)

Linearization of the first-order conditions for this con-

strained problem (around a nominal (X̃V , λ̃)) yields a sys-

tem of KKT equations, whose solution yields the SQP

search direction.

[

∂2
V L ∂V h

T

∂V h 0

] [

δXV
λ+

]

=

[

−∂V f

−h

]

, (8)

where λ+ , λ̃ + δλ. The sequence of iterates obtained

by taking appropriate steps along (δXV , δλ), converges

quadratically near a strongly-convex local minimum.

The principal result of this paper is the connection between

the unconstrained and constrained formulations,
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Theorem 1 (Newton direction) The Newton direction for

unconstrained problem (4) is given by an iteration of SQP

for the constrained problem (5), when XV [G] is feasible and

when ∀v, λv = ∂vf (12).

Proof. See Appendix A.

Theorem 1 can trivially be extended to arbitrary objective

functions on the graph G and is not restricted to form (5)

where objective functions have the same sparsity as the un-

derlying computation. The dual values λv = ∂vf can be

computed in linear-time with reverse-mode AD.

Theorem 1 immediately leads to the sparse Newton-

iteration given in Algorithm 1.

Algorithm 1 Graphical Newton

1: Input: initial X0Input, tuple (G, {Φv}, {lv})
2: repeat

3: Compute non-inputs, local objectives, and their

derivatives (eq. (4)).

4: Set dual-values to λv = ∂vf , ∀v by reverse-mode

AD (eq. (12)).

5: Solve the KKT-system (eq. (8)).

6: Compute step-length η via linesearch on inputs

XInput (only).

7: Update inputs (only): XInput ← XInput + ηδXInput
8: until ||∂Inputf || ≤ ǫ

Algorithm 1 differs markedly from both SQP and current

techniques in AD. The non-input primals are computed by

running a forward pass on the computation graph, while

the dual-values are set to fixed values by running reverse-

mode AD. Once the KKT system is solved, the algorithm

proceeds to update the primal inputs only, without requir-

ing non-input updates, dual updates, contraint penalties, or

any of the other machinery from constrained optimization.

The efficiency of Algorithm 1 stems from the fact that

the KKT matrix is typically much sparser than the

Hessian. It can be further shown that the common

Hessian-accumulation/inversion method is equivalent to a

particular, generally a (very) suboptimal, pivot-ordering

for solving the sparse KKT system.

3.1. KKT complexity

The run-time of the Algorithm 1 depends crucially on the

time taken to solve the sparse KKT system (8) at every it-

eration. The complexity of solving such sparse systems

depends inturn on the support-graph of the underlying ma-

trix.

It has been observed that many problems defined locally on

graphs, can be solved in linear-time on trees using dynamic

u0 u1 u2 u3 un−1

x1 x2 x3 xn−1 xn

u0 u1 u2 u3 un−1

x1 x2 x3 xn−1 xn

Figure 2. Structure of the optimal control problem as defined in

(9). Top: Computational graph. Bottom: Constraint graph.

programming. These techniques can be extended to general

graphs by grouping vertices in such a way as to mimic a tree.

The size of the largest cluster in this tree-decomposition -

termed tree-width - governs the dominant term in the time-

complexity of the resulting overall algorithm. Computing

the tree-decomposition with minimal tree-width is NP-hard,

but heuristics for finding elimination orderings are often

known to do well in practice.

Run-time complexities in terms of the tree-width are well-

established for closely related problems such as Cholesky

decomposition, but they appear to be unknown for struc-

tured KKT systems such as (8). The following theorem

establishes the required bound for structured-KKT systems

arising in Algorithm 1.

Theorem 2 (KKT tree-width) The KKT system (8) asso-

ciated with the constrained problem (5) can be solved in

time O(m tw(G)3), given the tree-decomposition.

Proof. See Appendix B.

4. Special cases

4.1. Optimal control

Consider, again, the canonical optimal control problem

from (3),

min
u0,u1,...,un−1

[

J (u0, . . . , un−1) ,

n−1
∑

i=0

li(xi, ui) + ln(xn)

]

,

∀i, xi+1 ← f(xi, ui).
(9)

The computational graph and its moralized relative for this

problem are shown in Figure 2. The constraint graph is

chordal, and permits multiple optimal elimination order-

ings.

DYNAMIC PROGRAMMING.

Let’s consider the LQR order, xn, un−1, xn−1 . . . , u0. The

principal minor of the KKT matrix, corresponding to the
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Table 1. DDP methods and their key differences.

Method λi back-substitution

DDP (Jacobson & Mayne, 1970) ∂xi+1
Vi+1 · ∂xi

f Non-Linear (11)

Stagewise-Newton (De O. Pantoja, 1988) ∂xi
J Linear

Nonlinear Stagewise-Newton (Liao & Shoemaker, 1992) ∂xi
J Non-Linear (11)

iLQR/iLQG (Li & Todorov) 0 Non-Linear (11)

clique {xn, xn−1, un−1, λ
+
n−1} is given by,

∂2
xVn − IT −∂xVn

∂2
xHn−1 ∂2

xuHn−1 ∂xf −∂xln−1

∂2
uxHn−1 ∂2

uuHn−1 ∂uf −∂uln−1

− IT ∂xf ∂uf 0 0

,

where,Vn = ln,Hn−1(x, u) = ln−1(x, u) + λn−1 · f(x, u).
(10)

Note that we can only eliminate variables {xn, un−1} in

the above, since xn−1 is part of the separator i.e it is con-

nected to nodes outside the clique.

Eliminating δxn = ∂2Vn
−1

(−∂xVn + λ+
n−1),

∂2
xHn−1 ∂2

xuHn−1 ∂xf
T −∂xln−1

∂2
uxHn−1 ∂2

uuHn−1 ∂uf
T −∂uln−1

∂xf ∂uf −∂2Vn
−1

−∂2Vn
−1

∂Vn

,

Eliminating λ+
n−1 = −∂2Vn(−∂2Vn

−1
∂Vn−∂xfδxn−1−

∂ufuδun−1),

Qxx QT
ux −qx

Qux Quu −qu
,

where,

Qab = ∂2
abHn−1 + ∂af ∂2Vn ∂bf

T,

qa = ∂aln−1 + ∂af
T ∂Vn.

Eliminate δun−1 = Quu
−1(−Qu −Quxδxn−1),

Qxx +QT
uxQuu

−1Qux −(Qx +QT
uxQuu

−1Qu) ,

Re-write the above as,

∂2
xVn−1 −∂2

xVn−1. ,

The eliminations of the adjoining clique can be carried out

in a similar manner.

This procedure is identical to the backward pass in DDP-

methods.1 In the backsubstitution phase, also known as for-

ward pass, the non-linearities can be used directly without

1These computations can be carried out more efficiently & sta-
bly in the square-root form.

having to resort to the use of linearizations,

δxn = ∂2Vn
−1

(−∂xVn + λ+
n−1)

= ∂2Vn
−1

(−∂xVn − ∂2Vn(−∂
2Vn

−1
∂Vn

− ∂xfδxn−1 − ∂ufuδun−1))

= ∂xfδxn−1 + ∂ufuδun−1.

≈ f(xn−1 + δxn−1, un−1 + δun−1)− f(xn−1, un−1).
(11)

The Table 1 illustrates how variations in forward & back-

ward passes, correspond to known DP algorithms. The

theory also makes it trivial to generalize these algo-

rithms to higher-order dynamics and constrained problems

(Srinivasan & Todorov, 2015).

5. Discussion

The method presented in this paper can be used to compute

the Newton step in time O(m tw3), where tw,m, are the

width and size of a tree-decomposition of the computation

graph. The method generalizes many specialized DDP al-

gorithms in numerical optimal-control.

However, while the work presented here provides, in

a sense, optimal iteration-complexities, many real-world

problems in machine-learning also have large tree-widths.

The KKT-matrix factorization of such problems is also

quite rife with redundant computation, and indicates the

necessity for partial symbolic-condensation in sparse LDL

(and QP) solvers. These are topics for future work.
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A. Graphical Newton

This section presents a proof of theorem 1. We proceed by

first recalling the 1st, 2nd-order relations from AD for the

objective (4); this is then related to the problem of comput-

ing the solutiong to the KKT system in (8) thus completing

the proof.

A.1. Derivative relations on G

REVERSE-MODE AD. The first derivative of the objective

f (·) (4) can be calculated by applying the chain rule over

G,

∀v, ∂vf =
∑

s∈v∪ch(v)

∂v ls +
∑

d∈ch(v)

∂df T ∂vd;

v ∈ pa(d)⇒ ∂vd ,
∂Φd(Xpa(d))

∂Xv
.

(12)

Since G is a DAG, there exist child-less nodes (i.e ch(v) =
∅) from which the recursion can be initialized. The recur-

sion then proceeds backward on G in a breadth-first order.

This algorithm is known in literature as reverse-mode AD.

HESSIAN-VECTOR AD: For a given infinitesimal change

δXInput in the inputs, the first derivatives exhibit a first-

order change δ[∂vf ] , ∂2
Input,vf · δXInput, given by the

Hessian-vector product. Applying chain-rule over G again

for all terms in (12) we obtain,

∀v, δ[∂vf ] =
∑

s∈v∪ch(v)





∑

a∈v∪pa(s)

∂2
vals · δXa



+

∑

d∈ch(v)



δ[∂df ]T∂vd+
∑

a∈pa(d)

(∂df T ∂2
vad) · δXa)



 ;

where,

∀a, δXa =
∑

d∈pa(a)

∂da · δXd.

(13)

These equations can be solved, for a given δXInput by a

forward-backward recursion similar to the one used for

solving (12). Computing the Hessian-vector product in

this manner takes time O(|E[Ĝ]|ω(Ĝ)2), where ω(Ĝ) is the

clique number of the moralization of G.

A.2. Newton direction

Computing the Newton step requires inverting the Hessian-

vector AD process: find δXInput such that, δ[∂Inputf ] =
−∂Inputf . The inversion of these relations is related to the

computation of the SQP direction via Theorem 1,

Theorem 1 (Newton direction) The Newton direction for

unconstrained problem (4) is given by an iteration of SQP
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for the constrained problem (5), when XV [G] is feasible and

when ∀v, λv = ∂vf (12).

Proof. The second equation in (13) is equivalent to ∂V Φ ·
δSV = −Φ, in (8). Rearranging the first equation from

(13), and setting δ[∂vf ] = −∂vf for all inputs, we obtain

∀v,

0 =
∑

s∈v∪ch(v),
a∈v∪pa(s)

∂2
vals δXa +

∑

d∈ch(v),
a∈pa(d)

(∂df T ∂2
vad) δXa+

−

({

δ[∂vf ] pa(v) 6= ∅

−∂vf otherwise

)

+
∑

d∈ch(v)

(∂vd)
Tδ[∂df ].

(14)

Similarly, expanding the top block in (8) using the defini-

tions in (4) & (8), we obtain ∀v,

−∂vL =
∑

s∈v∪ch(v),
a∈v∪pa(s)

∂2
vals δXa +

∑

d∈ch(v),
a∈pa(d)

(λTd ∂2
avd) δXa+

−

({

δλv pa(v) 6= ∅

0 otherwise

)

+
∑

d∈ch(v)

(∂vd)
T δλd,

(15)

where,

∂vL =











∑

s∈v∪ch(v) ∂v ls +
∑

d∈ch(v) λd · ∂vd, pa(v) = ∅
∑

s∈v∪ch(v) ∂vls +
∑

d∈ch(v) λd · ∂vd

−λv

, otherwise

(16)

The result follows from equations (12), (14), (15) &

(eq. (16)).

�

B. KKT complexity

In this section, we provide a Message Passing [MP] algo-

rithm for solving KKT systems arising in Algorithm 1 and

show that it has a theoretical run-time bound of O(m tw3),
given a tree-decomposition.

B.1. Hypergraph structured QPs

For a hypergraph H, denote the adjacency and incidence

matrices by A[H] & B[H] respectively,

A[H] ∈ R
|V [H]|×|V [H]|, B[H] ∈ R

|E[H]|×|V [H]|,

A[H]uv =

{

1 ∃e ∈ E[H], u, v ∈ e

0 otherwise

B[H]eu =

{

1 u ∈ e

0 otherwise

(17)

Given such a hypergraphH, the family of QPs we’re inter-

ested in solving is the following,

min
x

∑

e∈E[H]

1

2
X
T
eQeXe − bTeXe,

∀e ∈ E[H], GeXe = he.

(18)

Assuming that the QP has a bounded solution and that the

constraints are full rank, the minimizer to (eq. (18)) is given

by the solution to the following KKT system,

[

Q GT

G 0

] [

x

λ

]

=

[

b

h

]

,

x, b ∈ R
|V |, λ, h ∈ R

M ,

(19)

where Q,G, λ, x, b are concatenation of terms defined in

(18) respectively. The sparsity/support of (eq. (19)) is

closely related toH because the quadratic part of the KKT

equation has the sparsity of the adjacency matrix, and the

row of the constraint Gi,: has the same sparsity as some

edge e ∈ E[H].

TREE DECOMPOSITION: Extending the notion of Dy-

namic Programming to non-trees (including Hypergraphs)

requires a partitioning of the graph so as to satisfy a lifted

notion of being a tree. Tree decomposition captures the

essence of such graph partitions,

Definition 1 (Tree decomposition) A tree-decomposition

of a hypergraph H consists of a tree T and a map χ :
V [T ]→ 2V [H], such that,

i (Vertex cover) ∪i∈V [T ]χ(i) = V [H].

ii (Edge cover) ∀e ∈ E[H], ∃i ∈ V [T ], e ⊂ χ(i).

iii (Induced sub-tree) ∀u ∈ V [H], Tu , T [{i ∈
V [T ]|u ∈ χ(i)}] is a non-empty subtree

The tree-width of a tree-decomposition T is defined to be

tw(T ) = maxv∈V [T ] |χ(v)|−1. The tree-width of a graph

H is defined to be the minimal tree-width attained by any

tree-decomposition ofH.

We define the vertex-induced subgraph in what follows to

be H[S] , (V [H], {e ∩ S, e ∈ E[H]}). The following

lemma ensures that such a decomposition ensures local de-

pendence.

Lemma 1 (Edge separation) Deleting the edge xy ∈
E[T ], rendersH[V \(χ(x) ∩ χ(y))] disconnected.

HYPERTREE STRUCTURED QP: The tree-decomposition it-

self can be considered a Hypergraph, (V [H], {χ(u), ∀u ∈
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V [T ]}). Such a Hypertree2 can also be thought of as a

chordal graph. We assume henceforth that the given graph

H is a hypertree, and that T is its tree-decomposition.

A message passing [MP] algorithm for solving (19) on such

Hypertrees is given below. The gather stage of the message

passing algorithm is illustrated in algorithm 2 3. The func-

tion, Factorize, computes the partial LU decomposition of

its arguments; we describe below, its operation.

Denote the vertices that are interior to l by ι = χ(l)∩χ(p),
and those on the boundary (i.e common to p, l) by ξ =
χ(l)\χ(p), and let r = rank(Q̃ι,ι). The function computes

Gaussian-BP messages from block pivots {2, 3} to {1, 4}
in (20). Note that, unlike Gaussian-BP, the matrices in (20)

are not necessarily positive definite, but are however invert-

ible.

Algorithm 2 Graphical QP

1: Given: T ,H, {Qe}, {be}, {Ge}, {he}.
2:

3: function GatherMessage(l, p, T )

4: (Q̃l, b̃l, G̃l, h̃l)← (Ql, bl, Gl, hl)
5: for c ∈ δT (l)\p do

6: (Qc→l, Gc→l, bc→l, hc→l) ←
GatherMessage(c, p, T )

7: (Q̃l, b̃l)← (Q̃l, b̃l) + (Qc→l, bc→l)
8: G̃l ← [G̃l;Gc→l], h̃l ← [h̃l;hc→l]
9: end for

10: return Factorize(χ(l), χ(p), Q̃l, b̃l, G̃l, h̃l)

11:

12: function Factorize(χ(l), χ(p), Q̃, b̃, G̃, h̃)

13: (ξ, ι)← (χ(l)\χ(p), χ(l) ∩ χ(p))
14: r ← rank(Q̃ι,ι)
15: return Gaussian-BP messages from (20).

16: return

Q̃ξξ Q̃T
ιξ G̃T

:r,ξ G̃T
r:,ι

Q̃ιξ Q̃ιι G̃T
:r,ι G̃T

r:,ι

G̃:r,ξ G̃:r,ι 0 0

G̃r:,ξ G̃r:,ι 0 0









































Xξ

Xι

λ:r

λr:





























=

b̃ξ

b̃ι

h̃:r

h̃r:





































(20)

Gaussian Belief-Propagation is essentially a re-statement

of LU decomposition, and consists of messages of the form,

2There are multiple definitions of a Hypertree; we use the term
to mean a maximal Hypergraph, whose tree-decomposition can be
expressed in terms of its edges.

3Note that the addition is performed vertex label-wise in
Line 6 of Algorithm algorithm 2.

µi→j := [Ji→j , hi→j ] = [Jii, hi]−
∑

k∈δ(i)\j

JikJ
−1
k→i[Jki, hk→i],

µi = J−1
i→j(hi→j − Jijµj),

(21)

where Jµ = h is the equation that is to be solved. These

can be replaced by appropriate square-root forms to obtain

instead, an LDL decomposition.

Theorem 3 The linear equation (19) can be solved in time

O(|H| tw(H)3), given the tree-decomposition, via Algo-

rithm 2.

Proof. The correctness of the algorithm follows from

Lemma 1. The bound holds trivially if, rank G̃ ≤
rank Q̃ι,ι, at every step of the algorithm. Otherwise, by

realizing that G̃l→p, can’t have rank more than |χ(p)|, the

proof follows.
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