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Abstract
We introduce Lyceum, a high-performance computational ecosystem for robot learning. Lyceum is
built on top of the Julia programming language and the MuJoCo physics simulator, combining the
ease-of-use of a high-level programming language with the performance of native C. In addition,
Lyceum has a straightforward API to support parallel computation across multiple cores and
machines. Overall, depending on the complexity of the environment, Lyceum is 5–30X faster as
compared to other popular abstractions like OpenAI’s Gym and DeepMind’s dm-control. This
substantially reduces training time for various reinforcement learning algorithms; and is also fast
enough to support real-time model predictive control through MuJoCo. The code, tutorials, and
demonstration videos can be found at: www.lyceum.ml.

1. Introduction

Progress in artificial intelligence has exploded in recent years, due in large part to advances computa-
tional in infrastructure. The advent of massively parallel GPU computing, combined with powerful
automatic-differentiation tools like TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019),
has lead to new classes of deep learning algorithms by enabling what was once computationally
intractable. These tools, alongside fast and accurate physics simulators like MuJoCo (Todorov et al.,
2012), and associated frameworks like OpenAI’s Gym (Brockman et al., 2016) and DeepMind’s
dm_control (Tassa et al., 2018), have similarly transformed various aspects of robotic control like
Reinforcement Learning (RL), Model-Predictive Control (MPC), and motion planning. These plat-
forms enable researchers to give their ideas computational form, share results with collaborators, and
deploy their successes on real systems.

From these advances, simulation to real-world, or “sim2real”, transfer has emerged as a promising
paradigm for robotic control. A growing body of recent work suggests that robust control policies
trained in simulation can successfully transfer to the real world (OpenAI et al., 2020; Rajeswaran
et al., 2017a; Sadeghi and Levine, 2016; Lowrey et al., 2018; Tobin et al., 2017; Mordatch et al.,
2015). However, many algorithms used in these works for controller synthesis are computationally
intensive. Training control policies with state-of-the-art RL algorithms often takes many hours to
days of compute time. For example, OpenAI’s landmark Dactyl work (OpenAI et al., 2020) required
50 hours of training time across 6144 CPU cores and 8 NVIDIA V100 GPUs. Such computational
budgets are only available to a select few labs. Furthermore, such experiments are seldom run only
once in deep learning, especially in deep RL. Indeed, RL algorithms are notoriously sensitive to
choices of hyper-parameters (Rajeswaran et al., 2017b; Henderson et al., 2017; Mania et al., 2018).
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Thus, many iterations of the learning process may be required, with humans in the loop, to improve
hyperparameter choices and reward functions, before finally deploying solutions to the real world.
This computational bottleneck often leads to a scarcity of hardware results, relative to the number of
papers that propose new algorithms on highly simplified and well tuned benchmark tasks. Exploring
avenues to reduce experiment turnaround time is thus crucial for scaling up to harder tasks as well as
making resource-intensive algorithms and environments accessible to research labs without massive
cloud computing budgets.

In a similar vein, computational considerations have also limited progress in model-based control
algorithms. For real-time model predictive control (MPC), the computational restrictions manifest
as the requirement to compute actions in bounded time with limited local resources. As we will
show, existing frameworks such as Gym and dm_control, while providing a convenient abstraction
in Python, are too slow to meet this real-time computation requirement. As a result, most planning
algorithms are run offline and deployed in open-loop mode on hardware. This is unfortunate, since it
does not take feedback into account, which is well known to be critical for stochastic control.

Our contributions: Our goal in this work is to overcome the aforementioned computational
restrictions to enable faster training of policies with RL algorithms, facilitate real-time MPC with
a detailed physics simulator, and ultimately enable researchers to engage with complex robotic
tasks. To this end, we develop Lyceum, a computational ecosystem that uses the Julia programming
language and the MuJoCo physics engine. Lyceum ships with the main OpenAI Gym continuous
control tasks, along with other environments representative of challenges in robotics. Julia’s unique
features allow us to wrap MuJoCo with zero-cost abstractions, providing the flexibility of a high-
level programming language to enable easy creation of environments, tasks, and algorithms, while
retaining the performance of native C. This allows RL and MPC algorithms implemented in Lyceum
to be 5–30X faster compared to Gym and dm_control. We hope that this speedup will enable RL
researchers to scale up to harder problems with reduced computational costs and enable real-time
MPC.

2. Related Works

Recently, various physics simulators and the computational ecosystems surrounding them have
transformed robot learning research. They allow for exercising creativity to quickly generate new
and interesting robotic scenes, as well as quickly prototype various learning and control solutions.
We summarize the main threads of related work below.

Physics simulators MuJoCo (Todorov et al., 2012) has quickly emerged as a leading physics sim-
ulator for robot learning research. It is fast and efficient, and particularly well suited for contact-rich
tasks. Numerous recent works have also demonstrated simulation to reality transfer with MuJoCo
through physically consistent system identification (Lowrey et al., 2018) or domain randomiza-
tion (OpenAI et al., 2020; Mordatch et al., 2015; Nachum et al., 2019). Our framework wraps
MuJoCo in Julia and enables programming and research with a high level language, while retaining
the speed of native C. While we primarily focus on MuJoCo, we believe that similar design principles
can be extended to other simulators like Bullet (Coumans and Bai, 2016) and DART (Lee et al.,
2018).

Computational ecosystems OpenAI’s Gym (Brockman et al., 2016) and DeepMind’s dm_control
(Tassa et al., 2018) sparked a wave of interest by providing Python bindings for MuJoCo with
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a high-level API, as well as easy-to-use environments and algorithms. This has enabled the RL
community to quickly access physics-based environments and prototype algorithms. Unfortunately,
this flexibility comes at the price of computational performance: existing ecosystems are slow due
to the inefficiencies of Python combined with its poor support for parallelization. Prior works have
tried to address some of the shortcomings of Python frameworks by attempting to add “just-in-time”
compilation to the language (Lam et al., 2015; Paszke et al., 2019; Agrawal et al., 2019) but only
support a subset of the language, and do not achieve the same performance as Julia. Fan et al. (2018)
developed a framework similar to Gym that supports distributed computing, but it still suffers the
same performance issues of Python. Perhaps closest to our motivation is the work of Koolen and
Deits (2019), which demonstrates the usefulness of Julia as a language for robotics. However, it
uses a custom and minimalist rigid body simulator with limited support for contacts. In contrast, our
work addresses the inefficiencies of existing computational ecosystems through use the of Julia, and
directly wraps a more capable simulator, MuJoCo, with zero overhead.

Algorithmic toolkits and environments A number of algorithmic toolkits like OpenAI Base-
lines (Dhariwal et al., 2017), mjRL (Rajeswaran et al., 2017b), Soft-Learning (Haarnoja et al., 2018),
and RL-lab (Duan et al., 2016); as well as environments like the Hand Manipulation Suite (Rajeswaran
et al., 2018), ROBEL (Ahn et al., 2019), DoorGym (Urakami et al., 2019), and SURREAL (Fan et al.,
2018) have been developed around existing computational ecosystems. Our framework supports all
the underlying functionality needed to transfer these advances into our ecosystem (e.g. simulator
wrappers and automatic differentiation through Flux.jl). Lyceum comes with a few popular algo-
rithms out of the box like Natural Policy Gradient (Kakade, 2002; Rajeswaran et al., 2017b) for RL
and variants of Model Predictive Path Integral (Lowrey et al., 2019; Williams et al., 2016) for MPC.
In the future, we plan to port further algorithms and advances into our ecosystem and look forward
to community contributions as well.

3. The Lyceum Ecosystem

The computational considerations for designing infrastructure and ecosystems for robotic control
with RL and MPC are unique. We desire a computational ecosystem that is high-level and easy to use
for research, but that also provides the speed of native C and support for distributed computing, which
is required for control algorithms running in a tight loop on robots. We found Julia to be well-suited
for these requirements and summarize some of these main advantages below. Subsequently, we
outline the salient features of Lyceum.

3.1. Julia for Robotics and RL

Julia is a general-purpose programming language developed in 2012 at MIT with a focus on technical
computing (Bezanson et al., 2017). While a full description of Julia is beyond the scope of this paper,
we highlight a few key aspects that we leverage in Lyceum and believe make Julia an excellent tool
for robotics and RL researchers.

Just-in-time compilation Julia feels like a dynamic, interpreted scripting language, enabling an
interactive programming experience. Under the hood, however, Julia leverages the LLVM backend
to “just-in-time” compile native machine code that is as fast as C for a variety of hardware platforms.
This enables researchers to quickly prototype ideas and optimize for performance with the same
language.
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Julia can easily call functions in Python and C In addition to the current ecosystem of Julia
packages, users can interact with Python and C as illustrated below. This allows researchers to benefit
from the existing body of deep learning research (in Python) and easily interact with low-level robot
hardware drivers.

using PyCall
so = pyimport("scipy.optimize")
so.newton(x -> cos(x) - x, 1)
ccall((:mj_step, libmujoco), Cvoid, (Ptr{mjModel}, Ptr{mjData}), m, d)

Easy parallelization Julia comes with extensive support for distributed and shared-memory multi-
threading that allows users to trivially parallelize their code. The following example splits the indices
of X across all the available cores and performs in-place multiplication in parallel:

@threads for i in eachindex(X)
X[i] *= 2

end

Julia can also transpile to alternative hardware backends, allowing use of parallel processors like
GPUs by writing high level Julia code.

3.2. Salient Features of Lyceum

Lyceum consists of the following packages

1. LyceumBase.jl, a lightweight package that defines a set of abstract environment and controller
interfaces, along with several utilities.

2. MuJoCo.jl, a low-level Julia wrapper for the MuJoCo physics simulator.
3. LyceumMuJoCo.jl, a high-level “environment” abstraction similar to Gym and dm_control.
4. LyceumMuJoCoViz.jl, a flexible policy and trajectory visualizer with support for interaction.
5. LyceumAI.jl, a collection of various algorithms for robotic control.

LyceumBase.jl At the highest level we provide LyceumBase.jl, which contains several convenience
utilities used throughout the Lyceum ecosystem for data logging, multithreading, and controller
benchmarking (i.e. measuring throughput, jitter, etc.). LyceumBase.jl also contains interface defini-
tions, such as AbstractEnvironment (which LyceumMuJoCo.jl then implements for MuJoCo).

This interface is similar to the popular Python frameworks Gym and dm_control, where an
agent’s observations are defined, actions are chosen, and the simulator is stepped forward in time. A
few key differences are as follows:

1. The ability to arbitrarily get/set the state of the simulator, a necessary feature for model-based
methods like MPC or motion planning. An important component of this is a proper definition
of state, which is often missing from existing frameworks.

2. Optional, in-place versions for all functions (e.g. getstate!(·)) which store the return value in
a pre-allocated data structure. This eliminates unnecessary memory allocations and garbage
collection, enabling environments to be used in tight, real-time control loops.

We expect most users will be interested in implementing their own environments, which forms a
crucial part of robotics research. Indeed, different researchers may be interested in different robots
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performing different tasks, ranging from whole arm manipulators to legged locomotion to dexterous
anthropomorphic hands. To aid this process, we provide sensible defaults for most of the API, making
it easy to get started and experiment with different environments. The separation of interface and
implementation also allows for other simulators and back-ends (e.g. RigidBodySim.jl or DART) to
be used in lieu of the MuJoCo-based environments we provide, should the user desire.

MuJoCo.jl, LyceumMuJoCo.jl, and LyceumMuJoCoViz.jl MuJoCo.jl is a low-level Julia wrap-
per for MuJoCo that has a one-to-one correspondence to MuJoCo 2.0’s C interface and includes
soft body dynamics. All data is memory mapped to native Julia objects with no overhead. Support
for accessing the simulation elements defined in a MuJoCo XML file with named indices (e.g.
d.qpos[:, :arm]) is also provided. We then build LyceumMuJoCo.jl, the MuJoCo implemen-
tation of our AbstractEnvironment API, on top of MuJoCo.jl to create environment and task
definitions. Finally, the LyceumMuJoCoViz.jl package provides a feature-rich visualizer that enables
playback of previously recorded trajectories and allows for interaction with the simulator and control
polices in real time using a mouse and keyboard. Robots in the real world encounter perturbations and
disturbances, and with LyceumMuJoCoViz.jl the user can interact with the simulated environment to
test the robustness of a controller.

LyceumAI.jl Coupled with these environments is LyceumAI.jl, a collection of algorithms for
robotic control that similarly leverage Julia’s performance and multithreading abilities. Currently we
provide implementations of Model Predictive Path Integral Control (MPPI) (Williams et al., 2016),
a stochastic shooting method for model-predictive control, and Natural Policy Gradient (Kakade,
2002; Rajeswaran et al., 2017b). We compare these methods with a Python implementation in the
next sections. The combination of efficient compute, flexible high-level programming, and a rich
ecosystem of tools for deep learning and optimization should allow both robotics and RL researchers
to experiment with different robotic systems and algorithm designs, and hopefully deploy to the real
world.

4. Benchmark Experiments and Results

We designed our experiments and timing benchmarks to answer the following questions: (a) Do
the implementations of Gym environments and algorithms for RL and MPC in Lyceum produce
comparable results? (b) Does Lyceum lead to faster environment sampling and experiment turn-
around time when compared to Gym and dm_control?

Methodology All experiments are performed on a 16-core Intel i9-7960X with the CPU governor
pinned at 1.2GHz so as to prevent dynamic scaling or thermal throttling from affecting results.
Parallelization for Lyceum, C, dm_control, and Gym is implemented as follows:

1. Lyceum: Julia’s built-in Threads.@threads macro.
2. C: OpenMP’s #pragma omp parallel for.
3. dm_control: A modification of deepmind/dm_control/92.
4. Gym: A hybrid of Gym’s AsyncVectorEnv and OpenAI Baseline’s SubprocVecEnv.

Below we describe the various benchmarks we considered and their results.
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Lyceum 0.96 ± 0.07

Figure 1: Comparison of parallel sampling throughput across frameworks. Throughput first was
measured using 1–16 cores for the Humanoid model (left), with the scaling factor
reported in the table, as well across models of varying complexity using all 16 cores. The
raw throughput on a log scale (bottom right) as well as the performance relative to native
C (top right) is shown. We find that Lyceum can match the performance of native C, while
still retaining the benefits of writing research code in a high-level language.

Sampling throughput In the first benchmark, we study the sampling throughput and parallel
scaling performance of LyceumMuJoCo.jl against Gym, dm_control, and a native C implementation.
To do so, we consider various models of increasing complexity: CartPole, Ant, HERB, and
Humanoid. In the first experiment, we study how the sampling throughput scales with the number
of cores for the various implementations. To do so, we consider the Humanoid environment and
measure the number of samples that can be generated per second while varying the number of cores
utilized. The results are plotted in Figure 1 (left) and summarized in the table below, where we see
substantial gains for Lyceum. In particular, the performances scales linearly with the number of
cores for C and Lyceum, while there are diminishing returns for Gym and dm_control. This is due
to the inherent parallelization limitations of Python. When using more cores (e.g. on a cluster), the
performance difference is likely to be even larger.

In the second experiment, we use all 16 of the available cores to measure the number of samples
we can collect per second. Figure 1 (right) shows the results, which are presented in two forms: as
a fraction of native C’s throughput, and as samples per second. We see that Lyceum and native C
significantly outperform Gym and dm_control in all cases. In particular, for CartPole, Lyceum is
more than 200x faster as compared to Gym.

Reinforcement learning with policy gradients In the second benchmark, we compare the learn-
ing curves and wall clock time of Natural Policy Gradient (NPG) (Kakade, 2002; Rajeswaran et al.,
2017b), which is closely related to Trust Region Policy Optimization (Schulman et al., 2015), be-
tween Gym and Lyceum. Our implementation of NPG, closely based on the algorithm as described
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Figure 2: Reinforcement learning in Gym and Lyceum using the Natural Policy Gradient algorithm,
trained for one million time-steps. Environment reward is plotted against both wall-clock
time (top) and simulator timesteps (bottom), showing that similar performance is achieved
in significantly less time using Lyceum. Performance of the underlying deterministic
policy is reported.

in Rajeswaran et al. (2017b) and consistent with majority practice in the community, considers two
layer neural network policies. Details about hyperparameters are provided in on the website. We
compare based on three representative tasks (Swimmer, Hopper, and Walker) and find that the
learning curves match across the two frameworks. The results are summarized in Figure 2 show that
the performance curves match well. We note that RL algorithms are known to be sensitive to many
implementation details (Henderson et al., 2017; Ilyas et al., 2018), and thus even approximately
matching results is a promising sign for both the original code base and Lyceum. The important
conclusion, however, is that similar results can be achieved in a fraction of the time.

Model Predictive Control In the final benchmark, we compare the performance of a model-based
trajectory optimizer in Gym and Lyceum. For this purpose, we consider the Model Predictive
Path Integral (MPPI) algorithm (Williams et al., 2016), which in conjunction with learning-based
techniques has demonstrated impressive results in tasks like aggressive driving and dexterous hand
manipulation (Lowrey et al., 2018; Nagabandi et al., 2019). MPPI is a sampling-based algorithm
where different candidate action sequences are considered to generate many potential trajectories
starting from the current state. Rewards are calculated for each of these trajectories and the candidate
action sequences are combined with exponentially-weighted trajectory rewards.

We consider two tasks for the MPPI comparison: a 7-DOF sawyer arm where the goal is to reach
various spatial goals with its end effector, and a 30-DOF in-hand manipulation task that requires a
Shadow Hand (Adroit) (Kumar, 2016) to perform in-hand manipulation of a pen in order to match a
target configuration. We compare the times taken by MPPI to optimize a trajectory as well as the
fraction of times MPPI generated a successful trajectory. The results are provided in Figure 3. In
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Task Time (s) Success (%)

Hand (Gym) 40.4 92 ± 5
Hand (Lyceum) 14.3 88 ± 6
Reacher (Gym) 3.67 100

Reacher (Lyceum) 0.119 100

Figure 3: (Left) Illustration of the 30-DOF in-hand manipulation task with a Shadow Hand (Adroit).
The goal is to manipulate the (blue) pen to match the (green) desired pose. (Middle)
Illustration of the reaching task with a 7-DOF Sawyer arm. Goal is to make the end-
effector (blue) reach the (green) target. (Right) comparison of time taken and success
percentage in Gym and Lyceum. Time refers to the time taken to execute a single episode
with the MPPI controller (in MPC mode). Success % measures the number of successful
episodes when the robot is controlled using the MPPI algorithm. 95% confidence intervals
are also reported. See website for additional details and hyperparameters.

summary, we find that the MPPI success percentages are comparable between Gym and Lyceum,
while the Lyceum implementation is approximately 30x faster for the Sawyer arm task and 3x
faster for the Shadow Hand task. This trend is consistent with the earlier trend, where the relative
differences are larger for lower dimensional systems with fewer contacts. This is because for complex
models with many contacts like the Shadow Hand, most of the computational work is performed by
MuJoCo, thereby diminishing the impact of overhead in Gym and Python. We note, however, that
we found the parallel scaling performance to be significantly better in Lyceum as compared to Gym,
and thus the difference between the frameworks is likely larger when using more cores (e.g. on a
cluster).

5. Conclusion and Future Work

We introduced Lyceum, a new computational ecosystem for robot learning in Julia that provides
the rapid prototyping and ease-of-use benefits of a high-level programming language, yet retaining
the performance of a low-level language like C. We demonstrated that Lyceum enables substantial
performance gains as compared to existing ecosystems like OpenAI Gym and dm_control. We also
demonstrated that this speed up enables faster experimentation times for RL and MPC algorithms. In
the future, we hope port over additional algorithmic infrastructure like OpenAI Baselines (Dhariwal
et al., 2017). We also hope to include and support models and environments involving real robots
like Cassie (Agility Robotics, 2017) and ROBEL (Ahn et al., 2019).
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