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Abstract: We introduce an algorithm that generates an optimal controller for stochastic
nonlinear problems with a periodic solution, e.g. locomotion. Uniquely, the quantity we
approximate is neither the Value nor Policy functions, but rather the stationary state-
distribution of the optimally-controlled process. We recast the control problem as Bayesian
inference over a graphical model with a ring topology. The posterior approximates the controlled
stationary distribution with local gaussians along the optimal limit-cycle. Linear-feedback
gains and open-loop controls are extracted from the covariances and the means, respectively.
Complexity scales linearly or quadratically with the state dimension, depending on the dynamics
approximation. We demonstrate our algorithm on a toy 2-dimensional problem and then on a
challenging 23-dimensional simulated walking robot.
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1. INTRODUCTION

Optimal control of complex movements is of interest in en-
gineering as well as biology. There are scientific reasons to
believe that the brain optimizes motor behavior (Todorov,
2004), and engineering reasons to wish we had algorithms
capable of doing the same for robots and other synthetic
systems. A variety of global algorithms have been devel-
oped to approximate the optimal control law or cost-to-
go function using predefined features (Sutton, 1998; Bert-
sekas, 2000). However these algorithms are only as good
as the features provided to them, and a reliable procedure
for choosing good features does not yet exist. Indeed the
only algorithms that can presently be expected to work off-
the-shelf for high-dimensional nonlinear systems are local
methods. They generate either an open-loop trajectory, as
in Pontryagin’s maximum principle and pseudo-spectral
methods (Stengel, 1994; Ross and Fahroo, 2004), or a tra-
jectory and a local feedback control law, as in Differential
Dynamic Programming (Jacobson and Mayne, 1970) and
iterative linear-quadratic-Gaussian control (Todorov and
Li, 2005). The local nature of these methods is of course
a limitation, however many interesting behaviors involve
stereotypical movements, and the ability to discover those
movements and generate them in a stable manner is very
useful.

This paper aims to address one of the major shortcomings
of local methods – which is that they are limited to
finite-horizon problem formulations. Instead we would like
to have methods with similar efficiency but capable of
solving infinite-horizon problems, in particular problems
that give rise to complex periodic movements such as

walking, running, swimming, flying (with wings), turning
a screwdriver, etc. This requires optimization over cycles.
Such optimization is difficult to cast as an optimal control
problem because the underlying system becomes non-
Markov. Here we overcome this difficulty by replacing the
control problem with a dual Bayesian inference problem,
and performing inference over a graphical model with
loops. We use linear-Gaussian machinery (as in DDP
and iLQG), thus when the dynamics are nonlinear we
have to solve a sequential Bayesian inference problem:
the solution at each iteration is used to re-linearize the
system and define the inference problem for the next
iteration. When the algorithm converges, the mean of the
posterior gives the locally-optimal trajectory while the
covariance of the posterior gives the local feedback control
law. Since computing the correct covariance is important
here, we perform inference using the variational approach
of Mitter and Newton (2004), leading to an algorithm
based on sparse matrix factorization rather than loopy
belief propagation (where only the mean is guaranteed to
be correct, see Weiss and Freeman (2001)).

The estimation-control duality which is at the heart of our
new method arises within the recently-developed frame-
work of linearly-solvable optimal control (Kappen, 2005;
Todorov, 2009). Several control algorithms exploiting this
duality (sometimes implicitly) have been developed (At-
tias, 2003; Toussaint, 2009; Kappen et al., 2009), however
they are limited to finite-horizon formulations – which
DDP and iLQG can already handle, with comparable
efficiency as far as we can tell. The present paper exploits



the estimation-control duality in more general graph struc-
tures for the first time.

2. RELATED WORK

The method presented below is related to three lines of
research.

The first is classic local trajectory-optimization methods,
such as the Maximum Principle of Pontryagin et al. (1962)
and Differential Dynamic Programming of Jacobson and
Mayne (1970). It is possible to use these methods to solve
for limit cycles by “attaching” the first and last states.
This can be done either approximately, by imposing a
final-cost over distance from the initial state, or exactly, by
employing multipliers which enforce the state constraint,
as in the method of Lantoine and Russell (2008). We tried
both of these approaches, and the inevitable result was a
noticeable asymmetry around the attachment point, either
in the state trajectory (when using final-cost), or in the
controls (when using multipliers). The main insight is that
these algorithms assume Markovity, which does not hold
for a loop. One could also use a finite-horizon method
with a very long horizon, that loops around the limit-cycle
several times. By truncating the transients at both ends,
we can get a decent approximation to the infinite-horizon
solution. Clearly this is an inefficient use of computational
resources, but can serve as a useful validation procedure
for our algorithm.

The second related body of work involves directly op-
timizing the total cost of a limit-cycle, while enforcing
periodicity. Wampler and Popovic (2009) and Ackermann
and den Bogert (2010) are two recent examples, respec-
tively from the computer graphics and biomechanics com-
munities. The log-likelihood that we end up maximizing
below is indeed analogous to such a cost, however our
method generates a feedback controller around the limit-
cycle, rather than simply open-loop controls.

Finally, the last several years have seen research into the
subclass of stochastic nonlinear Optimal Control problems
which are dual to Bayesian estimation. Specifically, Tous-
saint (2009) explores message-passing algorithms (Expec-
tation Propagation) for the solution of Optimal Control
problems. Murphy et al. (1999) and others have shown
that when a graph has a loopy structure, message passing
converges to the right mean but the wrong covariance.
The procedure we describe below does not suffer from this
drawback.

3. OPTIMAL CONTROL VIA BAYESIAN
INFERENCE

The basic intuition behind the duality we exploit here is
that the negative log-likelihood in estimation corresponds
to a state-dependent cost in control, and the difference
(KL divergence) between the prior and the posterior
corresponds to a control-dependent cost. The class of
stochastic optimal control problems which have Bayesian
inference duals in the above sense have received a lot of
attention recently, because these problems have a number
of other interesting properties, including the fact that the
(Hamilton-Jacobi) Bellman equation becomes linear after
exponentiation (Kappen, 2005; Todorov, 2008).

3.1 Background on LMDPs and inference-control dualities

A linearly-solvable MDP (or LMDP) is defined by a
state cost q (x) ≥ 0 and a transition probability density
p (x′|x) corresponding to the notion of passive dynamics.
The controller is free to specify any transition probability
density π (x′|x) with the restriction that π (x′|x) = 0
whenever p (x′|x) = 0 . In infinite-horizon average-cost
problems p, π are further required to be ergodic. The cost
rate function is

` (x, π (·|x)) = q (x) +DKL [π (·|x) ||p (·|x)]

The KL divergence term is a control cost which penalizes
deviations from the passive dynamics. Defining the desir-
ability function z (x) , exp (−v (x)) where v (x) is the
optimal cost-to-go, the optimal control is

π (x′|x) ∝ p (x′|x) z (x′)

The exponentiated Bellman equation becomes linear in z.
In particular, for finite horizon problems this equation is

zt (x) = exp (−q (x))
∑

x′
p (x′|x) zt+1 (x′)

with zN (x) initialized from the final cost. One can also
define the function r (x) as the solution to the transposed
equation:

rt+1 (x′) =
∑

x
exp (−q (x)) p (x′|x) rt (x)

with r0 (x) being a delta function over the fixed initial
state. Then the marginal density under the optimally-
controlled stochastic dynamics can be shown to be

µt (x) ∝ rt (x) zt (x)

The duality to Bayesian inference is now clear: z is
the backward filtering density, r is the forward filtering
density, p is the dynamics prior, q (x) is the negative
log-likelihood (of some unspecified measurements), and µ
is the marginal of the Bayesian posterior. We can also
write down the density p∗ over trajectories generated by
the optimally-controlled stochastic dynamics, and observe
that it matches the Bayesian posterior over trajectories in
the estimation problem:

p∗ (x1, x2, · · ·xN |x0) ∝
∏N
t=1 exp (−q (xt)) p (xt|xt−1)

These LMDPs can be used to model the continuous
systems we are primarily interested in as follows. It has
been shown that for controlled Ito diffusions in the form

dx = a (x) dt+B (x) (u dt+ σdω) (1)

and cost functions in the form

` (x, u) = q (x) +
1

2σ2
‖u‖2 (2)

the stochastic optimal control problem is a limit of
continuous-state discrete-time LMDPs. The LMDP pas-
sive dynamics are obtained via explicit Euler discretization
with time step h:

p (x′|x) = N
(
x+ ha (x) , h σ2B (x)B (x)

T
)

(3)

where N denotes a Gaussian. The LMDP state cost is
simply hq (x). Note that the h-step transition probability
of the controlled dynamics (with u 6= 0) is a Gaussian
with the same covariance as (3) but the mean is shifted by
hB (x)u. Using the formula for KL divergence between
Gaussians, the general KL divergence control cost reduces
to a more traditional control cost quadratic in u.



3.2 Periodic optimal control as Bayesian inference

Our goal now is to write down the trajectory proba-
bility p∗ for infinite-horizon average-cost problems, and
then interpret it as a Bayesian posterior. This cannot be
done exactly, because here (3.1) involves infinitely-long
trajectories which we cannot even represent unless they
are periodic. Therefore we will restrict the density to the
subset of periodic trajectories with period N . This of
course is an approximation, but the hope is that most of
the probability mass lies in the vicinity of such trajectories.
Then p∗ (x1, x2, · · ·xN ) is the same as (3.1), except we have
now defined x0 = xN .

While the trajectory probability for the control problem
is no longer exact, (3.1) is still a perfectly valid Bayesian
posterior for a graphical model with a loop. More precisely,
exp (−q (xt)) are single-node potentials which encode ev-
idence, while p (xt|xt−1) are pair-wise potentials which
encode the prior. One caveat here is that, since the state
space is continuous, the density may not be integrable.
In practice however we approximate p (xt|xt−1) with a
Gaussian, so integrability comes down to making sure that
the joint covariance matrix is positive definite – which can
be enforced in multiple ways (see below).

Once the Bayesian posterior over limit-cycle trajectories is
computed, we need to recover the underlying control law
for the stochastic control problem. The obvious approach
is to set

π (xt|xt−1) =
p∗ (xt, xt−1)

p∗ (xt−1)
where p∗ (xt, xt−1) and p∗ (xt−1) are the corresponding
marginals of the trajectory probability, and then recover
the physical control signal u (xt) by taking the mean. How-
ever this yields N different conditional distributions, and
we need to somehow collapse them into a single conditional
π (x′|x) because the control problem we are solving is time-
invariant. We have explored the two obvious ways to do the
combination: average the π’s weighted by the marginals
p∗ (xt), or use the π corresponding to the nearest neighbor.
Empirically we found that averaging blurs the density too
much, while the nearest neighbor approach works well. An
even better approach is to combine all the p∗ (xt, xt−1)
into a mixture density, and then compute the conditional
π (x′|x) of the entire mixture. This can be done efficiently
when the mixture components are Gaussians.

4. ALGORITHM

Probabilistic graphical models (Jordan, 1998) are an ef-
ficient way of describing conditional independence struc-
tures. A cycle-free directed graph (a tree) represents a joint
probability as a product of conditionals

p(x) =

K∏
k=1

p(xk|parents(xk))

This equation represents the factorization properties of p.
Message Passing algorithms, which involve sequentially
propagating local distributions along directed graphs,
provably converge to the true posterior.

An alternative to directed graphical models are Markov
Fields, whose graph is undirected, and may contain cycles.
The joint distribution of a Markov Field is given by

x1

ψ12(x1, x2)

ψ1(x1)

x2
x3xN

xN−1

Fig. 1. Illustration of probabilistic graphical model. State
costs are encoded in the leaf potentials ψi(xi). Dy-
namics and control costs are encoded in the edge
potentials ψij(xi, xj). See section 4.1.

p(x) ∝
∏
c∈C

ψc(xc),

where C is the set of maximal cliques in the graph, and
the ψ are called potential functions. Message Passing al-
gorithms are not guaranteed to converge on this type of
model. In particular, for models where the nodes are dis-
tributed as gaussians (as we will assume below), Weiss and
Freeman (2001) had shown that posteriors and marginals
converge to correct means, but not to the correct variances.

4.1 Potential Functions

Let {xi}Ni=1 be a set of state variables xi ∈ IRn,
with the conditional dependency structure of a cycle.
Let ij index over the pairs of sequential states ij ∈
{(1, 2), (2, 3), . . . , (N, 1)}. The discrepancy between the
controlled dynamics and the discrete-time passive dynam-
ics for each pair is

aij = xi + ha(xi)− xj .
The gaussian noise leads to pairwise potentials, corre-
sponding to p(xj |xi),

ψij(xi, xj) = p(xj |xi) = exp(− 1
2a

T
ijΣ
−1
i aij),

where Σi = hσ2B (xi)B (xi)
T

, as in (3).

The leaf potentials ψi(xi) are composed of two parts, the
state-cost q(xi), and an optional prior on xi. This prior,
not used below, could be useful when we wish to clamp
certain states to specified values. For example, in the finite-
horizon case where the graph is a chain, we could place a
gaussian prior on a known initial state

ψ1(x1) = exp(−q(x1))N (x1|m1,Σ1).

The joint distribution of the entire model is

p(x) = p(x1, x2, . . . , xN ) ∼
N∏
i=1

ψi(xi)

N∏
ij=1

ψij(xi, xj)

Where x = stack{xi} = [xT1x
T
2 · · ·xTN ]T is the stacked

vector of all states. The negative log-likelihood is

l(x) =
∑
i

qi(xi) +
∑
ij

1
2a

T
ijΣ
−1
i aij . (4)

The first term is the total state-cost and the second term
is the total control-cost.



4.2 Gaussian approximation

Modeling p(·) as a gaussian: p(x) ∼ N (x|x̄,S), is equiv-
alent to fitting a quadratic model to the negative log
likelihood.

l(x) ≈ 1
2 (x− x̄)TS−1(x− x̄) = l0 + xTg + 1

2x
THx. (5)

The normalization term 1
2 log(det(2πS)) is folded into the

constant l0. The mean x̄ (which maximizes the likelihood)
and the covariance S are given by

x̄ = −H−1g (6a)

S = H−1 (6b)

4.3 Iterative inference

Given a current approximation to the mean x̄ of the
Bayesian posterior over trajectories, we expand l(x̄ + δx)
to second-order in δx by computing H and g, and then
find a new mean as

x̄′ = x̄ + argmin
δx

l(x̄ + δx) = x̄−H(x̄)−1g(x̄), (7)

until convergence. The actual inversion of the precision
matrix or Hessian H, as required by (6b), can be per-
formed only once, at the end. During the iterations of (7),
we can use iterative methods (e.g. preconditioned conju-
gate gradients) to solve Hy = g, which are very cheap
for sparse systems. Again, this process can be interpreted
either as repeated estimation of a joint gaussian model, or
sequential quadratic minimization of the total cost.

4.4 Dynamics model

We now turn to the computation of H and g. Placing
the cost Hessians on a the block-diagonal of the matrix

Q = diag{ ∂
2

∂x2 qi(x̄i)} ∈ IRnN×nN and stacking the local

cost gradients qx = stack{ ∂∂xqi(x̄i)} ∈ IR
nN , the last term

of (4) can be approximated∑
i

qi(x̄i + δxi) ≈
∑
i

qi(x̄i) + δxTqx + 1
2δx

TQδx

In order to quadratize the last term of (4), we must ap-
proximate the nonlinear dynamics (or rather the dynamic
discrepancies aij). We can do this using either a linear
or a quadratic model. The former is faster to compute
at each iteration, while the latter is more accurate and
thus could yield convergence in fewer iterations. Which
approach is better probably depends on the problem; in
the examples given below we found that the quadratic
model works better.

Linear dynamics approximation: We expand the dy-
namic discrepancies to first order around our current ap-
proximation,

aij(x̄i + δxi, x̄j + δxj) = āij + ax(x̄i)δxi − δxj .
We construct the sparse matrix A ∈ IRnN×nN as a stack
of N block-rows of dimension n×nN . For each pair ij, we
place a negative identity matrix −In on the j-th column-
block and the dynamics Jacobians ax(xi) on the i-th
column-block. Additionally letting a = stack{ai} ∈ IRnN ,
we have in matrix form

a(x̄ + δx) = ā +Aδx.

Defining M = diag{Σ−1i } ∈ IRnN×nN , the last term of (4)
becomes 1

2 (ā + Aδx)TM(ā + Aδx), and the second-order
expansion around x̄ is seen to be

l(x̄+δx) = l(x̄)+δxT(qx+ATM ā)+ 1
2δx

T(Q+ATMA)δx.

Comparison with (5) shows that

g = qx +ATM ā (8a)

H = Q+ATMA (8b)

Quadratic dynamics approximation: We can achieve a
more accurate approximation by considering a quadratic
model of the passive dynamics

aij(x̄i+δxi, x̄j+δxj) = āij+ax(x̄i)δxi+
1
2δx

T
i axx(x̄i)δxi−δxj ,

where the left and right multiplications with the 3-tensor
axx are understood as contractions on the appropriate
dimensions. Though the gradient g is unaffected by the
second order term, the Hessian picks up the product of
second-order and zeroth-order terms. Let the set of n ×
n matrices Uij = aTijΣ

−1
i axx(x̄i), contracting with the

leading dimension of the tensor axx. Now define the block-
diagonal matrix U = diag{Uij} ∈ IRnN×nN . The new
approximation is now

g = qx +ATM ā (9a)

H = Q+ATMA+ U (9b)

In the experiments described below, the addition of the U
term was found to significantly improve convergence.

4.5 Computing the policy

In this section, we describe how to obtain a local feedback
control policy from the posterior marginals, that is the
means x̄i and the covariance S. Let Si = cov(xi) be the i-
th diagonal n×n block of S and Sij be the cross-covariance
of xi and xj , the n × n block of S at the i-th n-column
and j-th n-row, so that the mean of the conditional is

E[xj |xi] = x̄j + SijS
−1
i (xi − x̄i).

The feedback policy is then that control which produces
the expected controlled dynamics:

u(xi) = B−1(x̄j + SijS
−1
i (xi − x̄i)− a(x̄i)) (10)

4.6 Algorithm summary

Given an initial approximation of x̄:

(a) Repeat until convergence:
Compute g(x̄) and H(x̄) with (9).
Recompute x̄ with (7).

(b) Compute S with (6b), and the feedback control law
with (10).

5. EXPERIMENTS

We demonstrate our algorithm on two simulated problems.
A toy problem with 2 state dimensions and and a simu-
lated walking robot with 23 state dimensions.



(a) z(x), mdp. (b) r(x), mdp. (c) µ(x) = z(x)r(x), mdp.

(d) u(x), mdp. (e) u(x), approximation. (f) µ(x), approximation.

(g) Cost and passive dynamics.
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Fig. 2. (a)-(h) show the area [−4, 4]2 ∈ (x1×x1). (a)-(d), MDP solutions for a discretized state-space. (e), (f), (h), (i),
solution obtained by the proposed algorithm. (a) The exponentiated negative value function z(x). (b) The forward
filtering density r(x). (c) The optimally controlled steady-state distribution, formed by elementwise product of z(x)
and r(x). (d) The policy generated by the MDP solution, superimposed with one instantiation of the controlled
dynamics. (e) The policy generated by the approximate solution, superimposed with one instantiation of the
controlled dynamics. The color map is clipped to the values in (d), so saturated areas indicate misextrapolation.
(f) The approximate distribution generated by our algorithm. For each pixel we measure the marginal of the state
whose mean is nearest in the Euclidean sense. Note the similarity to (c). (g) The cost function, superimposed with
a vector field of the passive dynamics. (h) Snapshots of the means for a particular convergence sequence, showing
8 configurations out of a total of 40. The red x’s are the random initialization, followed by a jump to the center to
decrease dynamical inconsistency, followed by a gradual convergence to the limit-cycle solution. (i) Convergence
of the cost. Averaged over 15 runs with random initialization.



Fig. 3. Frames from the limit-cycle solution of an optimal walking gait. See section 5.2.

5.1 2D problem

The continuous diffusion consists of a non-linear spring
damper system, subject to process noise in the velocity
variable:[

dx1
dx2

]
=

[
x2

−(x31 + x32)/6

]
dt+

[
0
1

]
(udt+ σdω)

and cost function is

`(x2, u) = cx

(
1− e−(x2−2)2 − e−(x2+2)2

)
+

u2

2σ2

The state cost coefficient is cx = 4 and the noise variance
is σ2 = 1/4. In Figure 2(g), we show the cost function,
overlayed by a vector plot of the drift, and one integrated
trajectory of the passive dynamics.

We first solved this problem by discretizing the state-
space and solving the resulting MDP. We used a 201×201
grid, leading to a 40401 × 40401 state transition matrix
with 1.2 × 106 nonzeros. Discrete LMDPs can be solved
by finding the leading eigenvector of a related matrix
(Todorov, 2007). The results are shown in Figures 2(a)-
2(d). Solving the MDP (using matlab’s “eigs” function)
took 86s on a standard PC.

We then solved the problem with our proposed algorithm.
With 150 variables on the ring, the matrix H was 300 ×
300, with 1800 nonzeros. Full convergence from a random
initialization took an average 0.3s. Of course this is not a
fair comparison, since the MDP solver finds a global rather
than local solution, yet the difference is striking. Once
convergence of equation (7) has been achieved, we compute
the posterior with (6). In order to plot the resulting
distribution, for every pixel in Figure 2(f), we plot the
value of the marginal of the closest (euclidean) gaussian.
The similarity of figures 2(c) and 2(f) is remarkable. Of
course, our proposed method is still local, and comparing
Figures 2(d) and 2(e), we see that the generated policy is
valid only close to the limit-cycle. In Figure 2(h), we see
snapshots of the convergence of the means. Starting from
a random initialization, the means jump to the center in
order to decrease dynamical inconsistency, followed by a
gradual convergence to the limit-cycle solution. In Figure
2(i), we show the cost averaged over 15 runs, relative to the
minimum cost achieved over all the runs. We see that all
runs converged to the global minimum, with a quadratic
convergence rate towards the end.

5.2 Simulated walking robot

Our planar walking model is made of two legs and a
trunk, each leg having three segments (thigh, shin and
foot). The following parameter values can all be assumed
to have the appropriate units of a self-consistent system
(e.g. MKS). The length of the foot segments is 1, and all
other segments are of length 2. The segment masses are
0.1 for the foot, 0.4 for the shin, 1 for the thigh, and 4
for the trunk. A control signal of dimension 6 acts on the
joints (hips, knees, ankles), but not directly. In order to
model the excitation-activation dynamics associated with
muscular activity, we augment the state space with 6 first-
order filters of the control signal, with a time constant
of 25/1000. The seven segment angles, together with the
planar position of center-of-mass, make for a system with
9 degrees-of-freedom, or 18 state dimensions. In order to
allow the gait to take a limit-cycle form, we remove the
horizontal position dimension of the center-of-mass, for a
total of 23 state dimensions.

d
1

d
2

Fig. 4. Robustness to perturbations of the simulated
walking robot, under the feedback control law. The
axes d1 and d2 are the largest eigenvectors of the
covariance of the x̄i. The optimal limit cycle is in
thick red, superimposed with simulated trajectories.
Converging trajectories are thin solid lines, diverging
ones are thicker dashed lines. See section 5.3.



The equations of motion are simulated using our own
general purpose simulator 1 . We imposed joint-angle con-
straints that ensure a biomechanically-realistic posture.
Ground reaction forces are computed using the method
described by Tassa and Todorov (2010). We used 80 time-
steps of length 1/80, for a step period of 1. The matrix
H was 1840× 1840, with 105840 non-zeros. Each iteration
took 0.2 seconds, with an average of 300 iterations until
convergence (depending on initial conditions).

In order to produce upright walking, we use a cost function
with three terms: First, a quadratic penalty for deviation
of the center-of-mass’s horizontal velocity vx from a de-
sired value of 2. Second, a linear reward for the vertical
hight of the trunk’s upper tip hT , to promote upright
posture. Third, a cost term that is quadratic in the muscle
activation dimensions c. The total weighted state-cost was

q(x) = (vx − 2)2 − 0.1hT + 0.01‖c‖2. (11)

Convergence for this problem was robust, with different
initializations converging to the same solution. The result-
ing gait is demonstrated in Figure 3.

5.3 Feedback control law

One of the main advantages of the algorithm presented
here is that the generated control law (10) includes feed-
back terms, forming an effective basin-of-attraction around
the optimal limit-cycle. In Figure 4, we illustrate con-
vergence to the limit cycle from perturbed states, of the
simulated walking robot. The means x̄i are projected onto
{d1, d2} ∈ R23, the two leading eigenvectors of the co-
variance cov(x̄i) (i.e. the two leading PCA directions).
One state is then randomly perturbed, and used as an
initial state for a controlled trajectory. The distribution
of the perturbations was chosen so that most trajectories
(solid) are within the basin-of-attraction and converge to
the limit-cycle (successful walking), while several (dashed)
diverge (falling down).

6. DISCUSSION

We presented a method of solving Optimal Control prob-
lems with a periodic solution. Using the control-estimation
duality which holds for problems of the form (1,2), we
recast the problem as Bayesian inference, and maximized
the likelihood of a gaussian approximation. The computa-
tional complexity of the methods scales either linearly or
quadratically with the state dimension, depending on the
order of the dynamics approximation.

Several interesting questions remain open.

In this paper we focused on limit cycles, but the presented
algorithm is also valid for simple chains, where message
passing algorithms of the type described by Toussaint
(2009) are applicable. A performance comparison would
be interesting.

The algorithm produces a local feedback control law
around the trajectory, but the volume of the basin-of-
attraction is limited by the validity of the gaussian ap-
proximation. One way of increasing it is by using higher-
order approximations, like a mixture-of-gaussians. An-
other possibility is to combine this offline method with
1 Available at alice.nc.huji.ac.il/~tassa/

online methods like Model Predictive Control, by using
the infinite-horizon cost-to-go as a final-cost for a finite-
horizon trajectory optimizer.
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