
High-Order Local Dynamic Programming

Yuval Tassa
Interdisciplinary Center for Neural Computation

Hebrew University, Jerusalem, Israel
tassa@alice.nc.huji.ac.il

Emanuel Todorov
Applied Mathematics and Computer Science & Engineering

University of Washington, Seattle, USA
todorov@cs.washington.edu

Abstract—We describe a new local dynamic programming
algorithm for solving stochastic continuous Optimal Control
problems. We use cubature integration to both propagate the
state distribution and perform the Bellman backup. The al-
gorithm can approximate the local policy and cost-to-go with
arbitrary function bases. We compare the classic quadratic cost-
to-go/linear-feedback controller to a cubic cost-to-go/quadratic
policy controller on a 10-dimensional simulated swimming robot,
and find that the higher order approximation yields a more
general policy with a larger basin of attraction.

I. INTRODUCTION

Optimal Control describes the choice of actions which
minimizes future costs and promises a simple, principled ap-
proach to controller synthesis: quantify task performance, and
a numerical algorithm will automatically generate the optimal
policy. In practice, the exponential scaling of computational
complexity with the state-dimension makes this impossible for
all but the simplest systems.

In the continuous nonlinear case, local methods are the only
class of algorithms which successfully solve general, high-
dimensional Optimal Control problems. They are based on the
observation that optimal solutions form extremal trajectories,
i.e. are solutions to a calculus of variations problem. Problems
which are sufficiently smooth and deterministic, e.g. space
flight, have been successfully solved using such methods,
which characterize the solution on a single optimal trajectory.

When the dynamics are stochastic, an open-loop controller
does not suffice, and feedback terms must be incorporated.
Second-order local dynamic programming algorithms like
DDP [1] and iterative-LQG [2] compute a quadratic approxi-
mation of the cost-to-go around a trajectory and correspond-
ingly, a local linear-feedback controller. While controllers
constructed with these algorithms are indeed more robust,
they do not take the noise explicitly into account. Instead,
they rely on the certainty-equivalence principle, which asserts
that for linear-quadratic problems noise has no effect on the
policy. This neglect of noise can hold only under Linear-
Quadratic-Gaussian assumptions, which in some cases cease
to be reasonable (see Discussion).

As a result of certainty-equivalence, locally-quadratic meth-
ods can measure the dynamics and cost and represent the Value
only in an infinitesimal neighborhood, effectively a truncated
Taylor expansion. In order to compute a higher-than-quadratic
local approximation of the Value function, as we do here,
we must explicitly measure and represent these quantities in
a finite volume around the trajectory. This means that the

propagation of the dynamics must involve a process akin
to “Unscented” or “particle” filters, rather than the standard
Extended Kalman Filter. Similarly, in the backward pass which
approximates the Value, costs must be measured within this
finite volume, rather than at a single point. We address this by
using cubature integration formulas (see section IV).

We present a local dynamic-programming algorithm which
uses cubature-based integration of a single trajectory and can
accept general function bases for the approximation of both
the cost-to-go and the policy. The direct representation of the
distribution as a set of weighted cubature vectors allows us to
increase the region of validity of our approximation, and to
construct controllers with larger basins of attraction.

We test the algorithm on a simulated swimming robot with
10 state and 2 control dimensions. We compare a cubic-Value,
quadratic-policy controller and the standard quadratic-Value,
linear-policy controller, and find that it can generalize more
effectively from a swimming behaviour to a twisting-in-place
behaviour, in a target reaching task.

The work here extends [2], where we presented the idea
of using high-order approximators, without the specific ma-
chinery of cubature integration as an accurate method of
propagating the state-distribution and the Value back-up.

II. OVERVIEW OF LOCAL METHODS

We restrict ourselves to the discrete-time finite-horizon
problem, though extensions to continuous time and first-
exit formulations are possible. We begin with deterministic
dynamics and turn to the stochastic case in Sec. III. The control
u ∈ Rm affects the propagation of the state x ∈ Rn via the
dynamics

x′ = f(x,u). (1)

The cost-to-go starting from state x at time i with a control
sequence ui..N−1 ≡ {ui,ui+1 . . . ,uN−1}, is the sum of
running costs `(x,u)1 and final cost `f (x):

Ji(xi,ui..N−1) =

N−1∑
k=i

`(xk,uk) + `f (xN),

where the xk for k > i are propagated with (1). Defining the
optimal Value function at time i as the cost-to-go given the
minimizing control sequence

V ∗i (x) ≡ min
ui..N−1

Ji(x,ui..N−1),

1The possible dependence of ` on i is suppressed for compactness.

and setting V ∗N (x) ≡ `f (xN), the Dynamic Programming
principle reduces the minimization over an entire sequence, to
a sequence of minimizations over a single vector, proceeding
backwards in time:

V ∗i (x) = min
u

[`(x,u) + V ∗i+1(f(x,u))] (2)

A. First-Order Dynamic Programming

To derive a discrete-time equivalent of the Maximum Prin-
ciple, we observe that given a first-order approximation of the
Value at i+1, if f is affine in u (which holds for mechanical
systems) and ` is convex and smooth in u (so that ∇u` is
invertible), then the minimizing u is given by:

ui = −∇u`
−1
(
∇uf

T∇xVi+1

)
(3)

with dependencies on x and u suppressed for readability. Once
ui is known, the approximation at time i is given by

∇xVi(x) = ∇x

(
`(x,ui) + Vi+1(f(x,ui))

)
. (4)

The first-order local dynamic programming algorithm pro-
ceeds by alternatingly propagating the dynamics forward with
(1), and propagating ui and ∇xVi(x) backward with (3) and
(4). In other derivations the quantity ∇xVi(x) is called the
co-state vector.

B. Second-Order Dynamic Programming

By propagating a quadratic model of Vi(x), second-order
methods can compute locally-linear policies. These provide
both quadratic convergence rate2 and a more accurate, closed-
loop controller, albeit at a higher computational cost. We
define the unminimized Value function

Qi(δx, δu) = `(x + δx,u + δu) + Vi+1(f(x + δx,u + δu))

and expand to second order

≈ 1

2

 1
δx
δu

T 2Q0 Qx
T Qu

T

Qx Qxx Qxu
Qu Qux Quu

 1
δx
δu

 . (5)

Solving for the minimizing δu we have

δu∗ = argmin
δu

[Qi(δx, δu)] = −Q−1uu (Qu +Quxδx)

which gives us both open-loop and linear-feedback control
terms. This control law can then be plugged back into (5)
to obtain a quadratic approximation of Vk. As in the first-
order case, these methods proceed by alternating a forward
pass which propagates the dynamics using the current policy,
and a backward pass which reestimates the Value and produces
a new policy.

2i.e. convergence like Newton’s method rather than like gradient descent.

III. STOCHASTIC DYNAMICS

Small noise in discrete time is usually described as a short-
time integral of the diffusion

dx = fc(x,u)dt+ F (x,u)dω

where fc is the underlying continuous dynamics. For a short
integration interval h the discrete dynamics are a conditional
distribution that is guaranteed to be near-gaussian:

p(x′|x,u) ∝ N (x′ ; f(x,u),Σ(x,u))

f(x,u) = x + hfc(x,u)

Σ(x,u) = hF (x,u)F (x,u)T

Second-order methods provide a stabilizing linear state-
feedback component, but they are mostly3 invariant to the
noise term ω. This is because quadratics are indifferent to
convolution with a gaussian, apart from the constant term. If
the noise is indeed small this might be considered a feature,
but if the noise is large and has considerable effect on the
dynamics, we would want our method to explicitly take it
into account.

The propagation of a state distribution in the general case
is given by

p(x′) =

∫∫
p(x′|x,u)p(u|x)p(x)dudx (6)

The policy is now modeled as a stochastic function of x, which
is then perturbed by a white noise term which can be additive,
multiplicative or generally state-dependent: u = u(x) + ξ(x).
We then redefine the cost-to-go as an expectation

Ji(x,ui..N−1)

=

N−1∑
k=i

∫∫
`(xk,uk)p(uk|xk)p(xk)dxkduk

+

∫
`f (xN)p(xN)dxN

(7)

The Bellman equation for the Value is then

V ∗i (x) = min
u(·)

E
u∼

p(u|x)

[
`(x,u) + E

x′∼
p(x′|x,u)

V ∗i+1(x′)

]
(8)

which involves two nested expectations: an expectation of the
immediate cost-to-go over the current state distribution, which
depends on the expected cost-to-go of the next state.

IV. CUBATURE FORMULAE

Cubature is a term describing the approximation of an inte-
gral with a sum. Given a particular density function g(x) de-
fined over some volume, the expectation of an arbitrary smooth
function f(x) WRT g(x), is approximated as a weighted sum
of measurements:∫

f(x)g(x)dx ≈
K∑
j

αjf(aj).

3Control-dependent covariance Σ(u) can be taken into account, as in [3].

The set of vector and weight pairs {aj , αj}j=1...K is known
as a cubature formula. There are extensive tables of such
formulas in the literature for various domains and weight
functions, e.g. [4], [5]. Different formulas differ in the quality
of the approximation. This quality is usually measured as the
minimum degree of a polynomial f(x) for which the formula
is exact. In general, the number of measurements K required
to achieve accuracy of degree d in a space of dimension n
grows roughly as

K(d, n) ≈ 2 nd/2

(d/2)!
.

In our case, because we are dealing with short-time-integrals
of diffusions, it makes sense to choose the gaussian g(x) ≡
N (x;µ,Σ) as the local approximation of the state distribution.
The idea of using cubature for the forward propagation of
diffusions is not new, and has recently been used to construct
the Cubature Kalman Filter [6]. Given a formula {ãj , αj} for
the unit gaussian centered at the origin, it is easy to transform
it into the coordinate system of a general gaussian∫

f(x)N (x ;µ,Σ)dx ≈
K∑
j

αjf(aj) (9)

by setting
aj = V ·D 1

2 · ãj + µ (10)

where V DV T = Σ is the eigendecomposition of Σ.
Formulas {ãj , αj} for the unit gaussian can either be found

in the literature or constructed ad-hoc by guessing the ãj
and then solving for the αj given some known values of
expectations of some functions (e.g. moments). We discuss
our specific choice of cubature formulae in section VI.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Fig. 1. Cubature integration for a two-dimensional unit gaussian. The
gaussian is represented by the standard deviation circle at radius 1. The
cubature vectors ãj are the seven dots, one at the origin and six in a hexagon
at radius 2. The weights in this case are α1 = 1

2
for the central vector and

αj>1 = 1
12

for the others. This is the 2-D instantiation of the first formula
described in [5], which is the also one used in the experiments here.

V. THE ALGORITHM

In a nutshell, the algorithm below proceeds as follows.
Given some parametrization of the policy, we propagate the
discrete dynamics forward in time using two nested cubature
formulas, corresponding to the two nested integrals of equation
(6). At every time-step we re-gaussianize the state-distribution
using cubature integration to measure the new mean and
covariance. In the backward pass we fit a general function
approximator to the Value, and then use the cubature vectors in
u-space, corresponding to the du integral in (6), to efficiently
compute the gradient WRT the parameters of the policy. While
in principle this gradient can be used to find the minimum as
required by equation (8), we find that it is sufficient to perform
a single Newton step.

A. General linear approximators

We let our Value approximation at time-step i take the
general form

Vi(x, θi) = T (x)Tθi (11)

where T (·) ∈ Rnθ is a vector of nθ basis functions and θ is a
weight vector. Similarly we let the policy at time-step i take
the form

ui(x, φi) = σ(P(x)Tφi) (12)

where P(·) ∈ Rnφ×m is an nφ ×m matrix of basis functions
and φ is a weight vector. The optional squashing nonlinearity
σ(·) prevents divergence when extrapolating and may increase
the region where the policy is sensible.

B. Forward Pass

We assume that at a given time the state is normally
distributed p(x) = N (x ;µ,Σ). This a reasonable assumption
for dynamics which are continuous in x, but becomes unrea-
sonable when phenomena such as rigid contact and friction
are modeled. We also assume that the distribution of the
control signal is gaussian p(u|x) = N (u ;u(x),Σu(x)). This
can always be safely assumed since this distribution is not
integrated in time. A cubature set {aj , αj} with aj ∈ Rn
is generated for the gaussian N (x ;µ,Σ), and then for each
aj a cubature set {bk, βk} with bk ∈ Rm is generated for
the gaussian N (u ;u(aj),Σu(aj)). The number of cubature
points in these formula are nj and nk respectively, we discuss
appropriate choices of formula in Section V-C.

We can now propagate an approximation of equation (6)
with these nested cubature formulas, by computing

cjk = f(aj ,u(aj , φi) + bk(aj)), (13)

and then finding the new estimate for p(x′) = N (x′ ;µ′,Σ′)
by plugging the definition of the mean and covariance into
equation (9):

µ′ =
∑
jk

αjβkcjk

Σ′ =
∑
jk

αjβk(cjk − µ′)(cjk − µ′)T
(14)

The cubature-based approximation of the total cost (7) for the
entire trajectory is now

J1(x1, φi..N−1) =

N∑
i=1

∑
jk

αjβk`(aj ,u(aj , φ) + bk(aj))

+
∑
j

αj`f (aj)

(15)

where the dependence of a, α,b, β and φ on the time-step i
has been dropped for readability.

C. Backward Pass
Using the cubature sets, the argument of the minimization

in (8) at time i can now be approximated as

Qi(x, φi) =
∑
j

αj

[
`(aj ,ui(aj , φi)) +

∑
k

βkVi+1(cjk, θi+1)
]

=
∑
j

αj

[
`(aj , σ(P(aj)

Tφi))

+
∑
k

βkT (cjk(φi))
Tθi+1

]
,

(16)

and the Bellman backup (8) is

Vi(x) = min
φi

[
Qi(x, φi)

]
To show that the minimization can indeed be carried out

in an efficient manner, we show that it is easy to compute
∂Qi/∂φi, and thence to minimize with a general-purpose
optimizer.

To differentiate the first term in the RHS of (16) we observe
that ∂u/∂φ is known from our choice of σ and P in equation
(12) and that knowing the control cost we can compute ∂`/∂u.
It makes sense to choose σ(·) = ∂`−1/∂u as in equation (3),
i.e. to match the control cost with the squashing function. A
quadratic cost corresponds to the standard linear gain, while
the integral of the inverse of some sigmoid would be matched
to a control attenuation by that sigmoid.

To differentiate the second term we again begin by observ-
ing that ∂T/∂cjk is known by design from (11). Differentiat-
ing equation (13) to obtain ∂cjk/∂φi is similarly cheap since
∂f/∂u is known from knowing the dynamics and ∂ui/∂φi is
again known by design. If the dynamics are given as a “black-
box” simulator rather than analytic function, we can use the
inner cubature vectors bk(aj) to expand the dynamics to fist-
order in u

cjk = f(aj ,u(aj , φ)) + ∂f
∂ubk(aj)

and solve for ∂f
∂u in the least-squares sense. This is quite

accurate since the Euler-discretized dynamics f inherit the
control-affine nature of fc, and the dependence of the “control
transition matrix” ∂f

∂u , on x is usually quite weak. For the
least-squares computation to be overdetermined we must have
more equations than unknowns or

njnk ≥ nφn. (17)

Once we have ∂Qi/∂φi, we can find the minimizing φi with
standard algorithms such as conjugate-gradient or pseudo-
Newton methods. While these methods are efficient, there
is no reason to run them until full convergence since each
backward pass is itself an interim step in a minimization
process. Because of the difficulty of finding a stopping cri-
terion that will give a uniform partial-convergence rate across
the trajectory, we found that it is both simpler and more
effective to perform a single Newton minimization step at
each time-step. We compute the Hessian ∂2Qi/∂φ2i by finite-
differencing the gradient (although analytical differentiation is
not impossible) and then solve

φ∗i = φi − (∂2Qi/∂φ
2
i)
−1∂Qi/∂φi.

Once we’ve found φ∗i , we can plug it back to approximate the
cost-to-go at the aj , and then solve

T (aj)
Tθi = `(aj , σ(P(aj)

Tφ∗i)) +
∑
k

βkT (cjk(φ∗i))
Tθi+1

(18)
for θi in the least-squares sense. For these equations to be
overdetermined we must have that

nj ≥ nθ. (19)

In the first step of the backup, we fit θN with

T (aj)
TθN = `f (aj , σ(P(aj)

Tφ∗N−1)) (20)

D. Regularization

As with second-order methods, we must provide some reg-
ularization of the backward pass. This is done by introducing
a Leveberg-Marquardt parameter for the Hessian inversion

φ∗i = φi − (∂2Qi/∂φ
2
i + λI)−1∂Qi/∂φi (21)

λ is increased whenever ∂2Qi/∂φ2i +λI is no longer positive-
definite for some i (and the back-pass restarted), and decreased
otherwise.

E. Summary of the Algorithm

Repeat until convergence:

1. Forward pass: Begin with an initial point µ1 and
covariance Σ1. For i = 1 . . . N − 1, generate the nested
cubature vectors {aj , αj}i and {bk, βk}i, propagate them
through the dynamics using the current policy with (13), and
re-gaussianize the distribution using (14). At the end of the
pass compute the total cost with (15), and terminate if the
decrease from the previous iteration is small enough.

2. Backward pass: Begin by fitting the final Value approx-
imation with (20). For i = N − 1 . . . 1, compute

∂Qi
∂φi

=
∑
j

αj

[
∂`

∂ui

∂ui
∂φi

+
∑
k

βk

(
∂T

∂cjk

∂cjk
∂ui

∂ui
∂φi

)T

θi+1

]
,

and then the Hessian ∂2Qi/∂φ
2
i , either analytically or by

finite-differencing. If a Cholesky factorization fails, increase
λ and restart the backward-pass. Otherwise solve (21) and
then find the new θi from (18). At the end of a successful
backward-pass decrease λ.

F. Complexity

We assume that the most expensive part of the algorithm is
the computation of the dynamics. For second order methods,
a single step in the backward pass is dominated by (5)
and therefore requires O((n + m)2) evaluations of f . In the
algorithm above, the cost of a backward step is O(njnknφ),
where nj , nk and nφ are the number of aj and bk vectors,
and φ policy bases, respectively. The last coefficient comes
from the finite-differencing of the Hessian.

Though we are free to make different choices of cubature
sets and policy bases, let us make the most conservative
choices for the same linear-quadratic accuracy. A locally linear
policy u(x) = Px with P ∈ Rm×n implies nφ ∝ nm. A
quadratic Value approximation and equality at (19) implies

nθ = (n2 + n)/2 =⇒ nj ∝ n2

and equality at (17) implies

n2nk = nm · n =⇒ nk ∝ m,

for a total complexity of O(njnknφ) = O(n3m2). This higher
computational complexity is indeed the central drawback of
our approach, see Discussion.

Note that a fast analytical computation of the Hessian
would bring complexity down to a reasonable O(n2m), but
in our experience analytical differentiation is usually nearly
as expensive as finite-differencing, though of course more
accurate (to machine precision).

VI. EXPERIMENT

We compare our new algorithm to second-order methods
with a control problem involving a simulated swimming robot.
The k-swimmer dynamical system, introduced in [7], describes
a chain of k rigid links in a planar viscous medium. By
applying k − 1 torques at the joints, the controller can propel
the swimmer in the plane. For our experiment we used a 3-link
swimmer, described by 3 joints and two cartesian center-of-
mass coordinates, and the respective time-derivatives, for a
total of 10 state dimensions.

Fig. 2. A 5-link swimmer. The state-cost is a function of the 2D x̄nose vector
from the “nose” point to a ring-shaped target.

The cost function used is

`(x,u) = cx
‖x̄nose‖2√
‖x̄nose‖2 + 1

+ cu||u||2

where x̄nose is the 2-dimensional vector from a certain “nose”
point on the mechanism to a movable target (dashed gray in
Figure 2). The form of the state-dependent part of this function
is illustrated in Figure 3. This type of cost function is good
in exemplifying the power of optimal-control methods. Even
though the state-cost involves only the 2 Cartesian coordinates
out of the 10 dimensions of x, during the backward pass it
“leaks” into the cost-to-go in the angular dimensions, to reflect
the possibility of actuating the angles in a way that minimizes
the distance to the target – i.e. swimming.

−3 −2 −1 0 1 2 3

1

2 y =
x2

√
x2 + 1

Fig. 3. The functional form of the state-cost component.

The linear regime of the cost function translates into
steady-state swimming behavior, while the smooth minimum
translates into a braking and stopping motion. Around this
minimum, of both the cost and cost-to-go, it is possible to
reach the target by twisting-in-place, i.e. without accelerating
the center-of-mass. In the following experiment we compare
the ability of two controllers of different approximation-order
to generalize from the accelerate-swim-brake behavior to the
twist-in-place behavior.

In order to transform the time-dependent policy into a
time-independent one, we use the receding horizon technique
described in [8]: solving for a length-N trajectory emanating
from a point x(1), we save only the local policy at the first
time-step, and re-solve for the next state x(2) initializing with
the current policy. Iterating, we end up with a set of local
policies, all with an N -step horizon. This can be thought of
as an offline version of Model Predictive Control, see Figure 4.
The local controllers are then selected with a nearest-neighbor
rule to form a global controller which is a Voronoi tessellation
of local controllers around the saved states.

We used N = 60 time-steps of length h = 0.03s with
additive control noise Σu = .05I2. The cost coefficients were
cx = 1 and cu = 0.02. We use the first cubature formula
presented in [5], though experiments with different formulas,
including ad-hoc ones, also provided good accuracy, as long
as inequalities (17) and (19) were maintained.

In the experiment, we test how well a controller which had
been trained on a trajectory to a fixed target, describing the
accelerate-swim-brake sequence, can generalize to perform the
“twisting” behaviour. The receding-horizon learning sequence

Fig. 4. Receding-horizon trajectories. Three snapshots of the receding horizon
trajectory (dotted) appended with the finite-horizon trajectory (solid), for the
two internal angles of a 3-swimmer.

involved a single trajectory, with an initial state away from the
stationary target, swimming to it and stopping. This trajectory
was solved-for with the classic linear-quadratic scheme, and
with a quadratic-cubic controller, i.e. the θi and φi are mono-
mials up to 3rd and 2nd-order, respectively. We then used the
global controllers to solve the same task, but this time while
perturbing the target on some Lissajous curve.

As shown in the video at http://goo.gl/B1MW3 and figure
5, the quadratic-policy cubic-Value controller is able track the
small perturbations, while the standard linear-policy quadratic-
Value controller swims around the target in an inefficient
manner, due to its insufficient generalization ability.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

time (s)

di
st

an
ce

 to
 ta

rg
et

quadratic−linear
cubic−quadratic

Fig. 5. Tracking behaviour of the two controllers. The distance to the target
‖x̄nose‖ is plotted as a function of time, during the behaviour recorded in the
video sequence http://goo.gl/B1MW3.

VII. DISCUSSION

While the results are promising, it seems that the algo-
rithm presented here is not a drop-in replacement for lower-
order algorithms due to the added computational burden, as
described in Section V-F. In that sense it is possible that
the linear-quadratic combination represents a computational
“sweet-spot”. It might be sensible to first optimize a trajectory
with a cheap first or second-order method, and then run this
algorithm to construct a higher order approximation with a
larger region of validity. Since the state-control trajectory is
already near-optimal, the algorithm will converge quickly. This
would be useful for deterministic as well as stochastic systems.

An attractive feature is the prospect of using non-gaussian
distributions. The very general nature of our algorithm allows
us to easily replace the single-gaussian with a mixture-of-
gaussians representation. This might be useful in the case
where the trajectory is expected to be multi-modal. The
most prominent case where gaussianity is an unreasonable
assumption, is the one where the dynamics are discontinuous,
as with rigid contact and friction. When the state distribution
reaches a contact or slippage in state-space, it splits into two
spatially distinct modes of pre- and post-discontinuity, and any
attempt to model them as a single gaussian is bound to fail. A
simple way to generalize the algorithm herein, is to replace the
re-gaussianization in (14) with the Expectation Maximization
algorithm for a mixture of 2 gaussians, effectively allowing the
trajectory to split (and merge) when required. This possibility
will be examined in future work.

ACKNOWLEDGMENTS

This work was supported by the US National Science
Foundation.

REFERENCES

[1] D. H. Jacobson and D. Q. Mayne, Differential Dynamic Programming.
Elsevier, 1970.

[2] E. Todorov and Y. Tassa, “Iterative local dynamic programming,” in 2009
IEEE Symposium on Adaptive Dynamic Programming and Reinforcement
Learning, Nashville, TN, USA, 2009, pp. 90–95.

[3] E. Todorov and W. Li, “A generalized iterative LQG method for locally-
optimal feedback control of constrained nonlinear stochastic systems,” in
Proceedings of the 2005, American Control Conference, 2005., Portland,
OR, USA, 2005, pp. 300–306.

[4] A. Stroud, Approximate calculation of multiple integrals. Englewood
Cliffs N.J.: Prentice-Hall, 1971.

[5] J. Lu and D. L. Darmofal, “Higher-Dimensional integration with gaus-
sian weight for applications in probabilistic design,” SIAM Journal on
Scientific Computing, vol. 26, no. 2, p. 613, 2004.

[6] I. Arasaratnam and S. Haykin, “Cubature kalman filters,” Automatic
Control, IEEE Transactions on, vol. 54, no. 6, p. 12541269, 2009.

[7] R. Coulom, “Reinforcement learning using neural networks, with applica-
tions to motor control,” Ph.D. dissertation, Institut National Polytechnique
de Grenoble, 2002.

[8] Y. Tassa, T. Erez, and W. Smart, “Receding horizon differential dynamic
programming,” in Advances in Neural Information Processing Systems
20, J. Platt, D. Koller, Y. Singer, and S. Roweis, Eds. Cambridge, MA:
MIT Press, 2008, p. 1465.

http://goo.gl/B1MW3
http://goo.gl/B1MW3

	INTRODUCTION
	OVERVIEW OF LOCAL METHODS
	First-Order Dynamic Programming
	Second-Order Dynamic Programming

	STOCHASTIC DYNAMICS
	CUBATURE FORMULAE
	THE ALGORITHM
	General linear approximators
	Forward Pass
	Backward Pass
	Regularization
	Summary of the Algorithm
	Complexity

	EXPERIMENT
	DISCUSSION
	References

