
Theory and Implementation

of
Biomimetic Motor Controllers

Thesis submitted for the degree of “Doctor of Philosophy”

by

Yuval Tassa

Submitted to

the Senate of the Hebrew University of Jerusalem

February 2011



II



This work was carried out under the supervision of

Prof. Naftali Tishby
and

Prof. Emanuel Todorov





Acknowledgements

This dissertation owes its existence to many people, but three stand out.

First and foremost my friend and mentor Emo. His unquenchable curiosity

and creativity and his incredible aptitude for simplifying the complex, have

made him a brilliant scientist, and a funny one too. Tom Erez is my oldest

and best collaborator. His industrious and intelligent enthusiasm has never

failed me. Menachem Tassa is my first friend. It was during conversations

with him, on long Saturday morning walks, that the world began to pulse

with magical science.

Yuval Tassa

Jerusalem, Israel

February 2011



VI



Abstract

Control is the process of acting on a dynamical system in order to achieve

a goal. Biological controllers or brains, perform difficult control tasks such

as locomotion and manipulation despite nonlinearities, internal noise and

delays, and external perturbations.

This thesis is concerned with the synthesis of motor controllers that are

as agile, versatile, and robust as biological motor systems. The underlying

motivation is that by solving such problems in a principled, general way,

we might learn something about brains, despite the different properties of

neural and digital computers. An example and inspiration in this regard are

the insights into biological sensory systems provided by the Bayesian and

Information-Theoretic frameworks: though numerical and biological infer-

ence are algorithmically different, the same general principles apply.

The theoretical framework used here is Optimal Control, which describes

the choice of actions that minimize future costs. Besides being very general

and applicable to the problems we wish to solve, certain characteristics of

biological movement have been explained by postulating this framework,

providing further support for its use.

In the experiments detailed here, we solve progressively more difficult

Optimal Control problems, and in the process gain deep insights into the

requirements and constraints of motor control. The central themes which

emerge are the power of local control strategies, and the importance of mod-

eling dynamical stochasticity. Both these elements are shown to reduce the

computational burden and make resulting controllers more robust.

In the first experiment, a neural-network is used to approximate the

Value function over the entire state-space by solving the HJB equation in

the least-squares sense. While this approach scales only up to 4 state dimen-

sions, we discovered that by assuming stochastic rather than deterministic

VII



VIII

dynamics, the solution is considerably smoother and convergence is much

improved.

In the second experiment, a local algorithm called Differential Dynamic

Programming is used to construct a locally-linear trajectory-library con-

troller for simulated swimming robots. This approach scales very well, al-

lowing us to solve problems of up to 24 state-dimensions.

In the third experiment, we deal with the problem of contact. Efficient

local methods assume differentiability of the dynamics, which ceases to be

the case when contact and friction are involved. We use the insights gained

in the first experiment to define a new model of contact and friction that is

based on a stochastic representation of the state, effectively smoothing the

discontinuities. We then use this new model to control a simulated robotic

finger which spins an object by flicking at it. The controller is based on the

trajectory-library approach developed in the second experiment.

In the fourth experiment, we describe a new local algorithm that explic-

itly solves for periodic behaviour. Unlike our previous approaches, Dynamic

Programming cannot be used here since the limit-cycle solution is non-

Markov. Instead, we make use of the duality that holds between Bayesian

estimation and stochastic Optimal Control, and recast the problem as in-

ference over a loopy graphical model. We use our new method to generate

a controller for a walking robot with 23 state-dimensions. Foot contact

dynamics are modeled using the friction model developed in the third ex-

periment.



Contents

Abstract VII

Contents IX

1 Introduction 1

1.1 Prologue: the Analogy of the Eye . . . . . . . . . . . . . . . . 1

1.2 Motor Control and Optimization . . . . . . . . . . . . . . . . 2

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 9

2.1 Optimal Control – Theory . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Discrete State . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Continuous State . . . . . . . . . . . . . . . . . . . . . 15

2.2 Optimal Control – Algorithms . . . . . . . . . . . . . . . . . . 23

2.2.1 Discrete State – Global Methods . . . . . . . . . . . . 23

2.2.2 Continuous State – Local Methods . . . . . . . . . . . 24

2.2.3 Improvements to Differential Dynamic Programming . 28

3 Neural-Network representation of the Value Function 31

4 Receding-Horizon Differential Dynamic Programming 43

5 Smoothing Contact with Stochasticity 53

6 Solving for Limit-Cycles 63

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3 Optimal control via Bayesian inference . . . . . . . . . . . . . 66

6.3.1 Linearly-Solvable Framework . . . . . . . . . . . . . . 66

IX



X CONTENTS

6.3.2 Periodic optimal control as Bayesian inference . . . . . 68

6.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.4.1 Potential Functions . . . . . . . . . . . . . . . . . . . . 69

6.4.2 Gaussian approximation . . . . . . . . . . . . . . . . . 71

6.4.3 Iterative inference . . . . . . . . . . . . . . . . . . . . 71

6.4.4 Dynamics model . . . . . . . . . . . . . . . . . . . . . 72

6.4.5 Computing the policy . . . . . . . . . . . . . . . . . . 73

6.4.6 Algorithm summary . . . . . . . . . . . . . . . . . . . 74

6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.5.1 2D problem . . . . . . . . . . . . . . . . . . . . . . . . 74

6.5.2 Simulated walking robot . . . . . . . . . . . . . . . . . 76

6.5.3 Feedback control law . . . . . . . . . . . . . . . . . . . 77

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7 Discussion and Future Work 81

Bibliography 87

Summary in Hebrew 89



Chapter 1

Introduction

1.1 Prologue: the Analogy of the Eye

Say that we wish to understand the function of the eye. The empirical

approach would be to examine, dissect, measure and compare eyes of dif-

ferent organisms, and to study ocular disorders. Once enough data has

been collected, a hypothesis might be proposed, and experiments designed

to strengthen or falsify it.

A different possibility, which might be termed the synthetic approach, is

to design optical instruments. These may or may not be similar to biological

eyes, but perhaps by learning about the principles of optics, we would glean

general insights that are also applicable to vision.

The actual historical development of ocular research involved both ap-

proaches, with important breakthroughs made by both students of optics

and of physiology. As described in (Wade and Finger, 2001), it was the

astronomer Johannes Kepler (1571-1630) who first focused light through

lenses and recognized that an inverted image was formed on the retina.

This idea had been vaguely proposed earlier, notably by Leonardo da Vinci,

but the unintuitive inversion of the retinal image was considered to disprove

it. Kepler had no such compunctions, writing “I leave it to natural philoso-

phers to discuss the way in which this image is put together by the spiritual

principles of vision”. Though physiologists like Christoph Scheiner (1571-

1650) and Jan Evangelista Purkinje (1787-1869) made significant subsequent

contributions, it was the physicist Thomas Young (1773-1829) who first hy-

pothesized correctly that focal accommodation is the result of changes to

1



2 Chapter 1: Introduction

the curvature of the lens. The modern synthesis of our understanding of the

eye was made by the physicist and medical doctor Hermann von Helmholtz,

in his seminal 1868 lecture “The eye as an optical instrument”.

In this thesis we propose to study neural motor functions by taking

the synthetic approach. Rather than examine the ways in which biological

brains control bodies, we study the general control problem, under similar

conditions. The theoretical framework we use is Optimal Control, a choice

we will now justify.

1.2 Motor Control and Optimization

The generation of behaviour is arguably the central function of nervous

systems. Brains gather information from sensory (afferent) neurons and

act on the world via motor (efferent) neurons. A simplified picture of this

dynamic, sometimes called the perception-action cycle, is depicted in Figure

(1.1). The parts of the nervous system which are involved in sending the

efferent signals to the muscles (roughly, the bottom left of the figure) are

collectively called the motor system, and their function motor control.

nervous system environment

retina
cochlea

proprioceptors
…

sensory
cortical areas

spinal cord

motor fibers muscles
glands

skeleton
vocal cords

light
vibration
…

eyes
ears

joints
…thalamus

motor
cortical areas

world
state

ph
ysi

cs

neural
state

neu
ral

dy
nam

ics

afferent
sensor
percept

inference

efferent
motor
action
control

Figure 1.1: The perception-action cycle.



Chapter 1: Introduction 3

the plan-execute paradigm

Classic descriptions of the neural motor system usually involved two related

ideas

• Planning and execution of movement are performed separately by

“high-level” and “low-level” modules.

• Communication between these modules involves combinations of sim-

ple commands which activate motor “building blocks”.

The central piece of evidence for these paradigms was the evident hierarchi-

cal organization of the motor system. As reflexes and other simple neural

circuits were identified in the late 19th and early 20th century by Sher-

rington (1923), Babinski and others, it seemed reasonable to postulate that

movement was generated by modulations and combinations of reflexes.

In the mid 20th century, as motor control and biomechanics became in-

dependent fields of research, the notion that there is a low-level controller

with some specific structure, and a high-level planner which commands this

controller, began to take the form of concrete hypotheses. Proposals for

the low-level structure included the coordination patterns or “synergies” of

Bernstein (1967), the related notions of “servo control” and “equilibrium-

point hypothesis” of Merton (1953) and Feldman (1966) respectively, and

the “motor schema” of Schmidt (1975). These ideas were reinforced by the

nomenclature of control engineering, which was concurrently being devel-

oped for aerospace flight control and industrial robotics. In the engineering

context, planning and control are inherently separate; the human engineer

plans while the controller executes. Just as the engineer would like specify

the plan using as few parameters as possible (e.g. a sequence of states that

the system should pass through) and let the controller worry about the de-

tails, it seemed obvious that cortical motor areas should specify the desired

movement in some compressed format, and then send this “motor program”

to the spinal cord, which would deal with the details of the execution.

As biomechanical data accumulated in the second half of the 20th century

regarding geometric-kinematic regularities of biological movement, these

findings were interpreted as evidence for the postulated separation of plan-

ning and execution. A favorite laboratory setup for investigation was (and

still is) hand-reaching. In humans this low degree-of-freedom behaviour is



4 Chapter 1: Introduction

easily measurable and perturbable (with an actuated manipulandum), while

in-vivo electrophysiology during reaching movements is possible with mon-

keys (Georgopoulos et al., 1982). Since the arm is highly over-actuated,

many different combinations of muscle activations can achieve the same tra-

jectory, and many different trajectories can reach the same end-point. The

control problem was therefore framed as the selection of a particular tra-

jectory by the high-level planner, which the low-level controller would then

execute. Kinematic regularities like the “2/3 power-law”, an empirical re-

lationship between hand speed and path curvature, was interpreted as the

result of a selection process of the appropriate trajectory. The “minimum

jerk” selection criterion was proposed by Flash and Hogan (1985). While

this criterion pertained to the selection of a motor plan, it was one of the

first to explicitly make use of optimization, and in that sense remains an

important precursor to the general optimization approach.

the optimization paradigm

Though the plan-execute paradigm and the various postulated structures of

the planning-unit and execution-unit were useful for describing simple tasks

like reaching, they fail to explain some important aspects of biological move-

ments. First, movements tend to display large variability for all degrees-of-

freedom, except those which are relevant to the task. This suggests that the

low-level controller must have access to the goal of the movement. Second,

many tasks are under-actuated, that is the motor system can control only

some degrees of freedom. In under-actuated problems not every trajectory

is physically realizable, and a hypothetical trajectory-planner would have to

know about the dynamical constraints, making the separation conceptually

inefficient. Finally, many tasks involve such a high degree of uncertainty

that pre-planned trajectories are infeasible.

An different paradigm developed in the last two decades (Meyer et al.,

1988; Loeb et al., 1990; Kuo, 1995), based on direct optimization of goal-

related performance criteria. As summarized in (Todorov, 2004), the as-

sumption that the motor system as a whole acts as optimal controller can

explain the observed phenomena that confound the plan-execute paradigm.

Rather than providing a mechanistic/algorithmic description of motor sys-

tem, this theory describes the type of problem which is being solved, rather

than actual solution. Since this idea is central to the work presented here,



Chapter 1: Introduction 5

we elevate to a formal proposition:

proposition 1.1 (motor optimality hypothesis). Biological behaviour max-

imizes performance with respect to internally measured goals.

environment

world
state

ph
ysi

cs

neural
state

neu
ral

dy
nam

ics

afferent

efferent

performance
criterion

(cost/reward)

behavioral
goal

nervous system

Figure 1.2: The optimization-based view of motor control.

It’s important to stress that this proposition does not stand in oppo-

sition to earlier ideas, nor does it dispute the hierarchical structure of the

motor system. The difference is best described using the notion of levels of

analysis. The neuroscientist David Marr famously postulated (Marr, 1982)

that information processing in the brain can be described on three levels:

• computational: what does the system do and why?

• algorithmic/representational: how does the system do what it

does, what representations does it use, and what processes does it

employ to manipulate them?

• implementational: how is the system physically realized?

Seen through this lens, earlier approaches can be seen to belong mostly to the

algorithmic/representational level, while the optimization-based view lies on

the computational level. A desirable development would be the agreement

of results from both levels, a development which indeed has precedent in

research of visual sensory processing.

The celebrated discovery of edge detectors in the primary visual cortex

of cats by Hubel and Wiesel (1962), initially led to mechanistic, “bottom-

up” models of progressively complex representations, as in the work of Marr

(1982). As rigorous understanding of abstract inference was developed in the

machine learning and machine vision communities, it was shown that edge



6 Chapter 1: Introduction

detectors emerge as optimal features in unsupervised learning of natural

scenes (Olshausen et al., 1996).

The parallel development in motor control would be to synthesize con-

trollers for biologically plausible problems, and to observe the emergence

of postulated internal hierarchical structures, without any a-priori assump-

tions. However for this to be possible, we must be able to efficiently solve

complex control problems. The goal of this thesis is to advance our theo-

retical understanding and algorithmic competence of optimal control, to the

point where such comparisons are feasible.

1.3 Outline

In Chapter 2 we provide essential mathematical background. Most of the

chapter summarizes known results, but Section 2.2.3 describes novel im-

provements to the Differential Dynamic Programming algorithm.

In Chapter 3, previously published in (Tassa and Erez, 2007), a neural-

network is used to approximate the Value function over the entire state-space

by approximating a least-squares solution to the HJB equation. While this

approach scales only up to 4 state dimensions, we discovered that by assum-

ing stochastic rather than deterministic dynamics, the solution is consider-

ably smoother and convergence is much improved.

In Chapter 4, previously published in (Tassa et al., 2008), Differen-

tial Dynamic Programming is used to construct a locally-linear trajectory-

library controller for simulated swimming robots. This approach scales very

well, allowing us to solve problems of up to 24 state-dimensions. The sur-

prising robustness of the trajectory-library controller is a main result of this

work.

In Chapter 5, previously published in (Tassa and Todorov, 2010), we

deal with the problem of contact. Efficient local methods (like DDP) assume

differentiability of the dynamics, which ceases to be the case when contact

and friction are involved. We use the insights gained in Chapter 3 to define a

new model of contact and friction that is based on a stochastic representation

of the state, effectively smoothing the discontinuities. We then use this new

model to control a simulated robotic finger which spins an object by flicking

at it. The controller is based on the trajectory-library approach developed

in Chapter 4.



Chapter 1: Introduction 7

In Chapter 6, we describe a new local algorithm that explicitly solves for

periodic behaviour. Unlike our previous approaches, Dynamic Programming

cannot be used here since the limit-cycle solution is non-Markov. Instead,

we make use of the duality that holds between Bayesian estimation and

stochastic Optimal Control, and recast the problem as inference over a loopy

graphical model. We use our new method to generate a controller for a

walking robot with 23 state-dimensions. Foot contact dynamics are modeled

using the friction model developed in Chapter 5.

Chapter 7 contains conclusions for the entire body of work, and outlines

possible future research directions.



8 Chapter 1: Introduction



Chapter 2

Background

2.1 Optimal Control – Theory

Optimal Control describes the choice of actions which minimize future costs.

This section provides a brief outline of Optimal Control theory, first for dis-

crete and then for continuous state and time. The results and definitions of

this section are given without proof, and can be found in standard textbooks,

e.g. Bertsekas (2000); Stengel (1994).

2.1.1 Discrete State

In the discrete-state case, Optimal Control reduces to the solution of a

Markov Decision Process or MDP. The analytic tractability of this setting

has made it a popular context for much of the research into optimal be-

haviour. In particular, the Reinforcement Learning subdiscipline of Machine

Learning, has mostly restricted itself to discrete states. As we discuss in Sec-

tion 2.2, solutions of discrete problems have some inherent computational

drawbacks which make the setting unsuitable for real-world problems. How-

ever, the discrete-state setting remains ideal for presenting the concepts and

notations of the theory.

definitions and notations

The state of the agent is x ∈ X , one of |X | possible states. At each time-

step the agent chooses an action u ∈ U out of a fixed set of |U| possible

actions. The state is then propagated according to the controlled transition

9



10 Chapter 2: Background

notation meaning

x ∈ X a state in the set of possible states

u ∈ U an action in the set of possible actions

p(x′|x, u)) controlled transition probability

π(x) ∈ U policy function

`(x, u) immediate cost

`T (x) terminal cost

vπ(x) cost-to-go of starting at state x and acting

according to the policy π()

π∗(x) the optimal policy, which minimizes the

cost-to-go

v∗(x) the minimal cost-to-go, i.e. vπ
∗
(x)

Table 2.1: Common notation for Section 2.1.1.

probabilities

x′ ∼ p(x′|x, u)),

where x′ ∈ X denotes state at the next time step. The choice which the

controller makes, indeed the entire controller, is encapsulated in the policy

function π(x) ∈ U , which maps states to controls. For now our policies

will be deterministic but we note that in some contexts it makes sense to

consider stochastic policies π = p(u|x).

The immediate cost is a function over the states and actions `(x, u) ∈ R.

A Markov Decision Process is formally the tuple {X ,U , p(·|·, ·), `(·, ·)}. The

solution to the MDP is the policy u = π(x) which minimize the expected

sum of future costs, also known as cost-to-go or Value. There are several

different formulations of this quantity.

finite-horizon formulation

In this case the quantities x, p, π, ` are indexed by a discrete time in some

finite range t = 0 . . . T , where 0 is the initial (current) time and T is the

final time, also called the horizon. We allow the dynamics and cost to be



Chapter 2: Background 11

time-dependent. The finite-horizon cost-to-go is defined as

vπt (x) = E
x′∼ps(·|x,πs(x))

[
`T (xT ) +

T−1∑

s=t

`s(xs, πs(xs))

∣∣∣∣∣xt = x

]
(1)

This cost-to-go is the expectation of the total costs incurred up to the hori-

zon T , where the expectation is over the trajectories emanating from x,

generated by the transition probabilities ps(), when using the policies πs().

Now, due to the nested nature of this definition, we can write

vπt (x) = `t(xt, πt(xt)) + E
x′∼pt(·|x,πt(x))

vπt+1(x′)

In words – if we know the cost-to-go from time t+ 1, it is easy to compute

the cost-to-go at time t. This is in fact the central insight of Dynamic

Programming: due to the causal nature of the dynamics, the cost-to-go

can best be described as a progression backwards in time, starting with the

boundary condition vπT (x) = `T (x) at the horizon. While this is true for any

policy, consider the smallest possible cost go, a minimization over the entire

sequence of time-dependent policies {π0(·), π1(·) . . . πT−1(·)}:

v∗0(x) = min
{πt(·)}T−1

t=0

[vπ0 (x)] . (2)

Exploiting the nested structure, we have that

v∗t (x) = min
u∈U

[
`t(x, u) + E

x′∼pt(·|x,u)
v∗t+1(x′)

]
. (3)

Thus, we have converted a minimization over an entire sequence of policies

(2) to a sequence of minimizations over a single control (3), proceeding

backwards in time. Eq. 3 is called the Bellman equation. The optimal

policies are implicitly defined by the minimization

π∗t (x) = argmin
u∈U

[
`t(x, u) + E

x′∼pt(·|x,u)
v∗t+1(x′)

]
.

The quantity being minimized is called the pseudo-Hamiltonian

H̄[x, u, v(·), t] = `t(x, u) + E
x′∼pt(·|x,u)

v(x′) (4)



12 Chapter 2: Background

in correspondence with the continuous time formulation, an analogy which

will become clear in Section 2.1.2.

pseudo-Hamiltonian H̄[x, u, v(·), t] = `t(x, u) +Ex′∼pt(·|x,u) v(x′)

Bellman equation v∗t (x) = minu∈U H̄[x, u, v∗t+1(·), t]

optimal policy π∗t (x) = argminu∈U H̄[x, u, v∗t+1(·), t]

boundary condition v∗T (x) = `T (x)

Table 2.2: Summary of finite-horizon problems.

first-exit formulation

It is often the case that we would like trajectories to end not at a pre-

specified time, but to have the trajectory terminate when the state reaches

some set of absorbing states x ∈ XT . For the first-exit problem to be to

be well-defined, trajectories from any initial state must reach the terminal

set with non-zero probability. Defining the upper limit of the time index as

that time when the trajectory reaches the terminal set T : xT ∈ XT , the

cost-to-go is

vπ(x) = E
x′∼p(·|x,π(x))

[
`T (xT ) +

T−1∑

t=0

`(xt, π(xt))

∣∣∣∣∣
x0 = x

xT ∈ XT

]

In this case the cost-to-go is time-independent and so are the pseudo-Hamiltonian

and the optimal policy.

pseudo-Hamiltonian H̄[x, u, v(·)] = `(x, u) +Ex′∼p(·|x,u) v(x′)

Bellman equation v∗(x) = minu∈U H̄[x, u, v∗(·)]

optimal policy π∗(x) = argminu∈U H̄[x, u, v∗(·)]

boundary condition v∗(x ∈ XT ) = `T (x)

Table 2.3: Summary of first-exit problems.

The first-exit formulation is in fact more general than the finite-horizon

setting. In order to embed a finite-horizon problem in a first-exit problem,

we “unroll” the state-space X along the time-axis (i.e. duplicate it T times)



Chapter 2: Background 13

and let all the states at the horizon T be absorbing states.

discounted-horizon formulation

In this case there are no absorbing states and trajectories are infinite, but the

cost-to-go remains finite due to an exponential discount factor 0 < α < 1.

The cost-to-go in this case is

vπ(x) =
1

1− α E
x′∼p(·|x,π(x))

[ ∞∑

t=0

αt`(xt, π(xt))

∣∣∣∣∣x0 = x

]

The coefficient 1/(1 − α) normalizes the discounting so that the cost-to-go

v remains in the same units as the cost `, but is not strictly necessary.

pseudo-Hamiltonian H̄α[x, u, v(·)] = (1− α)`(x, u) + αEx′∼p(·|x,u) v(x′)

Bellman equation v∗(x) = minu∈U H̄α[x, u, v∗(·)]

optimal policy π∗(x) = argminu∈U H̄α[x, u, v∗(·)]

Table 2.4: Summary of discounted-horizon problems.

The discounted-horizon formulation is natural in Economics due to in-

flation and investment, hence the “discount” terminology. Discounted prob-

lems can also be embedded in first-exit problems by positing a universal

terminal state of zero cost which can be reached from any other state with a

probability of 1−α. This interpretation of the discount factor as the “prob-

ability of not dying” is relevant in understanding the empirical consistency

of biological behaviour with discounted reward models. This formulation

is also useful when constructing convergence proofs based on fixed-point

contraction mappings.

average-cost formulation

The average-cost1 setting also deals with infinite trajectories, but does not

use any discounting. The way to make sure the cost-to-go does not diverge

is the following. Say that we have computed the average cost per time-step

1The full name is “infinite-horizon average cost per stage”.



14 Chapter 2: Background

for a given policy

cπ = lim
T→∞

(
1

T
E

x′∼p(·|x,π(x))

[
T∑

t=0

`(xt, π(xt))

∣∣∣∣∣x0 = x

])

This quantity will be the same for all states if the dynamics are ergodic,

i.e. given enough time any state can reach any other state with non-zero

probability (for some policy). By subtracting the average cost, the following

sum does not diverge:

ṽπ(x) = lim
T→∞

(
−cπT + E

x′∼p(·|x,π(x))

[
T∑

t=0

`(xt, π(xt))

∣∣∣∣∣x0 = x

])
(5)

The quantity ṽ(x) is called the “differential Value function” and encodes the

difference between the state-specific and average cost-to-go. Summing over

all states, the first term in the limit in (5) cancels the second one, resulting in

the normalization constraint
∑

x ṽ
π(x) = 0. Once again exploiting the nested

structure, the differential Value function is seen to satisfy the recursion

ṽπ(x) = `(x, π(x))− cπ + E
x′∼p(·|x,π(x))

ṽπ(x′). (6)

For the optimal average cost c∗ = minπ(·) cπ, we then have the results in

Table 2.5. The average-cost formulation is different from the previous ones

pseudo-Hamiltonian H̄[x, u, v(·)] = `(x, u) +Ex′∼p(·|x,u) v(x′)

Bellman equation ṽ∗(x) + c∗ = minu∈U H̄[x, u, ṽ∗(·)]

optimal policy π∗(x) = argminu∈U H̄[x, u, ṽ∗(·)]

normalization constraint
∑

x ṽ
∗(x) = 0

Table 2.5: Summary of average-cost problems.

in that both the function ṽ∗(x) and the scalar c∗ need to be found simul-

taneously. We also note that though the limit in (5) is guaranteed not to

diverge, it can oscillate indefinitely and is therefore not proper. However,

(6) is exact, and can be taken to be the definition of ṽπ(x).



Chapter 2: Background 15

2.1.2 Continuous State

In the continuous-state case, the Bellman equation of the previous section

becomes the Hamilton Jacobi Bellman partial differential equation. While

conceptually similar, continuous spaces can support

feature the notion of locality, which did not exist

definitions and notations

notation meaning

x(t) ∈ Rn n-dimensional state vector

u ∈ U ⊆ Rm m-dimensional control vector

ẋ = f(x,u) controlled deterministic dynamics

π(x) ∈ U policy function

`(x,u) cost rate

`T (x) terminal cost

vπ(x) cost-to-go or Value of starting at state x

and acting according to the policy π()

π∗(x) the optimal policy, which minimizes the

cost-to-go

v∗(x) the minimal cost-to-go, i.e. vπ
∗
(x)

Table 2.6: Common notation for Section 2.1.2. Vector quantities are in
bold letters unless they are greek (e.g. π). Gradients are denoted by sub-
scripts vx(x) ≡ ∇xv(x), and obvious dependencies sometimes dropped for
readability vx ≡ vx(x).

We now let the the state be a continuous-valued vector. If it is n-

dimensional we write x(t) ∈ Rn, though some dimensions are often angular

variables2. The m-dimensional control or action vector is u ∈ U ⊆ Rm,

where U is often either unbounded or box-bounded around the origin. In

continuous time, the state evolves according to the differential equation

ẋ = f(x,u).

2Angles are embeddable in R with the appropriate periodic boundary conditions.



16 Chapter 2: Background

Most the equations of this section can also be written using discrete-time

dynamics

x(t+ 1) = f̄(x(t),u(t)) = x(t) +

∫ t+1

t
f(x(s),u(s))ds,

with no consequential differences. When implementing algorithms on a dig-

ital computer time has to be discretized. There are two reason for using

continuous-time notation here. The first is that equation are usually more

elegant. The second is that unlike deterministic dynamics which can be

treated more-or-less equally in discrete and continuous time, the formalism

of continuous-time diffusions is exact, while the corresponding discrete-time

conditional gaussian dynamics is only approximate. The argument again

shifts in the favor of discrete-time dynamics when contact and friction are

considered, see Chapter 5.

The Hamilton-Jacobi-Bellman partial differential equation

The finite-horizon, continuous state-and-time analogue of Eq. 1 is now the

integral

vπ(x, t) = `T (x(T )) +

∫ T

t
`(x(s), π(x(s)))ds

with x(t) = x the initial condition. As before, the finite-horizon formula-

tion can accommodate time-dependent running costs `(x,u, t) and dynamics

f(x,u, t), but we drop the time dependence for notational convenience. We

now split the integral into two parts

∫ T

t
`(s)ds =

∫ t+∆

t
`(s)ds+

∫ T

t+∆
`(s)ds

and take the first-order approximation of the first integral, while again ex-

ploiting the temporally nested definition:

vπ(x(t), t) ≈ `(x(t), π(x, t))∆ + vπ(x(t+ ∆), t+ ∆).

Substituting the first-order Taylor expansion of the dynamics

x(t+ ∆) = x(t) + f(x(t),u(t))∆ +O(∆2)



Chapter 2: Background 17

into the first-order expansion of the cost-to-go

vπ(x(t+ ∆), t+ ∆) = vπ(x(t), t) + f(x(t),u(t))Tvπx∆ + vπt ∆ +O(∆2)

and taking the limit ∆ ↓ 0, we obtain

0 = `(x,u) + vπt (x, t) + f(x,u)Tvπx(x, t).

Repeating this procedure for the optimal Value function gives us the Hamil-

ton Jacobi Bellman (HJB) partial differential equation:

−v∗t (x, t) = min
u

[
`(x,u) + f(x,u)Tv∗x(x, t)

]
. (7)

It is not trivial that this equation has a unique solution. Even if the cost

` and the dynamics f are smooth, the cost-to-go can be non-differentiable,

due to the discontinuity of the min() operator. Using the viscosity solution

formalism, developed by Crandall and Lions (1983), a unique solution is

guaranteed. A Viscosity solution is a possibly discontinuous function which

is given as the limit of two smooth functions which tightly bound it from

below and from above. Once again defining the Hamiltonian functional as

the argument of the minimization

H[x,u, v(·, t)] = `(x,u) + f(x,u)Tvx(x, t), (8)

the finite-horizon HJB equation becomes

−v∗t (x, t) = min
u∈U

H[x,u, v∗(·, t)].

The same limit can be taken for first-exit, discounted-horizon and average-

cost problems. As in the discrete state case, trajectories in the first-exit

setting terminate upon reaching the set XT , and the cost-to-go and Hamil-

tonian are time-independent. The discounted-horizon case employs a nor-

malized exponential weighting function3 with a time-scale τ

vπ(x) =
1

τ

∫ ∞

0
e−s/τ `(x(s), π(x(s)))ds,

3As before, the unit-preserving normalization is not strictly necessary.



18 Chapter 2: Background

and the corresponding Hamiltonian is

Hτ [x,u, v(·)] = `(x,u) + τ f(x,u)Tvx(x).

A summary of HJB equations is given in Table 2.7.

formulation HJB equation boundary conditions

finite-horizon −v∗t (x, t) = minuH[x,u, v∗(·, t)] v∗(x, T ) = `T (x)

first-exit 0 = minuH[x,u, v∗(·)] v∗(x ∈ XT ) = `T (x)

discounted v∗(·) = minuHτ [x,u, v∗(·)]

average-cost c∗= minuH[x,u, ṽ∗(·)]

Table 2.7: Summary of HJB equations for various formulations of determin-
istic continuous space and time problems. Minimizations are over u ∈ U .

Computing the policy

As in the discrete case, the policy minimizes the Hamiltonian. For example

for the undiscounted time-independent Hamiltonian

π∗(x) = argmin
u∈U

[
`(x,u) + f(x,u)Tv∗x(x)

]
.

A necessary condition at the minimum is the vanishing of the u-gradient

0 = `u(x,u) + f(x,u)Tuv
∗
x(x), (9)

which often turns out to be sufficient. For many dynamical systems the

control signal enters the dynamics linearly, i.e.

f(x,u) = a(x) +B(x)u

In particular for mechanical systems, if the control variables are forces or

torques, linearity is enforced by Newton’s second law. Additionally, it is

often the case that the running cost is a sum of a state-cost and a control-

cost

`(x,u) = q(x) + r(u).



Chapter 2: Background 19

If r(u) is a smooth and strictly convex function so that

ruu(u) > 0 ∀ u, (10)

then ru(u∗) = 0 implies u∗ = argminu r(u), Eq. 9 has a single solution, and

the minimization can be performed analytically:

π∗(x) = −r−1
u

(
BT(x)v∗x(x)

)
. (11)

Expression (11) shows that a simple way of dealing with box-bounded con-

trol sets U ⊂ Rm, is to use a control cost with vertical asymptotes at

the bounds. For example if U = [−1, 1], we can use the convex func-

tion4 r(u) =
∫

arctanh(u)du so that r−1
u (·) = tanh(·) has the appropriate

bounds. However the most common control-cost is the classic quadratic

r(u) = 1
2uTRu, for which

π∗(x) = −R−1BT(x)v∗x(x). (12)

Linear-Quadratic problems

Of particular importance is the case when the dynamics are linear

f(x,u) = Ax +Bu

and the cost is quadratic

`(x,u) =
1

2
xTQx +

1

2
uTRu.

Linear-quadratic problems can be solved analytically, and form the basis of

many algorithms. Substituting the ansatz of a quadratic optimal cost-to-go

v∗(x) = 1
2xTSx in (12) we have that

π∗(x) = −R−1BTSx. (13)

In this case the controller drives the state to the origin exponentially, so in

the average-cost case c∗ = 0 and ṽ(x) ≡ v(x). Substituting (13) into the

average-cost HJB equation (last row of Table 2.7), and dropping the min()

4The precise formula is
∫

arctanh(u)du = 1
2

(
(1 + x) ln(1 + x) + (1− x) ln(1− x)

)
.



20 Chapter 2: Background

operator (since the policy is already optimal) results in

0 =
1

2
xTQx +

1

2
xTSBR−1RR−1BTSx + (Ax−BR−1BTSx)TSx

=
1

2

(
xTQx− xTSBR−1BTSx

)
+ xTATSx

=
1

2
xT
(
Q− SBR−1BTS +ATS + SA

)
x,

which holds for all x and therefore implies the Riccati matrix equation:

0 = Q− SBR−1BTS +ATS + SA.

The Maximum Principle boundary value problem

An important aspect of the continuous-state formulation is that it allows

solutions to be defined locally, along an extremal trajectory. The set of dif-

ferential equations which describe the local solutions are called “Pontryagin’s

Maximum Principle” and are related to variational principles in mechanics.

The Maximum Principle is defined for the finite-horizon case, so we start

with the time-dependent HJB equation (7), substitute the optimal policy

into u and thence drop the min() operator (and asterisk superscripts):

0 = vt(x, t) + `(x, π(x, t)) + f(x, π(x, t))Tvx(x, t).

Differentiating with respect to x (and omitting dependencies) produces

0 = vxt + `x + πTx `u + fTx vx + πTx fTu vx + vxxf

= v̇x + `x + fTx vx + πTx (`u + fTu vx),

where we use the total derivative v̇x ≡ d
dtvx = vxt + vxxf . Now noting that

(9) implies that the term in parentheses vanishes, we have

−v̇x = `x + fTx vx.



Chapter 2: Background 21

Defining a new variable λ to be the cost-to-go gradient along the optimal

trajectory λ(t) ≡ vx(t), the Hamiltonian (8) becomes

H[x,u, λ] = `(x,u) + f(x,u)Tλ,

and the equations which constitute the Maximum Principle are

ẋ = Hλ[x,u, λ] (14a)

−λ̇ = Hx[x,u, λ] (14b)

u = argmin
ũ

H[x, ũ, λ], (14c)

with the boundary conditions

x(0) = x0 (14d)

λ(T ) = ∂
∂x`T (x(T )), (14e)

where x0 is some initial state. If additionally (10) holds (in this context

known as the Legendre-Clebsch condition), the equations take the particu-

larly elegant form

ẋ = Hλ[x,u, λ]

−λ̇ = Hx[x,u, λ]

0 = Hu[x,u, λ].

This formulation clearly illustrates the relationship to classical mechanics

and justifies the use of the term “Hamiltonian”. However, unlike in me-

chanics, the Maximum Principle is not an ordinary differential equation but

rather a two-point boundary value problem, due to conditions (14d),(14e).

Stochastic dynamics

Stochastic Calculus describes the algebraic properties of continuous random

processes, and is a thorny discipline. Below we will only describe the relevant

results and provide heuristic arguments to support them. We make use of

controlled drift-diffusions, which are a stochastic process described by

dx = f(x,u)dt+G(x,u)dω. (16)



22 Chapter 2: Background

ω(t) ∈ Rk is a unit covariance Brownian process and G ∈ Rn×k is the noise

gain matrix. The drift-diffusion (16) is most easily be understood as the

small-∆ limit of the discrete process

x(t+ ∆)− x(t) = f(x,u)∆ +G(x,u)
√

∆ε.

where ε is drawn from a unit gaussian ε ∼ N (0, Ik). The scaling of the

noise term in proportion to the square-root of the timestep dω ∝
√
dt, is

the central phenomenon of stochastic calculus and can be arrived at from

simple random walk arguments5. The consequence is that expressions which

are quadratic in dx pick up terms which are linear in dt. Specifically, if x

evolves according to (16), and v(x) is some twice differentiable function,

Itō’s Lemma, which is the analogue of the chain rule for diffusions, states

that

dv = vTxdx + 1
2dx

Tvxxdx

= (vTx f + 1
2 tr(GGTvxx))dt+ vTxGdω

It follows that the expected change in v(t) along a trajectory x(t) is

L[v(·)](x) ≡ lim
∆↓0

Ex(0)=x[v(x(∆))]− v(x)

∆
= vTx f + 1

2 tr(Σvxx)

where Σ(x,u) ≡ G(x,u)G(x,u)T is the covariance-rate of the diffusion. The

operator L which computes the expected directional derivative is called the

generator of the diffusion. We now recall the limit which took us from

the pseudo-Hamiltonian (4) to the Hamiltonian (8): the expected Value

term became the directional derivative in the continuous limit. Clearly the

appropriate generalization for diffusions is

H[x,u, v(·)] = `(x,u) + L[v(·)](x)

= `(x,u) + f(x,u)Tvx(x) + 1
2 tr(Σ(x,u)vxx(x)).

5A discrete random walk has a binomial distribution with variance proportional to the
number of steps. In the continuous limit it becomes a gaussian with variance proportional
to time and therefore standard-deviation proportional to the square-root of time.



Chapter 2: Background 23

Linear-Quadratic-Gaussian problems

If the diffusion (16) is linear and the noise is independent of the state and

the control dx = (Ax +Bu)dt+Gdω, and additionally the cost is quadratic

`(x,u) = 1
2xTQx + 1

2uTRu, the problem is known as Linear-Quadratic-

Gaussian. It turns out that in this case the differential cost-go-go maintains

the quadratic ansatz form ṽ∗(x) = 1
2xTSx, and therefore the Itō term is

constant, and identifies with the average cost:

1
2 tr(Σ(x,u)vxx(x)) = 1

2 tr(GGTS) = c∗.

Due to the noise, the controller can never drive the state to the origin,

leading to a non-zero c∗. More importantly, this constant has no effect on

the minimization of the Hamiltonian, allowing us to repeat the derivation

of the policy and Riccati equation. In other words, the optimal controller

in the linear-quadratic setting is invariant to Gaussian noise.

2.2 Optimal Control – Algorithms

2.2.1 Discrete State – Global Methods

Value and policy iteration

The two classic methods for the solution of discrete-state problems are an

iterative application of the Bellman operator (minimization of the Hamil-

tonian) until a fixed-point is reached. If the object of the iteration is the

Value function, the algorithm is:

Algorithm 1 Value Iteration
repeat

for all x ∈ X do
vk+1(x)← minu H̄[x, u, vk(·)]

end for
until convergence

Here written using the first-exist variant, it also converges for the others.

For the finite-horizon case Value Iteration is a single sweep backwards from

vN (·) to v1(·). In the discounted case it converges exponentially due to

contraction properties related to the discount factor. In the first-exit and



24 Chapter 2: Background

average-cost case it converges under mild assumptions (Bertsekas, 2000). If

the object is the policy, the algorithm is:

Algorithm 2 Policy Iteration
repeat

for all x ∈ X do
πk+1(x)← argminu H̄[x, u, vπ

k
(·)]

end for
until convergence

Policy Iteration converges after a finite number of steps. Note that the

policy-specific value function vπ
k
(·) needs to be evaluated at each step.

Temporal-difference methods

Temporal difference methods (Sutton, 1998) are a group of algorithms that

use the residual of the Bellman equation for supervised learning of the Value

function, usually in an online, model-free setting. Though provably conver-

gent in some settings (Tsitsiklis and Roy, 2002), like most online algorithms

in the flavor of stochastic gradient descent, these methods are less efficient

than their batch counterparts, and will therefore not be analyzed here. For

a single state transition, the Bellman residual, also known as the temporal-

difference error

δ = `(x, u)−
(
v(x)− v(x′)

)
,

describes the degree of “cost-surprise” experienced by the agent, as mea-

sured by the difference between the measured and expected immediate cost.

Outputs of dopaminergic neurons in the Basal Ganglia have been shown to

have similar properties to this error signal (Schultz et al., 1997), and remain

an important piece of supporting evidence for the use of optimal control

models of biological behaviour.

2.2.2 Continuous State – Local Methods

Curse of dimensionality

It is possible to apply global methods to continuous problems by discretizing

the state-space and solving the resulting MDP. A relatively efficient imple-

mentation replaces basic grid-based discretization with a smart variable-

resolution grid as in (Munos and Moore, 2002). Similar attempts have been



Chapter 2: Background 25

made to “featurize” large discrete state spaces (Tsitsiklis and Roy, 1996;

Lagoudakis and Parr, 2003) using kernel-based and similar methods. An-

other alternative is to try to approximate the solution of the HJB equation,

as described in Chapter 3. Unfortunately, all of these methods appear to

suffer from exponential scaling with the state dimension. This phenomenon,

known as the curse of dimensionality, makes global methods inapplicable to

all but the simplest problems.

Discrete-time Maximum Principle

The Maximum Principle is a first-order algorithm in the sense that it requires

only first derivatives of the dynamics, but also in the sense that convergence

is linear (i.e. like gradient descent). The discrete time dynamics are6

xt+1 = f(xt,ut), t = 0 . . . T − 1.

The finite-horizon cost-to-go (1), restricted along the trajectory {xt,xt+1 . . . ,xT },
for the controls ut..T−1 ≡ {ut,ut+1 . . . ,uT−1} is

vt(xt,ut..T−1) =
T−1∑

s=t

`(xs,us) + `T (xT ).

The Bellman equation (3) becomes

v∗t (x) = min
u

[`(xt,ut) + v∗t+1(f(xt,ut))] (17)

and identifying λt ≡ ∂
∂xvt(xt), the (pseudo-)Hamiltonian is

H[xt,ut, λt+1] = `(xt,ut) + f(xt,ut)
Tλt+1

and the Maximum Principle (14) becomes

xt+1 = Hλ[xt,ut, λt+1] = f(xt,ut) (18a)

λt = Hx[xt,ut, λt+1] = `x + fx(xt,ut)
Tλt+1 (18b)

ut = argminuH[xt,u, λt+1], (18c)

6In this section t and s subscripts denote time indexing when unambiguous, and primes
denote the next time step (v′ ≡ vt+1 ≡ v(t+ 1)). Subscripts of x and u denote differenti-
ation (vx ≡ ∂

∂x
v).



26 Chapter 2: Background

x0 = xinitial (18d)

λT = ∂
∂x`T (xT ), (18e)

Algorithm 3 Discrete time Maximum Principle

initialize: u0..T−1

repeat

x0 ← xinitial

for t = 0 to T − 1 do

xt+1 ← f(xt,ut)

end for

λT ← ∂
∂x`T (xT )

for t = T − 1 downto 0 do

ut ← argminu

[
`(xt,u) + f(xt,u)Tλt+1

]

λt ← `x + fx(xt,ut)
Tλt+1

end for

until convergence

Differential Dynamic Programming

Differential Dynamic Programming (DDP) is a second-order trajectory op-

timizer introduced in (Mayne, 1966) that requires second derivatives of the

dynamics, but also features quadratic convergence (like Newton’s Method)

near the minimum. We begin with the classic algorithm and then intro-

duce our modifications in Section 2.2.3. Like the Maximum Principle, DDP

involves iterative backward and forward passes along the current (xt,ut)

trajectory. In the backward pass a quadratic approximation to vt(x) and

a linear approximation to ut(x) is constructed, followed by a forward pass

which applies the new control sequence to form a new trajectory. Let Q be

the perturbed argument of the minimization in (17) around the t-th (x,u)

pair

Q(δx, δu) = `(xt + δx,ut + δu) + vt+1(f(xt + δx,ut + δu))

− (`(xt,ut) + vt+1(f(xt,ut))) ,



Chapter 2: Background 27

and expand to second order

≈ 1

2




1

δx

δu




T 


0 QT
x QT

u

Qx Qxx Qxu

Qu Qux Quu







1

δx

δu


 . (19)

The expansion coefficients are

Qx = `x +fTx v
′
x (20a)

Qu = `u +fTu v
′
x (20b)

Qxx = `xx+fTx v
′
xxfx + v′x · fxx (20c)

Quu = `uu+fTu v
′
xxfu + v′x · fuu (20d)

Qux = `ux+fTu v
′
xxfx + v′x · fux (20e)

Note that the last terms in (20c, 20d, 20e) denote contraction with a tensor.

Minimizing (19) wrt δu we have

δu∗ = argmin
δu

Q(δx, δu) = −Q−1
uu(Qu +Quxδx), (21)

giving us an open-loop term k = −Q−1
uuQu and a feedback gain term K =

−Q−1
uuQux. Plugging the result back in (19), we have a quadratic model of

the Value at time t:

∆v(t) = −1
2QuQ

−1
uuQu (22a)

vx(t) = Qx −QuQ
−1
uuQux (22b)

vxx(t) = Qxx−QxuQ
−1
uuQux. (22c)

Recursively computing the local quadratic models of vt and the control mod-

ifications {kt,Kt}, constitutes the backward pass. Once it is completed, a

forward pass computes a new trajectory:

x̂0 = xinitial (23a)

ût = ut + kt + Kt(x̂t − xt) (23b)

x̂t+1 = f(x̂t, ût) (23c)



28 Chapter 2: Background

2.2.3 Improvements to Differential Dynamic Programming

This section describes small but significant improvements to the DDP al-

gorithm which have been developed by the author in the last several years,

but remain unpublished.

Improved Regularization

It has been shown by Liao and Shoemaker (1992) that the steps taken by

DDP are comparable to or better than a full Newton step for the entire

control sequence. As in Newton’s method, care must be taken when the

Hessian is not positive-definite or when the minimum is far and the quadratic

model inaccurate. The standard regularization, proposed by Jacobson and

Mayne (1970) and further explored by Liao and Shoemaker (1991), is to add

a diagonal term to the local control-cost Hessian Q̃uu = Quu + µIm, where

µ plays the role of a Levenberg-Marquardt parameter. This modification

amounts to adding a quadratic cost around the current control-sequence,

making the steps more conservative. The drawback to this regularization

scheme is that the same control perturbation can have different effects at

different times, depending on the control-transition matrix fu. We therefore

introduce a scheme that penalizes deviations from the states rather than

controls:

Q̃uu = `uu + fTu (v′xx + µIn)fu + v′x · fuu (24a)

Q̃ux = `ux + fTu (v′xx + µIn)fx + v′x · fux (24b)

k = −Q̃−1
uuQ̃u (24c)

K = −Q̃−1
uuQ̃ux (24d)

This regularization amounts to placing a quadratic cost around the previous

state-sequence. Unlike the standard control-based regularization, the feed-

back gains K do not vanish for large µ but rather force the new trajectory

closer to the old one, significantly improving robustness.

Finally, we make use of the improved Value update proposed in Todorov

and Li (2005). Examining (19, 21, 22), we see that several cancelations

of Quu and its inverse have taken place, but since we are modifying this

matrix in (24), making those cancelations would induce an error in our



Chapter 2: Background 29

Value approximation. The correct Value update is therefore

∆v(t) = +1
2kTQuuk+kTQu (25a)

vx(t) = Qx +KTQuuk +KTQu +QT
uxk (25b)

vxx(t) = Qxx+KTQuuK+KTQux+QT
uxK. (25c)

Improved Line Search

The forward pass of DDP, given by Eqs. (23) is the key to the algorithm’s

fast convergence. This is because the feedback gains in (23b) generate a

new control sequence that takes into account the new states as they are

being integrated. For example when applying DDP to a linear-quadratic

system, even a time-varying one, an exact solution is obtained after a single

iteration. The caveat is that for a general non-linear system, when the new

trajectory strays too far from the model’s region of validity, the cost may not

decrease, divergence may occur. The solution is to introduce a backtracking

line-search parameter 0 < α ≤ 1 and integrate using

ût = ut + αkt + Kt(x̂t − xt)

For α = 0 the trajectory would be unchanged, but for intermediate values

the resulting control step is not a simple scaled version of the full step, due

to the presence of feedback. As advocated in Jacobson and Mayne (1970),

we use the expected total-cost reduction in the line-search procedure, with

two differences. The first is that we use the improved formula (25a) rather

than (22a) for the expected reduction:

∆v(α) = α

T−1∑

t=1

kT
t Qut +

α2

2

T−1∑

t=1

kT
t Quutkt.

The second is that when comparing the actual and expected reductions

z = [v(u1..T−1)− v(û1..T−1)]/∆v(α),

we accept the iteration only if

0 < c1 < z < c2 <∞.



30 Chapter 2: Background

The unintuitive upper limit c2 is used because sometimes the improvement

is due to the initial trajectory being particularly bad, and the new trajectory

has jumped from one bad region of state-space to another slightly-less-bad

region, often introducing undesired features and landing in a local minimum.

This situation might be likened to encountering a vertical drop when trying

to get down a mountain. Jumping off might decrease one’s altitude quickly

in short run, but might be a bad idea with regards to reaching the bottom.

Algorithm 4 Differential Dynamic Programming (improved)

initialize: nominal u0..T−1 and x0..T

repeat

v(T )← `T (xT )

vx(T )← ∂
∂x`T (xT )

vxx(T )← ∂2

∂x2 `T (xT )

for t = T − 1 downto 0 do // backward pass

Qx, Qu, Qxx, Quu, Qux ← Eq. 20

Q̃uu, Q̃ux,k,K← Eq. 24

if Q̃uu is not positive-definite then

increase µ, restart backward pass

end if

∆v(t), vx(t), vxx(t)← Eq. 25

end for

decrease µ

α← 1

x̂0 ← xinitial

for t = 0 to T − 1 do // forward pass

ût ← ut + αkt + Kt(x̂t − xt)

x̂t+1 = f(x̂t, ût)

end for

if c1 < z < c2 then // accept changes

u0..T−1 ← û0..T−1

x0..T ← x̂0..T

else

decrease α, restart forward pass

end if

until convergence



Chapter 3

Neural-Network

representation of the Value

Function

31



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 4, JULY 2007 1031

Least Squares Solutions of the HJB Equation With
Neural Network Value-Function Approximators

Yuval Tassa and Tom Erez

Abstract—In this paper, we present an empirical study of itera-
tive least squares minimization of the Hamilton–Jacobi–Bellman
(HJB) residual with a neural network (NN) approximation of the
value function. Although the nonlinearities in the optimal control
problem and NN approximator preclude theoretical guarantees
and raise concerns of numerical instabilities, we present two
simple methods for promoting convergence, the effectiveness of
which is presented in a series of experiments. The first method
involves the gradual increase of the horizon time scale, with a
corresponding gradual increase in value function complexity. The
second method involves the assumption of stochastic dynamics
which introduces a regularizing second derivative term to the
HJB equation. A gradual reduction of this term provides further
stabilization of the convergence. We demonstrate the solution of
several problems, including the 4-D inverted-pendulum system
with bounded control. Our approach requires no initial stabi-
lizing policy or any restrictive assumptions on the plant or cost
function, only knowledge of the plant dynamics. In the Appendix,
we provide the equations for first- and second-order differential
backpropagation.

Index Terms—Differential neural networks (NNs), dynamic
programming, feedforward neural networks, Hamilton–Ja-
coby–Bellman (HJB) equation, optimal control, viscosity solution.

I. INTRODUCTION

THE field of optimal control is concerned with finding the
control law which, applied to a given dynamical system,

will minimize some performance index, usually the temporal
integral of an incurred cost. One way of solving this problem
involves the computation of the value function, a measurement
of the performance index as a function of space and time. In the
continuous case considered here, the value function satisfies a
nonlinear partial differential equation called the Hamilton–Ja-
cobi–Bellman (HJB) equation. In the simple case of linear dy-
namics and quadratic costs, this equation famously reduces to
the matrix Riccati equation, which can be accurately solved by
analytical or numerical methods.

In the general case, the HJB equation has proven difficult to
solve. One reason for this is that value functions are frequently
differentiable only almost everywhere, requiring the framework
of nonsmooth analysis and viscosity solutions [1], so that a weak
sense of solution can first be defined and then shown to exist.

Manuscript received December 1, 2005; revised September 20, 2006;
accepted February 5, 2007.

Y. Tassa is with The Interdisciplinary Center for Neural Computation, The
Hebrew University, Jerusalem 91904, Israel (e-mail: tassa@alice.nc.huji.ac.il;
yuval.tassa@gmail.com; tassa@pob.huji.ac.il).

T. Erez is with the Department of Computer Science and Engineering, Wash-
ington University in St. Louis, St. Louis, MO 63130 USA (e-mail: etom@cse.
wustl.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2007.899249

Even when a solution is guaranteed to exist, the task of finding
it is not made any more tractable. When using approximation
schemes, artifacts or hidden extrapolation introduced by an im-
perfect approximator can couple with the nonlinearity inherent
in the minimization operator [see (3)] and produce divergent
feedback phenomena [2]. Finally, the computational complexity
required to describe the value function grows exponentially with
the dimension of its domain (“curse of dimensionality”), lim-
iting the feasibility of an effective approximation. These diffi-
culties in solving the general case have led many research ef-
forts towards finding those special cases for which a suitably
designed technique can be proven to always work.

Feedforward neural networks (NNs) provide a generic frame-
work for smooth function approximation, with a sound theo-
retical foundation [3] and a vast knowledge based on their im-
plementation in terms of architectures and learning algorithms.
Previous studies (e.g., [4] and [5]; see Section II) have shown
the potential of NN approximation of value functions for spe-
cial cases.

In this paper, we study a straightforward approach of per-
forming least squares minimization of the HJB residual with
an NN approximation of the value function. This approach
is attractive because it is simple to implement, requires few
a priori assumptions and can be applied to almost any problem,
including nonlinear problems which frustrate solution by clas-
sical methods of control theory. Deemed prone to numerical
instabilities and divergent phenomena, this course is rarely
taken in practice. Instead of retreating to a limited set of cases
where convergence can be guaranteed due to some restrictive
property, we wish to propose here two methods to overcome
the drawbacks of the unconstrained problem. Intended as a
proof-of-concept, this paper provides no formal convergence
analysis, but rather presents a series of successful experiments
and argues that these methods are likely to promote conver-
gence in most cases. In the rest of this section, we review related
work and the required theoretical background. In Section II,
we present the details of the framework and our proposed
methods for promoting convergence and discuss their motiva-
tion. Section III describes the results of numerical experiments
with one linear quadratic and two nonlinear optimal control
problems, and finally, Section IV contains a conclusion of the
presented work and some possible ramifications. The Appendix
provides the equations for differential backpropagation in
feedforward NNs.

A. Related Work

Research regarding value function approximation has been
done in several academic disciplines. When the dynamics are

1045-9227/$25.00 © 2007 IEEE



1032 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 4, JULY 2007

a discrete Markov decision process, the dynamic programming
[6] framework provides a rigorous environment for the descrip-
tion and analysis of algorithms. Though extensions to contin-
uous time and space have been made [7], these involve approx-
imating the value function around a single optimal trajectory
rather than in a volume of the state space.

In the reinforcement learning (RL) branch of computational
learning, the optimal control problem is recast as interaction be-
tween an agent (the controller) and an environment (the plant),
with the negative cost (usually denoted as ) considered as a re-
ward (denoted ) which the agent strives to maximize. This per-
spective induces several departures from the control theoretic
approach, notably, a bias towards online methods and minimal
assumed prior knowledge of the environmental dynamics, e.g.,
in temporal-difference (TD) methods [8]. This focus on online
methods, which might be attributed to the biological plausibility
of similar processes taking place in nervous systems [9], biases
the application of gradient-based methods towards stochastic
gradient descent. In this paper, we show how high condition
numbers of the error Hessian give second-order batch methods
a distinct computational advantage. Least squares temporal dif-
ference (LSTD) and related methods [10] comprise a class of RL
algorithms which do use batch learning. The work presented in
this paper can be considered an extension of these methods to
the continuous case.

When solving continuous problems, most work in RL has
concentrated on discretization of the state space and subsequent
solution by dynamic programming or related methods [11],
probably due to the availability of powerful analytical tools
for the discrete case. An exception is Doya’s generalization
of TD- to continuous problems [12] using radial-basis func-
tions. This approach was subsequently applied by Coulom [5]
using sigmoidal NNs. In Coulom’s work, though arguably a
most impressive use of NNs for value function estimation,
the learning is computationally intensive and rather unstable,
with nonmonotonic convergence. Besides the work of Coulom,
mixed results have been reported regarding the application of
NNs to value function approximation. After the initial success
of Tesauro [13], most papers reported unsatisfactory results [2],
[14], [15].

In the control community, the general control problem is usu-
ally defined to be that of forcing the output of some dynamical
system to follow a given desired signal. By considering the dif-
ference between the current and desired states, the problem is
recast as bringing this difference to the origin. This assump-
tion, which in optimal control manifests as constraints on the
cost function to be zero at the origin and positive elsewhere,
conceals the possibilities afforded by other types of problems.
For example, Coulom [5] uses a cost function which is linear
in the velocity to design “swimmers” whose controllers give
rise to limit cycle, rather than stabilizing, dynamics. Another
meta-constraint on control theoretic research, due to the applied
nature of the field, is the legitimate emphasis on provably con-
vergent algorithms.

Value function approximation has not been a popular method
for nonlinear control design, perhaps due to the availability of
other powerful methods. An important exception is [16], which
uses a Galerkin expansion to construct the value function, but

requires computationally intensive integrations. Other current
state-of-the-art approximation approaches include adaptive
meshing [11] and level sets [17].

Though extensive use of NNs has been performed in the con-
trol theory literature [18], they have been used rarely for value
function approximation. In cases where they have been used,
only special cases of the problem had been considered. Goh
[19] used an NN to solve a nonlinear quadratic optimal regulator
problem. Several assumptions were made, including a quadratic
cost function and the origin being a fixed point of the dynamics,
which allow the author to assume a sum-of-squares structure
for the value function. Abu-Khalaf and Lewis [4] assumed a
convex cost and approximated the value function using a linear
function approximator with polynomial basis functions. By ac-
cepting these restrictions, they enjoyed the guarantees conferred
by a unique minimum. This paper effectively demonstrates how
the approaches of [19] and [4] can be extended to general feed-
forward NNs and general nonlinear optimal control problems.
Although provable convergence is lost, general applicability and
de facto stability are gained.

A necessary step in the use of NNs as approximate solutions
to differential equations is the computation of the derivatives of
the output of the network with respect to (w.r.t.) its input vari-
ables, and the derivatives of these values w.r.t. the weights of the
network. Although the equations for computing these quanti-
ties have appeared before, either implicitly [20] or explicitly [5],
[21], [22], we feel that a clearer derivation is required to do jus-
tice to their great usefulness, and include them in the Appendix.

B. HJB Equation

Consider a state vector of some dynamical
system which evolves according to , with

being a control signal. Both and are assumed to be
bounded compact sets, with convex. Given some scalar cost

, our goal is to find the control law or policy ,
which will minimize the cost1 incurred along the trajectory
as measured by an integral performance index called the value
function

(1)

Putting as the limit of the integral makes the value and
policy independent of . The exponential discounting function

ensures convergence and determines the horizon
time scale. The coefficient is not essential to the exposition
but was added because it normalizes the exponential integrand
and fixes to be in the same units as . Specifically, for

, the normalized exponent shrinks to a -function and
. Our goal is to find a policy for which the value function

is minimized. This value function, denoted , is called the
optimal value function

1In the formally equivalent continuous reinforcement learning framework, a
corresponding reward is maximized.



TASSA AND EREZ: LEAST SQUARES SOLUTIONS OF THE HJB EQUATION WITH NN VALUE-FUNCTION APPROXIMATORS 1033

By direct differentiation w.r.t. , any function which satisfies (1),
including , satisfies the linear differential relation

or

(2)

Now, assume we have found and invoke the minimum prin-
ciple: Since is already optimal w.r.t. , any perturbation to

must necessarily increase the -dependent right-hand side

(3)

This nonlinear partial differential equation (PDE) is called the
HJB equation.2

C. Solutions of the HJB Equation

For linear dynamics and quadratic costs, the HJB equation
famously reduces to the Riccati matrix equation of the linear
quadratic regulator. For general problems, however, is not
differentiable everywhere and the equation does not hold in the
classical sense. The usual framework for analyzing nonsmooth
solutions to HJB equations is the formalism of viscosity solu-
tions. A way to avoid this is to introduce some stochasticity in
the state dynamics with denoting a
Brownian motion term of covariance . In this case, the modi-
fied HJB equation becomes

(4)

which provides a regularizing effect that guarantees that the
value function is differentiable everywhere [23].

When attempting to solve the HJB equation in some finite
compact volume of space , boundary conditions on

must be considered. For the integral (1) to be defined,
the trajectory must either remain in or, upon reaching
the boundary, incur some terminal cost. When stabilizing con-
trollers are sought in the control theoretic context, the concept
of a Lyapunov function is used to ensure that trajectories are
restricted to a domain. In the general nonlinear context, where
such techniques are unavailable, boundary conditions must be
dealt with explicitly.

D. Value Iteration

Given any value function , a policy which minimizes the
RHS of (3)

(5)

2This semiformal derivation is intended to provide an intuition of the problem.
For rigorous results, see, e.g., [23].

is called a greedy policy. Assuming ,
if and are differentiable, and invertible,
then the minimization in (3) can be reduced to differentiating
w.r.t. , equating to zero and solving for . If the dynamics are
affine in the control ,3 then a sufficient con-
dition for the invertibility of is the Legendre–Clebsch
condition (convexity of )

The greedy policy is then given in closed form by

(6)

The process of iteratively forming a value function for a given
policy, and then, deriving a new greedy policy with respect to
the new value function, is called value iteration or method of
approximations, and has been shown to converge when exact
measurements are possible [24]. When the object of the iterative
improvement is the policy rather than the value function, the
process is called policy iteration. In cases such as this one, where
the greedy policy is a deterministic closed-form function of the
value, the value- and policy-iteration algorithms become nearly
indistinguishable.

E. Differential NNs

The Pineda architecture [25] is a generalized topology for
feedforward NNs which can generate layered and other topolo-
gies as special cases. Given a feedforward network , an input
vector , and a weight vector , the Appendix shows how to
calculate the following quantities in the Pineda formalism:

The quantities on the left are computed by “forward” propaga-
tion while the values on the right are computed by “back” prop-
agation, using intermediate values obtained in the forward pass.
We used standard sigmoids but the nonlinearity can belong
to any class of smooth functions [radial basis function (RBF),
polynomial, trigonometric, etc.].

F. Least Squares

The approach taken here to approximating a solution to (3)
is to minimize the square of the left-hand side (LHS) minus
the RHS, called the residual or error. More generally, given an
error vector , which is a function of a weight vector

, the object of least squares minimization is to find
. The Gauss–Newton approximation takes

the first-order expansion of in

3As is usually the case in mechanical systems.



1034 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 4, JULY 2007

where is the Jacobian matrix. The square
error is then given by the quadratic

which is minimized by . In the Lev-
enberg–Marquardt variation, the approximated Hessian is
conditioned by a scaled identity matrix4 with a positive factor

(7)

Of the various heuristics for controlling during minimization,
we use the one suggested in [26].

II. PROPOSED METHOD

In this section, we first present a straightforward implementa-
tion of the techniques presented previously. Then, we describe
some common causes for approximation failure, and afterwards,
suggest two methods that circumvent many of these causes.

A. Naive Implementation

The naive approach to least squares minimization of the HJB
residual is the following. We take as an input points

, and an NN approximation of the value function
with a weight vector initialized using any standard weight
initialization scheme (e.g., [27]). Then, the algorithm repeat-
edly performs Levenberg–Marquardt steps on the squared HJB
residual for all points simultaneously until a local minimum is
reached.

Algorithm: Naive

1) repeat

2) for to

3) do

4)

5)

6)

7)

8)

9)

10) as in [26]

11) until

12) return the weight vector

4The variation which takes the diagonal of J J (à la Marquardt) rather than
the identity (à la Levenberg) was tried and found to be less stable.

Note that we assume we can compute and
[step 3)], [step 4)], and [step 5)].

Additionally, apart from the obvious requirement to calculate
and [steps 3) and 5)], we need the

derivatives of these quantities w.r.t. [step 6)]. The Appendix
explains in detail how these quantities are calculated. Note that
since we never actually simulate the plant dynamics, we do not
have to determine a time step , nor do we have to deal with
the accuracy issues which arise in numerical integration.

B. Distribution of Points and Conditioning

One of our main results is the extremely wide range of sen-
sitivities of the squared error to changes in . In all our
experiments, the condition number of the approximated Hes-
sian regularly exceeded . This fact is made even
more dramatic when we realize that the lower eigenvalues of this
matrix are dominated by the condition factor and can never
approach 0. We feel that this explains why methods based on
stochastic gradient descent do not perform well.

Another consequence of this sensitivity is the choice of a fixed
set of points during the learning. We initially experimented
with resampling the point set before each iteration or collecting
the training points along trajectories of a behaving system, but
both approaches turned out to introduce too much noise and pre-
vent good convergence. In all our experiments, the point set was
drawn from the quasi-random Halton sequence [28], which pro-
vided consistently better results than sampling from a uniform
distribution, though not by a large margin.

C. Boundary Conditions

The definition of the value function (1) as an integral into the
“future” requires special attention at the boundaries of ,
the compact set over which we wish to approximate . The
points on , the boundary surface of , can be divided into
the following three distinct categories

Regions where points into for
all . These regions require no special attention
since the integral (1) is well defined.

Regions where points out of for all
. Because the integral is no longer defined,

the HJB equation does not hold and a terminal
cost must be incurred. In practice, this
“clamping” constraint is enforced
by scattering points for which
the error is defined to be
rather than the usual HJB residual.
Regions where points into for some
values of and out of for other values. These
regions are the most problematic for our purposes
and can sometimes be avoided by a careful choice
of . The solution we used5 was to modify the
dynamics so that if points out of , the
component perpendicular to is discarded and
only the parallel component is retained. It should
be noted that the resulting discontinuities in do
not invalidate the existence of HJB solutions.



TASSA AND EREZ: LEAST SQUARES SOLUTIONS OF THE HJB EQUATION WITH NN VALUE-FUNCTION APPROXIMATORS 1035

D. Causes of Divergence

There are several difficulties associated with the approximate
numerical solution of the HJB equation. First are multiple so-
lutions admitted by the equation. These are either the result of
the aforementioned discontinuities allowed in the solution (see
[14] for examples) or the nonuniqueness which results when the
minimization in (5) is realized as extremization in (6). This type
of nonuniqueness is epitomized by the Riccati equation having
two solutions, a positive–definite and a negative–definite one
(see Section III-A).

Second are the positive feedback effects brought about by
and having the same sign in (3). Because is a func-
tion of in (6), greedy value iteration of type proposed
here can lead to divergent phenomena. One type is the classical
“rattling” effect, where repeated overshooting of the minimum
leads to divergence. In our approach, this effect is mostly con-
trolled by the Levenberg–Marquardt parameter . Another type
of positive feedback phenomena emerges when using a non-
linear function approximator. Local biases in the approximation
or “hidden extrapolation,” especially at difficult-to-approximate
discontinuous boundaries, can lead to false solutions (see, e.g.,
Fig. 4).

E. Promoting Convergence by Gradual Complexification

The both two methods proposed in the following involve the
gradual modification of some parameter during the convergence
loop [i.e., before every iteration, steps 2)–10)
in the algorithm], so that the problem is initially an “easier“
variant which then progressively approaches the full problem.
Although their success is not guaranteed and no general con-
vergence proofs are provided, we show how these techniques
enable us to address a wide range of problems with consider-
able success.

F. Modifying the Horizon Time Scale

Our first method involves the modification of the horizon time
scale . An inspection of (3) leads to an interpretation of as
the relative weighting coefficient of instantaneous and future
costs. As mentioned previously, the introduction of the normal-
izing coefficient in (1) fixes the units of to be those of .
Specifically for , we have and the problem reduces
to simple function approximation. These insights motivate the
following method: First, train the NN approximator with
until has converged to , and then, increase in small
increments until the desired value is reached.

For linear–quadratic (LQR) problems, where more than one
solution to the HJB equation is possible, starting with
is equivalent to starting the convergence process from within
the positive–definite cone, thus avoiding the negative–definite
solution (see Section III-A). Finally, it is important to note that
this method is not appropriate for all types of problems. In
many cases, especially when the goal is to bring the state into
some target set, is discontinuous in while is continuous.
In these cases, the approximation is actually more difficult for

5Due to Rémi Munos.

small values of , and no advantage is gained by its gradual
incrementation.

G. Modifying the Stochastic Term

As described in Section I-C, the assumption of stochastic dy-
namics adds a second derivative term to the HJB equation and
has a smoothing effect on the value function. Our second method
for promoting convergence involves the gradual reduction of
this term.6 Intuitively, boundaries across which the value func-
tion is discontinuous for deterministic dynamics become fuzzy
with stochasticity as noise may push the dynamics from one re-
gion to another. Besides the dispensation with the formal re-
quirement for “viscosity solutions,” smooth functions are easier
to approximate and are far less susceptible to the destructive ef-
fects of local irregularities, which may form when a continuous
function approximates a discontinuous one (as in Gibbs oscil-
lations). In practice, all we need to do to enjoy the benefits of
smoothness is to modify step 5) of the algorithm to be

which is equivalent to the assumption of white spherical process
noise of variance . The appropriate derivatives must also
be computed when calculating in step 6)

It is important to note that while our calculations assume sto-
chastic dynamics and enjoy the benefits of a smooth, differen-
tiable value function, no actual noise is injected anywhere and
the algorithm remains deterministic. Another benefit relative to
regularization schemes of the Tikhonov, or similar types, is that
rather than directly penalizing weights or nonsmoothness as an
extra term in the squared error, this type of smoother acts in-
side the residual term and actually decreases the squared error
by orders of magnitude. While these benefits are obvious, we
pay a price: A sharp edge in the surface of the value function
is often meaningful as a “switching curve,” and smoothing it
could result in a suboptimal policy, or even the system’s failure
to achieve its goal. Therefore, we end up with a logic similar
to the previous method: Begin with large value for improved
convergence during the initial approximation iterations, and de-
crease it gradually through the iterations until it reaches 0 or
some other small value.

H. Scheduling and Combining the Methods

For both parameters, we found that parameter modification
was best implemented with a sigmoidal schedule, to achieve a
converge-track-converge behavior. In the first few iterations, the

6The idea of adding this term, hinted at in [29], was suggested to the authors
by R. Munos.



1036 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 4, JULY 2007

values of or are kept fixed, so that the approximator can con-
verge from its initial conditions to the “easy” problem. Then, the
parameter changes gradually while the approximator tracks the
resulting changes in the value function. Finally, the parameter
remains fixed for the last iterations, allowing maximum conver-
gence for the “hard” problem. The exact rate of change of the
parameter during the tracking phase is immaterial, as long as it
is slow enough for consecutive realizations of the value function
to be good approximations of each other.

When using both methods concurrently, we found that an ef-
fective approach is to first let increase while is held large and
constant and then decrease only after has plateaued. Intu-
itively, this is because the divergent phenomena described previ-
ously are all related to the predictive information contained in
as parameterized by . The smoothness benefits arising from
are used to robustify the convergence while is increasing, and
should, therefore, be decreased only once no longer changes.

III. EXPERIMENTS

In this section, we demonstrate the proposed method on
three optimal control problems. First, we describe the linear
quadratic problem, derive the Riccati equation for the dis-
counted horizon case, and discuss the relationship between the
horizon time scale and stability. Our solution of a 4-D linear
quadratic system is then compared to an accurate solution
obtained by standard methods. Next, we present results for the
2-D car-on-the-hill problem. We show how discontinuity of the
value function can lead to local divergence, and proceed to use
the smoothing parameter to resolve this issue. Finally, the
4-D cart-pole problem is described and solved. All experiments
were carried out using Pineda-type NNs with sigmoids,
as described in the Appendix.7 Running time complexity is

with the number of sample points and the number
of weights. Experiments were performed on a 3-GHz Pentium
4 CPU.

In both of the nonlinear problems, we follow [12] and [30]
and implement a bounded control by using the
convex cost function

which, inserted in (6), results in the control law

(8)

We use the terminology of reinforcement learning (reward max-
imization) rather than control (cost minimization), when doing
so aids with the comparison to previous work.

A. Linear Quadratic System

Let us derive the discounted Riccati equation. For linear dy-
namics and quadratic costs

with stabilizable, and ,

7MATLAB code for implementing differential backpropagation is available at
www.alice.nc.huji.ac.il/~tassa/

the value function is itself quadratic . Pre-
multiplication by , which amounts to a rescaling of , is
added for easier comparison to standard notations. Inserting
and in (6), the greedy policy is . Substi-
tuting in (2), we have

Differentiating twice w.r.t. , dividing by two, and rearranging

By comparison to the usual Riccati equation
, we see that a discounted linear quadratic

system is equivalent to a nondiscounted system with a fric-
tion-like damping factor of added to the dynamics.
The Riccati equation, essentially a quadratic equation, admits
two solutions, the positive–definite “correct” solution, and a
destabilizing negative–definite solution. This fact serves to mo-
tivate the method of increasing during the convergence. For a
small enough , the dynamical system is extremely stable and
any initial guess value function will provide a stable control.
As is increased, the stabilizing controller found at the pre-
vious stages serves as “scaffolding” for the current stage. This
is quite similar to other techniques [4], [24], [31], where the
preexistence of a stabilizing controller is a condition for its fur-
ther improvement. Another way of showing the same effect is
to rescale and to see that , which is a
positive–definite initial condition.

We experimented with the 4-D linear quadratic system given
by

For , this is a simple energy conserving model of two
masses connected by springs. We generated 1000 quasi-uniform
points in the ellipsoid of unit mechanical energy. Applying the
Naive algorithm over these points to the nondiscounted equa-
tion using a 93-weight NN, we got mixed results. In
Fig. 1, we see one run converging to the “correct“ positive–def-
inite solution, another to the negative–definite solution, and yet
another to no solution at all. Gradually increasing from 1 to

, as described, always resulted in correct convergence.

B. Car on the Hill

The car-on-the-hill problem, described in [32] and investi-
gated in [11], is a 2-D optimal control problem. A “car” is pos-
tulated to roll8 on a hill of shape

if ,
if .

8We make the hairsplitting note that the dynamical equations, used in this
paper to allow comparison to previous work and originally given in [32], ignore
the centripetal force and are not “correct” in the Newton-mechanical sense.



TASSA AND EREZ: LEAST SQUARES SOLUTIONS OF THE HJB EQUATION WITH NN VALUE-FUNCTION APPROXIMATORS 1037

Fig. 1. Performance of three sample runs of the naive algorithm on the linear
quadratic system with � = 1. At every iteration, we measure the difference
between approximated and analytical values over a set of 1000 random points
generated anew. Solid (dotted) lines denote the difference between the approxi-
mated function and the positive–definite (negative–definite) analytical solution,
computed with standard methods. The three figures show a converging, anticon-
verging, and misconverging run.

Fig. 2. Car-on-the-hill optimal control problem. The reward is identically zero
inside the state space. Terminal rewards of �1 and 1� _x=2 are incurred upon
reaching the left and right edges of the state space, respectively.

The stated goal of reaching the top of the hill with minimal ve-
locity is achieved by setting terminal rewards of

and on the left and right edges of
the state space, respectively (Fig. 2), and ev-
erywhere else. A discrete control space is well
approximated by using the bounded control (8) with
and . The volume of state space where we solve this
problem is m/s . We
used three sets of points to find a solution, as shown in Fig. 3.
First, we placed 2000 points evenly spread across , using the
pseudorandom Halton sequence. Next, we placed 400 points on
the “outbound” ( and, respectively, ), where
any trajectory would inevitably fall out of . At this points,

was enforced. Finally, we placed 200 points on

Fig. 3. Illustration of the points where the HJB residual was measured and min-
imized. Clamping constraints were applied to points on the “outbound” @X by
minimizing (V (x)� r(x)) . For points on @X , the dynamics were modified
to never point outside the state space.

Fig. 4. Local divergence of the learning. The bump in the value function close
to (�0.5 0) begins as a local extrapolation near the discontinuous boundary and
migrates to this position.

, where but . In these points, the dy-
namics were modified by limiting the maximal speed of the car
to 4 m/s, a manipulation to the effect of “clipping” the outbound
dynamics to be tangent to . The value function which solves
this problem has a discontinuous ridge and a nondifferentiable
ridge which make the problem difficult for essentially smooth
function approximators like ours. Specifically, when running the
Naive algorithm, a Gibbs-oscillation-type phenomenon at the
discontinuous boundary was found to sometimes evolve into a
false stationary point on the line (Fig. 4).

Since the reward function of this problem is discontinuous,
setting (and, consequently, ) would present the



1038 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 4, JULY 2007

Fig. 5. Smooth value function obtained for  = 0:02. We note that the HJB
residual for this function was smaller by more than an order of magnitude than
for the “sharp” solution.

Fig. 6. Approximation of the optimal value function for the car-on-the-hill
problem. Compare to [14, Figs. 3 and 4] (available at www.cmap.polytech-
nique.fr/~munos).

NN with an unpleasant challenge, and therefore, we are lim-
ited in this case to working with the smoothing term only. The
smooth value function obtained by setting for all iter-
ations (Fig. 5) has a small HJB residual and is quite immune to
the local divergence described previously. By letting decrease
from to , we end up with a “sharp” value function
(Fig. 6), without exposing ourselves to the danger of local mis-
extrapolation. A typical simulation usually takes about 100 iter-
ations to converge in about 10-min time. The value and policy of
Figs. 6 and 7, which were generated with an 800 weight NN, are
comparable to the nearly optimal discretization-based solutions
in [14], which are described by 66 000 parameters, and appear
to be far better than the NN solution therein.

C. Cart Pole Swing-Up

Last, we demonstrate our algorithm on the 4-D system known
as the cart-pole dynamical system in the RL community and

Fig. 7. Approximate optimal policy obtained for the car-on-the-hill problem.
Gray and white areas indicate the maximum and minimum control values, re-
spectively. Lines indicate some trajectories integrated using this policy. Com-
pare to [11, Fig. 4].

Fig. 8 Time course of the swing-up trajectory for the cart-pole dynamical
system, starting from the motionless hanging-down position in the center of the
track. The solid line denotes the angle of the pole and the dashed line denotes
the position of the cart. Note that the horizon time scale � is only 1.5 s, far
shorter than the total swing-up time.

the inverted-pendulum in the control community, as described
in [5] and elsewhere. It consists of a mass (the cart) on a 1-D
horizontal track to which another mass (the pole) is attached.
The pole swings freely under the effect of gravity. The con-
troller may apply force to the cart in order to achieve the goal of
swinging the pole up and then stabilizing it over the cart in the
center of the track. The volume of state space where we solve
the problem is 3 m
5 m/s 10 rad/s . We used a reward function of

, cart mass 1 kg, pole length 1
m, and pole mass 0.1 kg. The parameters of (8) were
3 N and , and the maximal horizon time scale was

1.5 s. The learning took place over 10 000 points gener-
ated quasi-uniformly across the entire volume, and another 500
points for clamping constraints at exit regions from the state
space. Here, we used both the increase of and the decrease
of . As described earlier, we first increased with a high con-
stant value of and then decreasing after had plateaued.
Using a 1049-weight NN, a typical simulation took about 250



TASSA AND EREZ: LEAST SQUARES SOLUTIONS OF THE HJB EQUATION WITH NN VALUE-FUNCTION APPROXIMATORS 1039

Fig. 9. Pineda weight matrix W for q = 11 neurons. Dark-gray squares in-
dicate feedback (recurrent) connections, unused here. Light-gray subdiagonal
squares indicate the maximally connected topology enabled by the formalism, of
these, indicated by white, are the weights of a regular two hidden-layer network
with two input neurons, a four-layer, a three-layer, and a scalar linear output,
which would usually be written as y(x) = A �(A �(A x+b )+b )+b .
As described in the text, the first neuron is the bias neuron with constant output
1. In all of our experiments, the topology used was the maximal topology minus
the weightsW , for which j + q + 1 < 2i.

iterations to converge in about 4 h. In Fig. 8, we show the so-
lution trajectory starting from the difficult position of the pole
hanging straight down in the middle of the track with no linear or
angular velocity. From this position, the controller must jiggle
the cart for a while to accumulate energy in the pole, then swing
the pole up and stabilize it around the origin. Quite remarkably,
the swing-up process requires almost 30 s to complete which is
considerably longer than the horizon time scale 1.5 s.

IV. CONCLUSION

In this paper, we have shown how using batch least squares
minimization of the squared HJB residual is a simple and ef-
fective method for solving nonlinear optimal control problems.
As a preliminary study, this paper can be extended in numerous
ways. The two methods proposed here can probably be put to
good use in many other numerical algorithms, and perhaps also
in an analytical context. The use of fixed, uniformly distributed
points over which the residual is minimized is an obvious place
for improvement. A more disciplined approach would be to use
some statistically sound method like Kalman filtering to sequen-
tially estimate the update vector at randomly generated
points, and accept an update only when the estimate reaches
some prescribed confidence threshold. Another approach would
be to use advanced stochastic methods like those proposed in
[33]. Recent advances in other types of function approximation
schemes for the solution of differential equations, such as sup-
port vector regression [34] seem promising. Our hope is that by
using these or other techniques, even more difficult nonlinear
optimal control problems, such as those ostensibly solved by
biological nervous systems, might soon become accessible.

APPENDIX I

The measurement and backpropagation w.r.t. differential
quantities in NNs is a rather esoteric art. First proposed in-
directly in [20], their description and formulation reappears,
apparently independently, every several years [5], [21], [22].
We believe these approximators can find good use in many
fields and, therefore, give their explicit formulation, up to the
second order. The Pineda feedforward topology, first described
in [25] and popularized by [35], is a generalization of classical
layered topologies and allows for a maximally connected feed-
forward topology. Indexing the neurons of the network in an
order allowing feedforward computation, i.e., the th neuron
depending only on neurons , we arrange the weights in
a strictly lower triangular matrix , the weight
denoting the connection from neuron to neuron .

A. Regular Forward Propagation

For an input vector , we fix the outputs of the first
neurons to be the augmented input vector

, set for , and then, pro-
gressively compute for

(9)

where is the input to the th neuron, and the nonlinearity.
Here, we assume the scalar output of the network to be the
value of the last neuron, with no squashing nonlinearity to avoid
bounding the outputs: . By making some
of the weights zero, or simply ignoring them in the calculations,
any topology can be easily implemented, e.g., the matrix of a
layered network will have a chain of blocks below the diagonal
(see Fig. 9).

B. Regular Backpropagation

When calculating , we first compute
in reverse order, i.e., , and then, for

(10)

and then

Note that in (9) we sum over the th row of , the weights into
neuron , and in (10), over the th column, the weights out of
neuron .

C. First-Order Differential Propagation

We use the superscript to denote ,
differentiation w.r.t. the th coordinate of the input vector.
The initial input to the derivative network



1040 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 4, JULY 2007

is a vector of all zeros with 1 in the
th place. Then, is given by

The backpropagation of the quantities
is then given by first

setting and computing in reverse order

and then

D. Second-Order Differential Propagation

The initial input to the second-order derivative network
is now a vector of all zeros.

Then, is given by

The backpropagation of the quantities
is given by

setting and then

and then

ACKNOWLEDGMENT

The authors would like to thank M. Margaliot and R. Munos
for their helpful comments.

REFERENCES

[1] M. Crandall and P. Lions, “Viscosity solutions of Hamilton-Jacobi
equations,” Trans. Amer. Math. Soc., vol. 277, 1983.

[2] J. A. Boyan and A. W. Moore, “Generalization in reinforcement
learning: Safely approximating the value function,” in Advances
in Neural Information Processing Systems 7, G. Tesauro, D. S.
Touretzky, and T. K. Leen, Eds. Cambridge, MA: MIT Press, 1995,
pp. 369–376.

[3] K.-I. Funahashi, “On the approximate realization of continuous map-
pings by neural networks,” Neural Netw., vol. 2, pp. 183–192, 1989.

[4] M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws for non-
linear systems with saturating actuators using a neural network HJB
approach,” Automatica, vol. 41, no. 5, pp. 779–791, 2005.

[5] R. Coulom, “Reinforcement learning using neural networks, with ap-
plications to motor control,” Ph.D. dissertation, Institut National Poly-
technique de Grenoble, Grenoble, France, 2002.

[6] D. P. Bertsekas, Dynamic Programming and Optimal Control. Bel-
mont, MA: Athena Scientific, 1995.

[7] D. H. Jacobson and D. Q. Mayne, Differential Dynamic Program-
ming. New York: Elsevier, 1970.

[8] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Mach. Learn., vol. 3, pp. 9–44, 1988.

[9] W. Schultz, P. Dayan, and P. R. Montague, “A neural substrate of pre-
diction and reward,” Science, vol. 275, pp. 1593–1599, 1997.

[10] M. G. Lagoudakis, R. E. Parr, and M. L. Littman, “Least-squares
methods in reinforcement learning for control,” in Proc. 2nd Hellenic
Conf. Artif. Intell., 2002, vol. 2308, pp. 249–260.

[11] R. Munos and A. W. Moore, “Variable resolution discretization for
high-accuracy solutions of optimal control problems,” in Proc. Int.
Joint Conf. Artif. Intell., 1999, pp. 1348–1355.

[12] K. Doya, “Temporal difference learning in continuous time and
space,” in Advances in Neural Information Processing Systems, D.
S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds. Cambridge,
MA: MIT Press, 1996, vol. 8.

[13] G. Tesauro, “Practical issues in temporal difference learning,” in Ad-
vances in Neural Information Processing Systems, J. E. Moody, S. J.
Hanson, and R. P. Lippmann, Eds. San Mateo, CA: Morgan Kauf-
mann, 1992, vol. 4, pp. 259–266.

[14] R. Munos, L. Baird, and A. Moore, “Gradient descent approaches to
neural net-based solutions of the Hamilton-Jacobi-Bellman equation,”
in Proc. Int. Joint Conf. Neural Netw., 1999, pp. 1316–1323.

[15] S. Thrun and A. Schwartz, “Issues in using function approximation for
reinforcement learning,” in Proc. 1993 Connectionist Models Summer
School, M. Mozer, P. Smolensky, D. Touretzky, J. Elman, and A.
Weigend, Eds., 1993, pp. 255–263.

[16] R. Beard and T. McLain, “Successive galerkin approximation algo-
rithms for nonlinear optimal and robust control,” Proc. Int. J. Control:
Special Issue Breakthroughs Control Nonlinear Syst., vol. 71, no. 5, pp.
717–743, 1998.

[17] J. A. Sethian, Level Set Methods and Fast Marching Methods. Cam-
bridge, U.K.: Cambridge Univ. Press, 1999.

[18] K. S. Narendra and K. Parthasarathy, “Identification and control of dy-
namical systems using neural networks,” IEEE Trans. Neural Netw.,
vol. 1, no. 1, pp. 4–27, Mar. 1990.

[19] C. J. Goh, “On the nonlinear optimal regulator problem,” Automatica,
vol. 29, no. 3, pp. 751–756, 1993.

[20] P. Simard, B. Victorri, Y. LeCun, and J. Denker, “Tangent prop—A
formalism for specifying selected invariances in an adaptive network,”
in Neural Information Processing Systems, J. M. R. Lippman and S. J.
Hanson, Eds. San Mateo, CA: Morgan Kaufmann, 1992, vol. 4.

[21] J. W. Lee and J. H. Oh, “Hybrid learning of mapping and its Jacobian
in multilayer neural networks,” Neural Comput., vol. 9, pp. 937–958,
1997.

[22] R. Masuoka, “Neural networks learning differential data,” IEICE
Trans. Inf. Syst., vol. E83-D, no. 6, pp. 1291–1300, 2000.

[23] W. Fleming and H. Soner, Controlled Markov Processes and Viscosity
Solutions. New York: Springer-Verlag, 1993.

[24] G. Saridis and C. S. Lee, “An approximation theory of optimal con-
trol for trainable manipulators,” IEEE Trans. Syst., Man, Cybern., vol.
SMC-9, no. 3, pp. 152–159, Mar. 1979.

[25] F. Pineda, “Generalization of back-propagation to recurrent neural net-
works,” Phys. Rev. Lett., vol. 19, no. 59, pp. 2229–2232, 1987.

[26] M. S. Bazarraa, H. D. Sherali, and C. M. Shetty, Nonlinear Program-
ming: Theory and Algorithms. New York: Wiley, 1993.

[27] D. H. Nguyen and B. Widrow, “Improving the learning speed of
2-layer neural network by choosing initial values of the adaptive
weights,” in Proc. 1st IEEE Int. Joint Conf. Neural Netw., 1990,
vol. 3, pp. 21–26.

[28] J. H. Halton, “On the efficiency of certain quasi-random sequences of
points in evaluating multi-dimensional integrals,” Numerische Mathe-
matik, vol. 2, pp. 84–90, 1960.

[29] K. Doya, “Reinforcement learning in continuous time and space,”
Neural Comput., vol. 12, no. 1, pp. 219–245, 2000.

[30] S. E. Lyshevski and A. U. Meyer, “Control system analysis and design
upon the Lyapunov method,” in Proc. Amer. Control Conf., Jun. 1995,
pp. 3219–3223.

[31] D. Kleinman, “On an iterative technique for Riccati equation compu-
tations,” IEEE Trans. Autom. Control, vol. 13, no. 1, pp. 114–115, Feb.
1968.

[32] A. Moore and C. Atkeson, “The parti-game algorithm for variable reso-
lution reinforcement learning in multidimensional state-spaces,” Mach.
Learn., vol. 21, pp. 1–36, 1995.

[33] N. N. Schraudolph, “Local gain adaptation in stochastic gradient de-
scent ISDIA, Lugano, Switzerland, Tech. Rep. IDSIA-09-99, 1999, p.
8.

[34] M. Lazaro, I. Santamaria, F. Perez-Cruz, and A. Artes-Rodriguez,
“Support vector regression for the simultaneous learning of a multi-
variate function and its derivatives,” Neurocomput., vol. 69, pp. 42–61,
2005.

[35] B. A. Pearlmutter, “Fast exact multiplication by the Hessian,” Neural
Comput., vol. 6, no. 1, pp. 147–160, 1994.



42 Chapter 3: Neural-Network representation of the Value Function



Chapter 4

Receding-Horizon

Differential Dynamic

Programming

43



Receding Horizon
Differential Dynamic Programming

Yuval Tassa ∗ Tom Erez & Bill Smart †

Abstract

We introduce a method for the solution of high-dimensional, continuous, non-
linear optimal-control problems. By extending Differential Dynamic Program-
ming, a second-order trajectory optimization algorithm, with a receding horizon
scheme reminiscent of Model Predictive Control, we learn locally quadratic mod-
els of the time-independent Value Function along likely trajectories. A global
policy is generalized in the control phase from several such trajectories using a
nearest-neighbor rule. We demonstrate the effectiveness of our approach on a
class of high-dimensional problems using a simulated multi-link swimming robot.
These experiments show that our approach effectively circumvents dimensional-
ity issues, and is capable of dealing with problems of (at least) 24 state and 9
action dimensions. A real-time MATLAB interaction package is made available at
alice.nc.huji.ac.il/∼tassa.

1 Introduction

We are interested in learning controllers for high-dimensional, highly non-linear dynamical systems,
continuous in state, action, and time. Local, trajectory-based methods, using techniques such as Dif-
ferential Dynamic Programming (DDP), are an active field of research in the Reinforcement Learn-
ing and Control communities. Local methods do not model the value function or policy over the
entire state space by focusing computational effort along likely trajectories. Featuring algorithmic
complexity polynomial in the dimension, local methods are not directly affected by dimensionality
issues as space-filling methods.

In this paper, we introduce Receding Horizon DDP (RH-DDP), a set of modifications to the classic
DDP algorithm, which allows us to construct stable and robust controllers based on local-control
trajectories in highly non-linear, high-dimensional domains. Our new algorithm is reminiscent of
Model Predictive Control, and enables us to form a time-independent value function approximation
along a trajectory. We aggregate several such trajectories into a library of locally-optimal linear
controllers which we then select from, using a nearest-neighbor rule.

Although we present several algorithmic contributions, a main aspect of this paper is a conceptual
one. Unlike much of recent related work (below), we are not interested in learning to follow a
pre-supplied reference trajectory. We define a reward function which represents a global measure
of performance relative to a high level objective, such as swimming towards a target. Rather than
a reward based on distance from a given desired configuration, a notion which has its roots in the
control community’s definition of the problem, this global reward dispenses with a “path planning”
component and requires the controller to solve the entire problem.

We demonstrate the utility of our approach by learning controllers for a high-dimensional simulation
of a planar, multi-link swimming robot. The swimmer is a model of an actuated chain of links
in a viscous medium, with two location and velocity coordinate pairs, and an angle and angular

∗Y. Tassa is with the Hebrew University, Jerusalem, Israel.
†T. Erez and W.D. Smart are with the Washington University in St. Louis, MO, USA.

1



velocity for each link. The controller must determine the applied torque, one action dimension for
each articulated joint. We reward controllers that cause the swimmer to swim to a target, brake on
approach and come to a stop over it.

We synthesize controllers for several swimmers, with state dimensions ranging from 10 to 24 dimen-
sions. The controllers are shown to exhibit complex locomotive behaviour in response to real-time
simulated interaction with a user-controlled target.

1.1 Related work

Optimal control of continuous non-linear dynamical systems is a central research goal of the RL
community. Even when important ingredients such as stochasticity and on-line learning are re-
moved, the exponential dependence of computational complexity on the dimensionality of the do-
main remains a major computational obstacle. Methods designed to alleviate the curse of dimen-
sionality include adaptive discretizations of the state space [1], and various domain-specific manip-
ulations [2] which reduce the effective dimensionality.

Local trajectory-based methods such as DDP were introduced to the NIPS community in [3], where
a local-global hybrid method is employed. Although DDP is used there, it is considered an aid to the
global approximator, and the local controllers are constant rather than locally-linear. In this decade
DDP was reintroduced by several authors. In [4] the idea of using the second order local DDP
models to make locally-linear controllers is introduced. In [5] DDP was applied to the challenging
high-dimensional domain of autonomous helicopter control, using a reference trajectory. In [6]
a minimax variant of DDP is used to learn a controller for bipedal walking, again by designing
a reference trajectory and rewarding the walker for tracking it. In [7], trajectory-based methods
including DDP are examined as possible models for biological nervous systems. Local methods
have also been used for purely policy-based algorithms [8, 9, 10], without explicit representation of
the value function.

The best known work regarding the swimming domain is that by Ijspeert and colleagues (e.g. [11])
using Central Pattern Generators. While the inherently stable domain of swimming allows for such
open-loop control schemes, articulated complex behaviours such as turning and tracking necessitate
full feedback control which CPGs do not provide.

2 Methods

2.1 Definition of the problem

We consider the discrete-time dynamics xk+1 = F (xk, uk) with states x ∈ Rn and actions u ∈ Rm.
In this context we assume F (xk, uk) = xk+

∫∆t

0
f(x(t), uk)dt for a continuous f and a small ∆t,

approximating the continuous problem and identifying with it in the ∆t → 0 limit. Given some
scalar reward function r(x, u) and a fixed initial state x1 (superscripts indicating the time index), we
wish to find the policy which maximizes the total reward1 acquired over a finite temporal horizon:

π∗(xk, k) = argmax
π(·,·)

[
N∑

i=k

r(xi, π(xi, i))].

The quantity maximized on the RHS is the value function, which solves Bellman’s equation:

V (x, k) = max
u

[r(x, u) + V (F (x, u), k+1)]. (1)

Each of the functions in the sequence {V (x, k)}Nk=1 describes the optimal reward-to-go of the opti-
mization subproblem from k toN . This is a manifestation of the dynamic programming principle. If
N =∞, essentially eliminating the distinction between different time-steps, the sequence collapses
to a global, time-independent value function V (x).

1We (arbitrarily) choose to use phrasing in terms of reward-maximization, rather than cost-minimization.

2



2.2 DDP

Differential Dynamic Programming [12, 13] is an iterative improvement scheme which finds a
locally-optimal trajectory emanating from a fixed starting point x1. At every iteration, an approx-
imation to the time-dependent value function is constructed along the current trajectory {xk}Nk=1,
which is formed by iterative application of F using the current control sequence {uk}Nk=1. Every
iteration is comprised of two sweeps of the trajectory: a backward and a forward sweep.

In the backward sweep, we proceed backwards in time to generate local models of V in the following
manner. Given quadratic models of V (xk+1, k + 1), F (xk, uk) and r(xk, uk), we can approximate
the unmaximised value function, or Q-function,

Q(xk, uk) = r(xk, uk) + V k+1(F (xk, uk)) (2)
as a quadratic model around the present state-action pair (xk, uk):

Q(xk + δx, uk + δu) ≈ Q0 +Qxδx+Quδu+
1

2
[δxT δuT ]

[
Qxx Qxu

Qux Quu

][
δx
δu

]
(3)

Where the coefficients Q?? are computed by equating coefficients of similar powers in the second-
order expansion of (2)

Qx = rx + V k+1
x F k

x Qxx = rxx + F k
x V

k+1
xx F k

x + V k+1
x F k

xx

Qu = ru + V k+1
x F k

u Quu = ruu + F k
uV

k+1
xx F k

u + V k+1
x F k

uu

Qxu = rxu + F k
x V

k+1
xx F k

u + V k+1
x F k

xu.
(4)

Once the local model of Q is obtained, the maximizing δu is solved for

δu∗ = argmax
δu

[Q(xk + δx, uk + δu)] = −Q−1
uu (Qu +Quxδx) (5)

and plugged back into (3) to obtain a quadratic approximation of V k:

V k
0 = V k+1

0 −Qu(Quu)
−1 Qu (6a)

V k
x = Qk+1

x −Qu(Quu)
−1 Qux (6b)

V k
xx = Qk+1

xx −Qxu(Quu)
−1Qux. (6c)

This quadratic model can now serve to propagate the approximation to V k−1. Thus, equations (4),
(5) and (6) iterate in the backward sweep, computing a local model of the Value function along
with a modification to the policy in the form of an open-loop term −Q−1

uuQu and a feedback term
−Q−1

uuQuxδx, essentially solving a local linear-quadratic problem in each step. In some senses, DDP
can be viewed as dual to the Extended Kalman Filter (though employing a higher order expansion
of F ).

In the forward sweep of the DDP iteration, both the open-loop and feedback terms are combined to
create a new control sequence (ûk)Nk=1 which results in a new nominal trajectory (x̂k)Nk=1.

x̂1 = x1 (7a)

ûk = uk −Q−1
uuQu −Q−1

uuQux(x̂
k − xk) (7b)

x̂k+1 = F (x̂k, ûk) (7c)
We note that in practice the inversion in (5) must be conditioned. We use a Levenberg Marquardt-
like scheme similar to the ones proposed in [14]. Similarly, the u-update in (7b) is performed with
an adaptive line search scheme similar to the ones described in [15].

2.2.1 Complexity and convergence

The leading complexity term of one iteration of DDP itself, assuming the model of F as required for
(4) is given, is O(Nmγ1) for computing (6) N times, with 2 < γ1 < 3, the complexity-exponent of
invertingQuu. In practice, the greater part of the computational effort is devoted to the measurement
of the dynamical quantities in (4) or in the propagation of collocation vectors as described below.

DDP is a second order algorithm with convergence properties similar to, or better than Newton’s
method performed on the full vectorial uk with an exact Nm × Nm Hessian [16]. In practice,
convergence can be expected after 10-100 iterations, with the stopping criterion easily determined
as the size of the policy update plummets near the minimum.

3



2.2.2 Collocation Vectors

We use a new method of obtaining the quadratic model of Q (Eq. (2)), inspired by [17]2. Instead
of using (4), we fit this quadratic model to samples of the value function at a cloud of collocation
vectors {xki , uki }i=1..p, spanning the neighborhood of every state-action pair along the trajectory.
We can directly measure r(xki , u

k
i ) and F (xki , u

k
i ) for each point in the cloud, and by using the

approximated value function at the next time step, we can estimate the value of (2) at every point:

q(xki , u
k
i ) = r(xki , u

k
i ) + V k+1(F (xki , u

k
i ))

Then, we can insert the values of q(xki , u
k
i ) and (xki , u

k
i ) on the LHS and RHS of (3) respectively,

and solve this set of p linear equations for the Q?? terms. If p > (3(n +m) + (m + n)2)/2, and
the cloud is in general configuration, the equations are non-singular and can be easily solved by a
generic linear algebra package.

There are several advantages to using such a scheme. The full nonlinear model of F is used to
construct Q, rather than only a second-order approximation. Fxx, which is an n×n×n tensor need
not be stored. The addition of more vectors can allow the modeling of noise, as suggested in [17].
In addition, this method allows us to more easily apply general coordinate transformations in order
to represent V in some internal space, perhaps of lower dimension.

The main drawback of this scheme is the additional complexity of an O(Npγ2) term for solving the
p-equation linear system. Because we can choose {xki , uki } in way which makes the linear system
sparse, we can enjoy the γ2 < γ1 of sparse methods and, at least for the experiments performed
here, increase the running time only by a small factor.

In the same manner that DDP is dually reminiscent of the Extended Kalman Filter, this method bears
a resemblance to the test vectors propagated in the Unscented Kalman Filter [18], although we use
a quadratic, rather than linear number of collocation vectors.

2.3 Receding Horizon DDP

When seeking to synthesize a global controller from many local controllers, it is essential that the
different local components operate synergistically. In our context this means that local models of
the value function must all model the same function, which is not the case for the standard DDP
solution. The local quadratic models which DDP computes around the trajectory are approximations
to V (x, k), the time-dependent value function. The standard method in RL for creating a global
value function is to use an exponentially discounted horizon. Here we propose a fixed-length non-
discounted Receding Horizon scheme in the spirit of Model Predictive Control [19].

Having computed a DDP solution to some problem starting from many different starting points
x1, we can discard all the models computed for points xk>1 and save only the ones around the
x1’s. Although in this way we could accumulate a time-independent approximation to V (x,N)
only, starting each run of N -step DDP from scratch would be prohibitively expensive. We therefore
propose the following: After obtaining the solution starting from x1, we save the local model at
k = 1 and proceed to solve a new N -step problem starting at x2, this time initialized with the
policy obtained on the previous run, shifted by one time-step, and appended with the last control
unew = [u2, u3...uNuN ]. Because this control sequence is very close to the optimal solution, the
second-order convergence of DDP is in full effect and the algorithm converges in 1 or 2 sweeps.
Again saving the model at the first time step, we iterate. We stress the that without the fast and exact
convergence properties of DDP near the maximum, this algorithm would be far less effective.

2.4 Nearest Neighbor control with Trajectory Library

A run of DDP computes a locally quadratic model of V and a locally linear model of u, expressed by
the gain term−Q−1

uuQux. This term generalizes the open-loop policy to a tube around the trajectory,
inside of which a basin-of-attraction is formed. Having lost the dependency on the time k with
the receding-horizon scheme, we need some space-based method of determining which local gain
model we select at a given state. The simplest choice, which we use here, is to select the nearest
Euclidian neighbor.

2Our method is a specific instantiation of a more general algorithm described therein.

4



Outside of the basin-of-attraction of a single trajectory, we can expect the policy to perform very
poorly and lead to numerical divergence if no constraint on the size of u is enforced. A possible
solution to this problem is to fill some volume of the state space with a library of local-control
trajectories [20], and consider all of them when selecting the nearest linear gain model.

3 Experiments

3.1 The swimmer dynamical system

We describe a variation of the d-link swimmer dynamical system [21]. A stick or link of length
l, lying in a plane at an angle θ to some direction, parallel to t̂ =

( cos(θ)
sin(θ)

)
and perpendicular to

n̂ =
(− sin(θ)

cos(θ)

)
, moving with velocity ẋ in a viscous fluid, is postulated to admit a normal frictional

force −knln̂(ẋ · n̂) and a tangential frictional force −ktlt̂(ẋ · t̂), with kn > kt > 0. The swimmer
is modeled as a chain of d such links of lengths li and masses mi, its configuration described by
the generalized coordinates q = ( xcm

θ ), of two center-of-mass coordinates and d angles. Letting
x̄i = xi − xcm be the positions of the link centers WRT the center of mass , the Lagrangian is

L = 1
2 ẋ

2
cm

∑

i

mi +
1
2

∑

i

mi ˙̄x
2
i +

1
2

∑

i

Iiθ̇
2
i

with Ii = 1
12mil

2
i the moments-of-inertia. The relationship between the relative position vectors

and angles of the links is given by the d − 1 equations x̄i+1 − x̄i = 1
2 li+1t̂i+1 + 1

2 lit̂i, which
express the joining of successive links, and by the equation

∑
imix̄i = 0 which comes from the

(a) Time course of two angular velocities. (b) State projection.

Figure 1: RH-DDP trajectories. (a) three snapshots of the receding horizon trajectory (dotted)
with the current finite-horizon optimal trajectory (solid) appended, for two state dimensions. (b)
Projections of the same receding-horizon trajectories onto the largest three eigenvectors of the full
state covariance matrix. As described in Section 3.3, the linear regime of the reward, here applied
to a 3-swimmer, compels the RH trajectories to a steady swimming gait – a limit cycle.

5



definition of the x̄i’s relative to the center-of-mass. The function

F = − 1
2kn

∑

i

[li(ẋi · n̂i)
2 + 1

12 l
3
i θ̇

2
i ]− 1

2kt
∑

i

li(ẋi · t̂i)2

known as the dissipation function, is that function whose derivatives WRT the q̇i’s provide the postu-
lated frictional forces. With these in place, we can obtain q̈ from the 2+d Euler-Lagrange equations:

d
dt (

∂
∂qi
L) = ∂

∂q̇i
F + u

with u being the external forces and torques applied to the system. By applying d − 1 torques τj
in action-reaction pairs at the joints ui = τi − τi−1, the isolated nature of the dynamical system
is preserved. Performing the differentiations, solving for q̈, and letting x =

( q
q̇

)
be the 4+2d-

dimensional state variable, finally gives the dynamics ẋ = ( q̇q̈ ) = f(x,u).

3.2 Internal coordinates

The two coordinates specifying the position of the center-of-mass and the d angles are defined
relative to an external coordinate system, which the controller should not have access to. We make
a coordinate transformation into internal coordinates, where only the d−1 relative angles {θ̂j =

θj+1 − θj}d−1
j=1 are given, and the location of the target is given relative to coordinate system fixed

on one of the links. This makes the learning isotropic and independent of a specific location on the
plane. The collocation method allows us to perform this transformation directly on the vector cloud
without having to explicitly differentiate it, as we would have had to using classical DDP. Note also
that this transformation reduces the dimension of the state (one angle less), suggesting the possibility
of further dimensionality reduction.

3.3 The reward function

The reward function we used was

r(x, u) = −cx
||xnose||2√
||xnose||2 + 1

− cu||u||2 (8)

Where xnose = [x1x2]
T is the 2-vector from some designated point on the swimmer’s body to the

target (the origin in internal space), and cx and cu are positive constants. This reward is maximized
when the nose is brought to rest on the target under a quadratic action-cost penalty. It should not be
confused with the desired state reward of classical optimal control since values are specified only
for 2 out of the 2d + 4 coordinates. The functional form of the target-reward term is designed to
be linear in ||xnose|| when far from the target and quadratic when close to it (Figure 2(b)). Because

(a) Swimmer (b) Reward

Figure 2: (a) A 5-swimmer with the “nose” point at its tip and a ring-shaped target. (b) The func-
tional form of the planar reward component r(xnose) = −||xnose||2/

√
||xnose||2 + 1. This form

translates into a steady swimming gait at large distances with a smooth braking and stopping at the
goal.

6



of the differentiation in Eq. (5), the solution is independent of V0, the constant part of the value.
Therefore, in the linear regime of the reward function, the solution is independent of the distance
from the target, and all the trajectories are quickly compelled to converge to a one-dimensional
manifold in state-space which describes steady-state swimming (Figure 1(b)). Upon nearing the
target, the swimmer must initiate a braking maneuver, and bring the nose to a standstill over the
target. For targets that are near the swimmer, the behaviour must also include various turns and
jerks, quite different from steady-state swimming, which maneuver the nose into contact with the
target. Our experience during interaction with the controller, as detailed below, leads us to believe
that the behavioral variety that would be exhibited by a hypothetical exact optimal controller for this
system to be extremely large.

4 Results

In order to asses the controllers we constructed a real-time interaction package3. By dragging the
target with a cursor, a user can interact with controlled swimmers of 3 to 10 links with a state di-
mension varying from 10 to 24, respectively. Even with controllers composed of a single trajectory,
the swimmers perform quite well, turning, tracking and braking on approach to the target.

All of the controllers in the package control swimmers with unit link lengths and unit masses. The
normal-to-tangential drag coefficient ratio was kn/kt = 25. The function F computes a single 4th-
order Runge-Kutta integration step of the continuous dynamics F (xk, uk) =xk+

∫ t+∆t

t
f(xk, uk)dt

with ∆t=0.05s. The receding horizon window was of 40 time-steps, or 2 seconds.

When the state doesn’t gravitate to one of the basins of attraction around the trajectories, numerical
divergence can occur. This effect can be initiated by the user by quickly moving the target to a
“surprising” location. Because nonlinear viscosity effects are not modeled and the local controllers
are also linear, exponentially diverging torques and angular velocities can be produced. When adding
as few as 20 additional trajectories, divergence is almost completely avoided.

Another claim which may be made is that there is no guarantee that the solutions obtained, even on
the trajectories, are in fact optimal. Because DDP is a local optimization method, it is bound to stop
in a local minimum. An extension of this claim is that even if the solutions are optimal, this has to
do with the swimmer domain itself, which might be inherently convex in some sense and therefore
an “easy” problem.

While both divergence and local minima are serious issues, they can both be addressed by appealing
to our panoramic motivation in the biology. Real organisms cannot apply unbounded torque. By
hard-limiting the torque to large but finite values, non-divergence can be guaranteed4. Similarly,
local minima exist even in the motor behaviour of the most complex organisms, famously evidenced
by Fosbury’s reinvention of the high jump.

Regarding the easiness or difficulty of the swimmer problem – we made the documented code avail-
able and hope that it might serve as a useful benchmark for other algorithms.

5 Conclusions

The significance of this work lies at its outlining of a new kind of tradeoff in nonlinear motor control
design. If biological realism is an accepted design goal, and physical and biological constraints taken
into account, then the expectations we have from our controllers can be more relaxed than those of
the control engineer. The unavoidable eventual failure of any specific biological organism makes
the design of truly robust controllers a futile endeavor, in effect putting more weight on the mode,
rather than the tail of the behavioral distribution. In return for this forfeiture of global guarantees,
we gain very high performance in a small but very dense sub-manifold of the state-space.

3Available at http://alice.nc.huji.ac.il/∼tassa/
4We actually constrain angular velocities since limiting torque would require a stiffer integrator, but theo-

retical non-divergence is fully guaranteed by the viscous dissipation which enforces a Lyapunov function on
the entire system, once torques are limited.

7



Since we make use of biologically grounded arguments, we briefly outline the possible implications
of this work to biological nervous systems. It is commonly acknowledged, due both to theoretical
arguments and empirical findings, that some form of dimensionality reduction must be at work in
neural control mechanisms. A common object in models which attempt to describe this reduction
is the motor primitive, a hypothesized atomic motor program which is combined with other such
programs in a small “alphabet”, to produce complex behaviors in a given context. Our controllers
imply a different reduction: a set of complex prototypical motor programs, each of which is near-
optimal only in a small volume of the state-space, yet in that space describes the entire complexity of
the solution. Giving the simplest building blocks of the model such a high degree of task specificity
or context, would imply a very large number of these motor prototypes in a real nervous system, an
order of magnitude analogous, in our linguistic metaphor, to that of words and concepts.

References
[1] Remi Munos and Andrew W. Moore. Variable Resolution Discretization for High-Accuracy Solutions of

Optimal Control Problems. In International Joint Conference on Artificial Intelligence, pages 1348–1355,
1999.

[2] M. Stilman, C. G. Atkeson, J. J. Kuffner, and G. Zeglin. Dynamic programming in reduced dimensional
spaces: Dynamic planning for robust biped locomotion. In Proceedings of the 2005 IEEE International
Conference on Robotics and Automation (ICRA 2005), pages 2399–2404, 2005.

[3] Christopher G. Atkeson. Using local trajectory optimizers to speed up global optimization in dynamic
programming. In NIPS, pages 663–670, 1993.

[4] C. G. Atkeson and J. Morimoto. Non-parametric representation of a policies and value functions: A
trajectory based approach. In Advances in Neural Information Processing Systems 15, 2003.

[5] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. An application of reinforcement learning to aerobatic
helicopter flight. In Advances in Neural Information Processing Systems 19, 2007.

[6] J. Morimoto and C. G. Atkeson. Minimax differential dynamic programming: An application to robust
bipedwalking. In Advances in Neural Information Processing Systems 14, 2002.

[7] Emanuel Todorov and Wei-Wei Li. Optimal control methods suitable for biomechanical systems. In 25th
Annual Int. Conf. IEE Engineering in Medicine and Biology Society, 2003.

[8] R. Munos. Policy gradient in continuous time. Journal of Machine Learning Research, 7:771–791, 2006.
[9] J. Peters and S. Schaal. Reinforcement learning for parameterized motor primitives. In Proceedings of

the IEEE International Joint Conference on Neural Networks (IJCNN 2006), 2006.
[10] Tom Erez and William D. Smart. Bipedal walking on rough terrain using manifold control. In IEEE/RSJ

International Conference on Robots and Systems (IROS), 2007.
[11] A. Crespi and A. Ijspeert. AmphiBot II: An amphibious snake robot that crawls and swims using a central

pattern generator. In Proceedings of the 9th International Conference on Climbing and Walking Robots
(CLAWAR 2006), pages 19–27, 2006.

[12] D. Q. Mayne. A second order gradient method for determining optimal trajectories for non-linear discrete-
time systems. International Journal of Control, 3:85–95, 1966.

[13] D. H. Jacobson and D. Q. Mayne. Differential Dynamic Programming. Elsevier, 1970.
[14] L.-Z. Liao and C. A. Shoemaker. Convergence in unconstrained discrete-time differential dynamic pro-

gramming. IEEE Transactions on Automatic Control, 36(6):692–706, 1991.
[15] S. Yakowitz. Algorithms and computational techniques in differential dynamic programming. Control

and Dynamic Systems: Advances in Theory and Applications, 31:75–91, 1989.
[16] L.-Z. Liao and C. A. Shoemaker. Advantages of differential dynamic programming over newton’s method

for discrete-time optimal control problems. Technical Report 92-097, Cornell Theory Center, 1992.
[17] E. Todorov. Iterative local dynamic programming. Manuscript under review, available at

www.cogsci.ucsd.edu/∼todorov/papers/ildp.pdf, 2007.
[18] S. J. Julier and J. K. Uhlmann. A new extension of the kalman filter to nonlinear systems. In Proceedings

of AeroSense: The 11th Int. Symp. on Aerospace/Defence Sensing, Simulation and Controls, 1997.
[19] C. E. Garcia, D. M. Prett, and M. Morari. Model predictive control: theory and practice. Automatica,

25:335–348, 1989.
[20] M. Stolle and C. G. Atkeson. Policies based on trajectory libraries. In Proceedings of the International

Conference on Robotics and Automation (ICRA 2006), 2006.
[21] R. Coulom. Reinforcement Learning Using Neural Networks, with Applications to Motor Control. PhD

thesis, Institut National Polytechnique de Grenoble, 2002.

8



52 Chapter 4: Receding-Horizon Differential Dynamic Programming



Chapter 5

Smoothing Contact with

Stochasticity

53



Stochastic Complementarity for Local
Control of Discontinuous Dynamics

Yuval Tassa
Interdisciplinary Center for Neural Computation

Hebrew University
tassa@alice.nc.huji.ac.il

Emo Todorov
Computer Science and Engineering

University of Washington
todorov@cs.washington.edu

Abstract— We present a method for smoothing discontinuous
dynamics involving contact and friction, thereby facilitating the
use of local optimization techniques for control. The method
replaces the standard Linear Complementarity Problem with
a Stochastic Linear Complementarity Problem. The resulting
dynamics are continuously differentiable, and the resulting con-
trollers are robust to disturbances. We demonstrate our method
on a simulated 6-dimensional manipulation task, which involves
a finger learning to spin an anchored object by repeated flicking.

I. INTRODUCTION

Classic control methods focus on forcing a dynamical
system to a reference trajectory. This approach is powerful
but limited. For complex behaviors in underactuated domains,
planning the desired trajectory cannot be easily separated from
the control strategy. Optimal Control offers a comprehensive
framework that solves both the planning and control problems
by finding a policy which minimizes future costs. However,
global methods for finding optimal policies scale exponentially
with the state dimension, making them prohibitively expensive.

Local Optimal Control methods, or trajectory optimizers,
play a key role in the search for nonlinear feedback controllers
that are on par with biological motor systems. These methods
find a solution in a small part of the state-space, but because
their complexity scales polynomially, they may constitute the
only feasible approach to tackling high-dimensional problems.

Locomotion and hand-manipulation, behaviors which en-
compass some of the most interesting control problems, are
crucially dependent on contact and friction. These phenomena
pose a problem for efficient variants of local methods, which
require differentiability to some order. Hard contacts and joint
limits are examples of dynamic discontinuities where veloc-
ities change instantaneously upon impact. Though these two
phenomena can conceivably be modeled with stiff nonlinear
spring-dampers, friction is inherently discontinuous and does
not readily admit a smooth approximation.

If our goal is to produce an accurate simulation, it might
be sensible to use a deterministic model of the dynamics,
since macro-physical systems are often well-modeled as such.
If however we wish to control the system, noise might
qualitatively alter the optimal behavior. We argue that when
the dynamics are discontinuous, an optimal controller must
account for stochasticity in order to generate an acceptable

policy. Because stochastic dynamics are inherently smooth (in
the mean), differentiability issues automatically disappear.

A popular and established method for modeling hard unilat-
eral constraints and friction, involves defining complementarity
conditions on forces and velocities. Simulators based on
this principle are called time-stepping integrators and solve
a Linear Complementarity Problem at each time step. We
propose to instead solve a Stochastic Linear Complementarity
Problem, using the approach proposed in [1]. This method
transforms the complementarity problem into a smooth non-
linear optimization which is readily solved.

The solution effectively describes new deterministic dynam-
ics, that implicitly take into account noise around the contact.
These modified dynamics can qualitatively be described as
featuring a fuzzy “force-field” that extends out from surfaces,
allowing both contact and friction to act at a distance. The
size and shape of this layer are naturally determined by the
noise distribution, without any free parameters.

We test our method on a simplified manipulation task. A
two link planar finger must learn to spin an ellipse that is
anchored to the wall by flicking at it. We use an off-line Model
Predictive Control strategy to patch together a global, time-
independent policy, which robustly performs the task for both
the smoothed system and the original discontinuous one. We
constructed an interactive simulation which allows the user to
actively perturb the controlled system. The controller proved
to be robust, withstanding all these disturbances.

II. A QUALITATIVE ARGUMENT

Consider the simple and familiar task of holding an object.
The force which prevents the object from falling is friction,
related by Coulomb’s law to the normal force exerted by
the fingers. If we now slowly loosen our grip, there is no
discernable change in the positions or velocities of the system
until suddenly, when the the weight of the object penetrates
the friction cone, sticking changes into slipping and the object
drops from our hand.

In the Optimal Control context, the control signal realizes
a tradeoff between a state-cost and a control-cost. Because
the state-cost cannot change until the object begins to slip,
a controller that is optimal with respect to deterministic
dynamics will attempt to hold the object with the minimum
possible force, i.e. on the very edge of the friction cone.



This delicate grip would be disastrously fragile – the smallest
perturbation would cause the object to fall. If, however, there
is uncertainty in our model, we can only maintain our grip
in probability. By grasping with more force than is strictly
necessary, we push probability-mass from the slip-regime into
the stick-regime.

The moral is that optimal control of discontinuous dynamics
cannot give acceptable results with a deterministic model. Our
intuition of what constitutes a reasonable solution implicitly
contains the notion of robustness, which requires the explicit
modeling of noise near the discontinuities.

III. BACKGROUND

A. Dynamics with unilateral contacts

The modeling and simulation of multibody systems with
contacts and friction is a broad and active field of research [2].
One reasonable approach, not investigated here, is to model
discontinuous phenomena with a continuous-time hybrid dy-
namical system which undergoes switching [3]. These methods
require accurate resolution of collision and separation times, so
fixed time-step integration with a fixed computational cost is
impossible. Moreover, collision events can in principle occur
infinitely often in a finite time, as when a rigid elastic ball
bounces to rest. The appropriate control strategy would be
to chop the trajectory into several first-exit problems, where
contact surfaces serve as an exit manifold for one segment,
while the post-collision state serves as an initial condition for
the next one. It is not clear how a trajectory-optimizer for such
a system could deal with unforeseen changes to the switch
sequence, as when a foot makes grazing contact. Furthermore,
such a scheme would mandate that every contact/stick-slip
configuration be considered a hybrid system component, so
their number would grow combinatorially.

Time-stepping avoids all of these problems. We give a brief
exposition here and refer the interested reader to [4]. The
equations of motion of a controlled mechanical system are

Mv̇ = r + u

q̇ = v

where q and v are respectively the generalized coordinates
and velocities, M = M(q) is the mass matrix, r = r(q,v)
the vector of total external forces (gravity, drag, centripetal,
coriolis etc.) and u is the applied control signal (e.g. motor
torques).

It is non-trivial to model discontinuous phenomena like
rigid contact and Coulomb friction in continuous time. Doing
so requires instantaneous momentum transfers via unbounded
forces and the formalism of Measure Differential Inclusions
to fully characterize solutions [5]. Time-stepping integrators
rewrite the equations of motion in a discrete-time momentum-
impulse formulation. Because the integral of force (the im-
pulse) is always finite, unbounded quantities are avoided, and
both bounded and impulsive forces can be properly addressed
in one step.

For a timestep h, an Euler integration step for the momenta1

Mv′ = Mv(t+ h) and coordinates q′ = q(t+ h) is:

Mv′ = h(r + u) + Mv

q′ = q + hv′.

We want a unilateral constraint vector function d(q) to remain
non-negative, for example a signed distance between objects,
which is positive for separation, zero for contact and negative
for penetration. We therefore demand that impulses λ be
applied so that

d(q′) ≈ d(q) + hJv′ ≥ 0,

where J = ∇d(q). This leads to the following complemen-
tarity problem for v′ and λ:

Mv′ = h(r + u) + Mv + JTλ (1a)
λ ≥ 0, (1b)

d(q) + hJv′ ≥ 0, (1c)

λT(d(q) + hJv′) = 0. (1d)

Conditions (1b) and (1c) are read element-wise, and respec-
tively constrain the contact impulse to be non-adhesive, and
the distance to be non-penetrative. Condition (1d) asserts that
d(q′) > 0 (broken contact) and λ > 0 (collision impact), are
mutually exclusive.

Since the mass matrix is always invertible, we can solve
(1a) for v′, and plug into (1c). Defining

A = JM−1JT (2a)

b = d(q)/h+ Jv + hJM−1(r + u), (2b)

we can now write (1) in standard LCP form:

Find λ s.t. 0 ≤ λ ⊥ Aλ+ b ≥ 0. (3)

In order to solve for frictional impulses λf , the Coulomb
friction law ‖λf‖ ≤ µλ must be incorporated. To maintain
linearity, a polyhedral approximation to the friction cone is
often used, though some new methods can handle a smooth
one [7]. In the model of [8], the matrix A is no longer positive-
definite, though a solution is guaranteed to exist. In the relaxed
model of [9], A remains positive-definite. With either model
the problem retains the LCP structure (3).

B. Smoothing Methods for LCPs
The Linear Complementarity Problem (3) arises in many

contexts and has stimulated considerable research [10][11].
One method of solving LCPs involves the use of a so-called
NCP function φ(·, ·) whose root satisfies the complementarity
condition

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

Due to the element-wise nature of complementarity, is suffices
to consider NCP functions with scalar arguments. Two popular
examples are

φ(a, b) = min(a, b) (4)

1In the derivation we assume M and r to be constant throughout the time-
step, but for our simulations used a more accurate approximation [6].



and
φ(a, b) = a+ b−

√
a2 + b2.

These functions reformulate the complementarity problem as
a system of (possibly nonsmooth) nonlinear equations, whose
residual can then be minimized. A particular method, closely
related to the one used here, was presented by Chen and
Mangasarian in [12] and proceeds as follows. Rewrite (4) as
min(a, b) = a −max(a − b, 0) and replace max(·, 0) with a
smooth approximation

s(x, ε) → max(x, 0) as ε ↓ 0.

One of several such functions proposed there is

s(x, ε) = ε log(1 + ex/ε). (5)

The authors then present an iterative algorithm whereby for a
positive ε, the squared residual

r(a, b, ε) =
(
a− s(a− b, ε)

)2
(6)

is minimized with a standard nonlinear minimization tech-
nique, ε is subsequently decreased, and the procedure repeated
until a satisfactory solution is obtained.

C. Local Optimization
Local Optimal Control methods, with roots in the venerable

Maximum Principle [13], solve the control problem along
a single trajectory, giving either an open-loop or a closed-
loop policy that is valid in some limited volume around it.
They are efficient enough to be used for real-time control of
fast dynamics [14], and scale well enough to handle high-
dimensional nonlinear mechanisms [15]. These methods can
get stuck in local minima, though if neural controllers set the
golden standard, it might be noted that biological suboptimal
minima exist, somewhat anecdotally evidenced by the high-
jump before Dick Fosbury. Their main detraction is that they
solve the problem in only a small volume of space, namely
around the trajectory. To remedy this, new methods [16] use
Sum of Squares verification tools to measure the size of local
basins-of-attraction and constructively patch together a global
feedback controller. Finally, using the control-estimation dual-
ity, the powerful framework of estimation on graphical models
is being brought to bear [17] on trajectory optimizers.

Though policy gradient methods like shooting can also be
considered, we concentrate on Local Dynamic Programming,
i.e. the construction of a local approximation to the Value
function, and restrict ourselves to the finite-horizon case.

The control u ∈ Rm affects the propagation of the state
x ∈ Rn through the general Markovian dynamics

x′ = f(x,u). (7)

The cost-to-go starting from state x at time i with a control
sequence ui:N−1 ≡ {ui,ui+1 . . . ,uN−1}, is the sum of
running costs2 `(x,u) and final cost `f (x):

Ji(xi,ui:N−1) =
N−1∑

k=i

`(xk,uk) + `f (xN ),

2The possible dependence of ` on i is suppressed for compactness.

We define the optimal Value function at time i as the the cost-
to-go given the minimizing control sequence

V ∗i (x) ≡ min
ui:N−1

Ji(x,ui:N−1).

Setting V ∗N (x) ≡ `f (xN ), the Dynamic Programming prin-
ciple reduces the minimization over the entire sequence of
controls to a sequence of minimizations over a single control,
proceeding backwards in time:

V ∗i (x) = min
u

[`(x,u) + V ∗i+1(f(x,u))] (8)

1) First-Order Dynamic Programming: To derive a
discrete-time equivalent of the Maximum Principle, we ob-
serve the following: Given a first-order approximation of the
Value at i+1, if f is affine in u (which holds for mechanical
systems) and ` is convex and smooth in u (so that ∇u` is
invertible), then the minimizing u is given by:

u∗i = −∇u`
−1
(
∇uf

T∇xVi+1

)
(9)

with dependencies on x and u suppressed for readability. Once
u∗i is known, the approximation at time i is given by

∇xVi(x) = ∇x

(
`(x,u∗i ) + Vi+1(f(x,u∗i ))

)
. (10)

The first-order local dynamic programming algorithm pro-
ceeds by alternatingly propagating the dynamics forward
with (7), and propagating ui and ∇xVi(x) backward with
(9) and (10).

2) Second-Order Dynamic Programming: By propagating a
quadratic model of Vi(x), second-order methods can compute
locally-linear policies. These provide both quadratic conver-
gence rate and a more accurate, closed-loop controller. We
define the unminimized Value function

Qi(δx, δu) = `(x + δx,u + δu) + Vi+1(f(x + δx,u + δu))

and expand to second order

≈ 1

2

[ 1
δx
δu

]T 

Q0 Qx

T Qu
T

Qx Qxx Qxu
Qu Qux Quu



[ 1
δx
δu

]
. (11)

Solving for the minimizing δu we have

δu∗ = argmin
δu

[Qi(δx, δu)] = −Q−1uu (Qu +Quxδx), (12)

giving us both open-loop and linear-feedback control terms.
This control law can then be plugged back into (11) to
obtain a quadratic approximation of Vk. As in the first-order
case, these methods proceed by alternating a forward pass
which propagates the dynamics using the current policy, and
a backward pass which re-estimates the Value and produces a
new policy.



D. Optimal Control of Discontinuous Systems

To date, there has not been a profusion of research on
Optimal Control of discontinuous dynamics. Stewart and An-
itescu’s recent contribution [18] includes a literature review. In
that paper, the authors describe a method whereby a smooth
approximation replaces the discontinuities. They show that in
some limit, the solution of the smooth system converges to
the solution of the nonsmooth one, and proceed to apply their
method to the “Michael Schumacher” racing car problem. We
would argue that though a solution is obtained, it might be
a solution to the wrong problem. Qualitatively, it reaches the
very limits of tire traction, and passes within a whisker of the
walls. The smallest disturbance would send the car crashing.
Their example is appropriate since this extreme driving well-
describes the car racing profession, but the optimum is clearly
non-robust. A driver who thinks that the road is slippery or the
steering wheel is inaccurate, would most likely be considered
a “better driver” by other standards.

The method presented in the next section describes a
specific way of accounting for stochasticity when controlling
dynamics with complementarity conditions, but in general,
noise has a profound effect on optimal solutions. For deter-
ministic continuous-time systems, even infinitely differentiable
ones, the Value function, which satisfies the Hamilton Jacobi
Bellman PDE, is often discontinuous. A solution always
exists in the Viscosity Solution sense [19], but the fact that
a special formalism is required is conspicuous. If, however,
the dynamics are a stochastic diffusion with positive-definite
noise covariance, the HJB equation gains a second-order Itô
term, and the solution is always unique and smooth, regardless
of discontinuities in the underlying dynamics.

IV. THE PROPOSED METHOD

Instead of solving for contact impulses with an LCP, we
propose instead to solve a Stochastic LCP. The incorporation
of stochasticity makes the contact impulses a differentiable
function of the state, facilitating the use of local control
methods. Because a controller must always overcome noise
(process, observation, modeling), the noise-induced smooth
dynamics constitute a better model for control purposes,
even if they are a worse approximation of the real physical
mechanism.

A. New and old formulas for SLCPs

The study of Stochastic Linear Complementarity Problems
is a fairly recent endeavor, see [20] for a survey. The general
problem could be written

0 ≤ x ⊥ A(ω)x + b(ω) ≥ 0. (13)

Where ω is random variable. In this form the problem is
obviously not well-posed, since it is not clear in what sense x
satisfies the constraints. The Expected Residual Minimization
approach of [1], proposes that we minimize

rERM(x) = E
[
‖Φ(x, ω)‖2

]
(14)

where
Φ(x, ω)i = φ

(
xi,

(
A(ω)x + b(ω)

)
i

)

is a vector of NCP residuals.
As detailed in section IV-B, in our case A can be considered

constant to first order. This variant is discussed in section 3
of [1], where after a simple proof that rERM(x) is continu-
ously differentiable, it is explicitly computed for a uniformly
distributed b. Because we are ultimately trying to model a
diffusion, the Normal distribution would be more appropriate.
Considering scalar arguments a and bN , with

bN ∼ p(bN ) = N (bN |b, σ) =
1

σ
√

2π
exp

(
− 1

2

(
bN−b
σ

)2)

and cumulative distribution

P (bN ) =

bN∫

−∞

p(t)dt =
1

2

(
1 + erf

(
bN−b
σ
√
2

))
,

the expectation produces

E
[
min(a, bN )2

]
=

a2 − σ2(a+ b)p(a) +
(
σ2 + b2 − a2

)
P (a). (15)

A possible variant of equation (14), would be to exchange
squaring and expectation, giving what might be termed Resid-
ual Expectation Minimization:

rREM(x) = ‖E [Φ(x, ω)] ‖2 (16)

Due to Jensen’s inequality, rREM(x) ≤ rERM(x), and is thus
a weaker bound, though their minima coincide as σ ↓ 0. A
benefit of this residual is that the expectation gives simpler
formulae. In particular, if bL has a Logistic distribution

bL ∼ L(bL|b, σ) =
1

σ

(
exp

(
bL−b
2σ

)
+ exp

(
b−bL
2σ

))−2

then the expectation produces

E[min(a, bL)] = a− σ log(1 + e
a−b
σ ). (17)

It is clear that this residual is identical to (6) with the
smoothing function (5), where σ takes the place of ε. This
immediately provides us with a new interpretation to the
method of [12], and gives us access to the literature which
investigates it (e.g. [21]).

With these smooth approximations3 to φ, the minimizing x
is now a differentiable function of A and b.

3Although we only used formulae (15) and (17) in our experiments, for
completeness we also provide the expectation of the min(·, ·) function with
a Normally distributed argument:

E[min(a, bN )] = a− σ2p(a)− (a− b)P (a),

and of min(·, ·)2 with a Logistically distributed argument:

E[min(a, bL)2] = a2 − 2aσ log(1 + e
a−b
σ ) + 2σ2 Li2(−e

a−b
σ ),

where Li2(x) is the Dilogarithm function Li2(x) = −
∫ 0
x

log(1−t)
t

dt.



B. Determining the noise covariance
How should the noise covariance σ be determined? Assume

that a gaussian state distribution is estimated from observations
by some filter, and we are given

Σq = E[qqT] and Σv = E[vvT].

Examining (2a) we see that A is a function of the mass matrix
M and the constraint Jacobian J. Both of these depend on
q but often smoothly and slowly. In contrast, since h must
be small due to the Euler integration, its presence in the
denominator of the first term of the RHS of (2b), suggests
that the appropriate first-order approximation is

Σb = E[bbT] ≈ JΣqJ
Th−2

To account for the second term as well, one would use

Σb ≈ J(Σqh
−2 + Σv)JT.

The element-wise nature of the complementarity conditions
allows us to ignore the off-diagonal terms and use

b(ω)i ∼ N (ω|bi,
√

(Σb)ii) or L(ω|bi,
√

(Σb)ii),
(18)

to define the vector residual as

Φ(x, ω)i = φ
(
xi, Aix + b(ω)i

)
.

C. Making global controllers from trajectories
The output of the second-order trajectory optimizer of

section III-C.2 is a time-dependent sequence of linear feedback
policies u()1:N−1

u(x)i = ui −Qi−1uuQiux(x− xi).

Ideally, we would like to use an online Model Predictive
Control strategy, whereby we iteratively use u()1 for one time-
step and re-solve the problem. Our simulations were not fast
enough for that (see below), so we resort to an off-line MPC
strategy, as in [15]. Once a solution trajectory is obtained
for some x1, we save u()1, and proceed to solve for a new
trajectory starting at x1+d for a small offset d. We can use the
previous control sequence shifted by −d and appended with
d copies of the last control

uNEW()1:N−1 = [u()1+d:N−1 u()N−1 u()N−1 · · · ], (19)

as our initial guess for the policy of the shifted trajectory.
Because we are usually not far from the optimum, we enjoy
the quadratic convergence properties of second-order methods.
The trajectory thus propagates forward, leaving behind it a
trail of time-independent controllers u()k, all with horizon
T = hN . We now use this collection of local linear controllers
to construct a global controller that can be used online, by
following a simple nearest neighbor rule:

u(x) = u(x)j with j = argmin
k
‖x− xk‖2. (20)

This is similar to the Trajectory Library concept [22]. If, as
in the case below, the solution lies on a limit cycle, the time-
independent trajectory will converge to it. Now we can perturb
the initial state x1 every several time steps, and explore the
state space around the limit cycle.

θ1

θ2

θ3

Fig. 1. The “flicking finger” dynamical system. The controller actuates θ1
and θ2 in order to spin the free ellipse around θ3.

Fig. 2. The contact surface in the configuration space [θ1 θ2 θ3]T. The
torus-like shape is the zero-valued isosurface of the distance function d(q).
It corresponds to the set of points where the finger-tip makes contact with the
free ellipse. Points inside and outside the surface correspond to penetration
and broken contact respectively. A cylindrical coordinate system was chosen
because θ3 is a periodic variable (with period π rather than 2π due to
symmetry).

V. EXPERIMENTS

A. Setup

We performed our experiments with the 6-dimensional
system of Figure 1. This planar system is composed of two
articulated ellipses, with angles θ1 and θ2, and a free-spinning
ellipse, whose angle is given by θ3. The full state of the system
is thus

x = [θ1 θ2 θ3 θ̇1 θ̇2 θ̇3]T

The controller can apply two torques u = [u1 u2]T to θ1
and θ2. We make it the controller’s goal to spin the free



ellipse in the positive direction, by defining a negative state-
cost proportional to θ3 with a quadratic control-cost:

`(x,u) = −cxθ3 + cu‖u‖2

Note that it would be very difficult to solve this task with
control techniques that force the system to a pre-planned
trajectory, since it is not clear how such a trajectory would
be found.

In Figure 2, we depict the d(q) = 0 isosurface in the
configuration space [θ1 θ2 θ3]T.

B. Parameters and methods
The following values can all be assumed to have the

appropriate units of a self consistent unit system (e.g. MKS).
The major and minor radii of the finger ellipses are .8 and
.25 respectively. Those of the free ellipse are .7 and .5. The
masses and moments of inertia correspond to a mass density
of 1. The vertical distance between the two anchors (black
dots in Figure 1) is 3. Angle limits are −π ≤ θ1 ≤ 0 and
−2π/3 ≤ θ2 ≤ 0. The drag coefficients of the finger joints and
of the free ellipse axis are .2, .2 and .7, respectively. Gravity
in the vertical direction is -4. The control-cost coefficients
were cu = 0.05 and cx = 1. The time step h = 0.05 and
the number of time steps per trajectory N = 75, for a time
horizon of T = 3.5.

Both angle constraints and the contact constraint were
satisfied with impulses, as described in section III-A. We used
a friction coefficient of µ = 0.5, with the friction model
of [9]. Since we did not estimate the dynamics, we used a
constant

√
(Σb)ii = 0.1, which was chosen as a trade-off

between good convergence and small softening of the contact
(described below). For the SLCP residual, both (15) and (17)
gave qualitatively similar results, and we used (17) in the
results below, because it is computationally cheaper.

We avoided the matrix inversions of (2) by directly solving
the (stochastic) mixed complementarity problem of (1). This
is easy to do with NCP functions, by setting φ(a, b) = b for
those indexes where equality is desired.

We propagated the receding-horizon trajectory 400 times,
with an offset d = 4, giving us a library of 400 locally linear
feedback controllers. Every 15 time-steps, the velocities of
initial state were perturbed by normal noise of variance 4.
The reason only the velocities were perturbed is that random
perturbations of the angles might lead to illegal (penetrative)
configurations. When selecting the nearest neighbor of equa-
tion (20), we used a Euclidian norm scaled by the covariance
of all the xi. In Figure 3, we plot the locations of the origins
xi, projected onto the first 3 dimensions of the state-space.

Our simulator4 was written in MATLAB for versatility and
code readability, but is therefore not very efficient. One
forward-backward pass of the local method took ∼5s on a
quad-core Core i7 machine. Starting from the zero policy,
convergence was attained in ∼60 passes. In receding-horizon
mode, starting from the shifted previous policy (19), ∼8 passes
sufficed, due to quadratic convergence.

4Available online at http://alice.nc.huji.ac.il/˜tassa/

Fig. 3. The trajectory library. The dots correspond to the origins of 400 linear
feedback controllers which we select with the nearest-neighbor rule (20). The
global policy is effectively a Voronoi tessellation of these policies.

Fig. 4. The limit-cycle of a controlled trajectory. The color of the trajectory is
proportional to the contact impulses, showing the points when flicking occurs.

C. Results

Our use of the SLCP when solving for velocities and
impulses has the qualitative effect of creating a “force field”
which extends from surfaces and lets contact and friction
impulses act at a distance. If we could simulate the true
stochastic system, some probability mass would experience
contact before the mean would. The “fuzzy” force layer in
our new deterministic system is an approximation to the mean
force that would act on the mean of the distributed state.

The controller that was synthesized is very robust. We tested
it on both the smoothed system and the original non-smooth
one. For both systems, the controller dependably spun the
ellipse, and recovered from disturbances. As an indicator of
robustness, the controller worked well for time-steps different
than the one which it was trained. We built a real-time
simulator with a graphical front-end, which allows the user
to perturb the system as it is being controlled, by interactively
pulling on the ellipses with the mouse cursor. We were unable
to perturb the system out of the controller’s basin-of-attraction.

In order to assess the contribution of the smoothing to
robustness, we solved again, with a smaller noise covariance



0 0.39 0.78 1.17 1.56 1.95

2.34 2.73 3.12 3.51 3.9 4.29

Fig. 5. Animation frames from the limit cycle. The third frame (time=0.78) and eighth frame (time=2.73) correspond to the contacts on the left and right
side of Figure 4, respectively.

√
(Σb)ii = 0.05. The resulting controller was less robust in

all of the senses described above. In particular, this controller
sometimes entered into a non-productive limit-cycle where
no contact was achieved. For smaller noise covariances the
trajectory optimizer did not converge, so a direct comparison
was not possible.

In Figure 4, we show the limit-cycle that a controlled
trajectory makes in configuration space, with h = 0.03.
The dynamics used were those of the original, nonsmooth
system. The color of the trajectory is proportional to the
contact impulses, showing the points when flicking occurs.
The contact on the left of the figure corresponds to a weak
tap that repositions the ellipse at a favorable angle, while the
second one on the right side, exploits this position to deliver
a stronger flick, that spins the ellipse. In Figure 5 we show
animation frames from this sequence. The first and second
contacts correspond to frame 3 (t=0.78) and frame 8 (t=2.73).

VI. DISCUSSION

Our purpose here was to investigate the applicability of local
methods to nonlinear control problems involving contact and
friction. Our proposed method involves modifying the contact
solver of the modeled dynamics, in a way which takes into
account the controller’s uncertainty regarding the state of the
system. Though we present promising preliminary results that
include a working robust controller, open issues remain.

Folding the noise into the dynamics, as we do here, is an
approximation of what we would really like to do, namely
simulate the full stochastic system, and measure costs WRT
distributions rather than points. This option however has its
own problems. The actual distributions which are propagated
by the true dynamics become multimodal upon contact and
require either a nontrivial parameterization, or a large number
of “particles” for a non-parametric representation. In the case
where distributions are represented as a mixture of samples,
whether particles or σ-points, the dynamics would still be non-
differentiable.

Local minima are still a significant problem for local
methods like the ones used here. If we had not included gravity

in the simulation, the initial trajectory with ui = 0 would have
never achieved contact with the free ellipse, and the controller
wouldn’t have “known” about the possibility of contact. One
option is to inject noise into the system during the initial
stages of learning, for exploration purposes. Another option
is to use the action-at-a-distance effect of the SLCP solution.
By first solving for a system with very large postulated noise
covariance, and then gradually reducing it, a scaffolding effect
might be achieved.

The SLCP solution effectively replaces hard contact with
a nonlinear spring-damper. However, unlike some arbitrary
spring, it does not require setting the unknown parameters
(spring and damper coefficients, form of the nonlinearity),
and is derived in a principled way from the noise covariance.
Additionally, unlike conventional springs which deform in
proportion to the applied force, the forces which we compute
scale with the effective inertia, so that a heavy and a light
object experience the same smoothing.

A non-differentiable distance function d(q) would result in
non-differentiable dynamics. For the ellipses used here, the
signed distance is indeed differentiable, but this is not true for
other shapes.

The complementarity conditions in (1) apply for quantities
of different units: λ is an impulse while d(q′) is a distance.
Because the smoothed NCP function φ(·, ·) effectively mixes
these quantities, a different choice of units would ostensibly
lead to different results, which is clearly undesirable. This
is a fundamental issue that requires further investigation. As
famously observed by Stewart [4], “in many ways it is easier to
write down a numerical method for rigid-body dynamics than
it is to say exactly what the method is trying to compute”.

ACKNOWLEDGMENT

This work was supported by the US National Science
Foundation.



REFERENCES

[1] X. Chen and M. Fukushima, “Expected residual minimization method
for stochastic linear complementarity problems,” Math. Oper. Res.,
vol. 30, no. 4, pp. 1022–1038, 2005.

[2] F. Pfeiffer and C. Glocker, Multibody dynamics with unilateral contacts.
Wiley-VCH, 1996.

[3] E. Westervelt, Feedback control of dynamic bipedal robot locomotion.
Boca Raton: CRC Press, 2007.

[4] D. E. Stewart, “Rigid-Body dynamics with friction and impact,” SIAM
Review, vol. 42, no. 1, pp. 3–39, 2000.

[5] J. J. Moreau, “Unilateral contact and dry friction in finite freedom
dynamics,” Nonsmooth mechanics and Applications, p. 1–82, 1988.

[6] F. A. Potra, M. Anitescu, B. Gavrea, and J. Trinkle, “A linearly
implicit trapezoidal method for integrating stiff multibody dynamics
with contact, joints, and friction,” International Journal for Numerical
Methods in Engineering, vol. 66, no. 7, pp. 1079–1124, 2006.

[7] E. Todorov, “Implicit nonlinear complementarity: a new approach to
contact dynamics,” in International Conference on Robotics and Au-
tomation, 2010.

[8] M. Anitescu and F. A. Potra, “Formulating dynamic Multi-Rigid-
Body contact problems with friction as solvable linear complementarity
problems,” Nonlinear Dynamics, vol. 14, no. 3, pp. 231–247, Nov. 1997.

[9] M. Anitescu, “Optimization-based simulation of nonsmooth rigid multi-
body dynamics,” Mathematical Programming, vol. 105, no. 1, pp. 113–
143, 2006.

[10] R. W. Cottle, J. Pang, and R. E. Stone, The Linear Complementarity
Problem. SIAM, Oct. 2009.

[11] S. C. Billups and K. G. Murty, “Complementarity problems,” Journal
of Computational and Applied Mathematics, vol. 124, no. 1-2, pp. 303–
318, Dec. 2000.

[12] C. Chen and O. L. Mangasarian, “A class of smoothing functions
for nonlinear and mixed complementarity problems,” Computational
Optimization and Applications, vol. 5, no. 2, pp. 97–138, Mar. 1996.

[13] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F.
Mishchenko, The mathematical theory of optimal processes. Inter-
science New York, 1962.

[14] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An application of
reinforcement learning to aerobatic helicopter flight,” in Advances in
Neural Information Processing Systems 19: Proceedings of the 2006
Conference, 2007, p. 1.

[15] Y. Tassa, T. Erez, and W. Smart, “Receding horizon differential dynamic
programming,” in Advances in Neural Information Processing Systems
20, J. Platt, D. Koller, Y. Singer, and S. Roweis, Eds. Cambridge, MA:
MIT Press, 2008, p. 1465–1472.

[16] R. Tedrake, “LQR-Trees: feedback motion planning on sparse random-
ized trees,” in Proceedings of Robotics: Science and Systems (RSS),
2009.

[17] M. Toussaint, “Robot trajectory optimization using approximate infer-
ence,” in Proceedings of the 26th Annual International Conference on
Machine Learning, 2009.

[18] D. E. Stewart and M. Anitescu, “Optimal control of systems with
discontinuous differential equations,” Numerische Mathematik, 2009.

[19] W. H. Fleming and H. M. Soner, Controlled Markov processes and
viscosity solutions. Springer Verlag, 2006.

[20] M. Fukushima and G. lin, “Stochastic equilibrium problems and stochas-
tic mathematical programs with equilibrium constraints: A survey,”
Pacific Journal of Optimization, vol. to appear, 2010.

[21] X. Chen and P. Tseng, “Non-Interior continuation methods for solving
semidefinite complementarity problems,” Mathematical Programming,
vol. 95, no. 3, pp. 431–474, Mar. 2003.

[22] M. Stolle and C. G. Atkeson, “Policies based on trajectory libraries,” in
Proceedings of the International Conference on Robotics and Automa-
tion (ICRA 2006), 2006.



62 Chapter 5: Smoothing Contact with Stochasticity



Chapter 6

Solving for Limit-Cycles

63



64 Chapter 6: Solving for Limit-Cycles

6.1 Introduction

As we’ve shown in the previous chapters, the only algorithms that can

presently be expected to work off-the-shelf for high-dimensional nonlinear

systems are local methods. They generate either an open-loop trajectory, as

in Pontryagin’s maximum principle and pseudo-spectral methods (Stengel,

1994; Ross and Fahroo, 2004), or a trajectory and a local feedback control

law, as in Differential Dynamic Programming (Jacobson and Mayne, 1970)

and iterative linear-quadratic-Gaussian control (Todorov and Li, 2005). The

local nature of these methods is of course a limitation, however many inter-

esting behaviors involve stereotypical movements, and the ability to discover

those movements and generate them in a stable manner is very useful.

This chapter aims to address one of the major shortcomings of local

methods – which is that they are limited to finite-horizon problem formu-

lations. Instead we would like to have methods with similar efficiency but

capable of solving infinite-horizon problems, in particular problems that give

rise to complex periodic movements such as walking, running, swimming,

flying (with wings), turning a screwdriver, etc. This requires optimization

over cycles. Such optimization is difficult to cast as an optimal control prob-

lem because the underlying system becomes non-Markov. Here we overcome

this difficulty by replacing the control problem with a dual Bayesian infer-

ence problem, and performing inference over a graphical model with loops.

We use linear-Gaussian machinery (as in DDP and iLQG), thus when the

dynamics are nonlinear we have to solve a sequential Bayesian inference

problem: the solution at each iteration is used to re-linearize the system

and define the inference problem for the next iteration. When the algo-

rithm converges, the mean of the posterior gives the locally-optimal trajec-

tory while the covariance of the posterior gives the local feedback control

law. Since computing the correct covariance is important here, we perform

inference using the variational approach of Mitter and Newton (2004), lead-

ing to an algorithm based on sparse matrix factorization rather than loopy

belief propagation (where only the mean is guaranteed to be correct, see

Weiss and Freeman (2001)).

The estimation-control duality which is at the heart of our new method

arises within the recently-developed framework of linearly-solvable optimal

control (Kappen, 2005; Todorov, 2009). Several control algorithms exploit-



Chapter 6: Solving for Limit-Cycles 65

ing this duality (sometimes implicitly) have been developed (Attias, 2003;

Toussaint, 2009; Kappen et al., 2009), however they are limited to finite-

horizon formulations – which DDP and iLQG can already handle, with

comparable efficiency as far as we can tell. The present paper exploits

the estimation-control duality in more general graph structures for the first

time.

6.2 Related work

The method presented below is related to three lines of research.

The first is classic local trajectory-optimization methods, such as the

Maximum Principle of Pontryagin et al. (1962) and Differential Dynamic

Programming of Jacobson and Mayne (1970). It is possible to use these

methods to solve for limit cycles by “attaching” the first and last states. This

can be done either approximately, by imposing a final-cost over distance from

the initial state, or exactly, by employing multipliers which enforce the state

constraint, as in the method of Lantoine and Russell (2008). We tried both

of these approaches, and the inevitable result was a noticeable asymmetry

around the attachment point, either in the state trajectory (when using final-

cost), or in the controls (when using multipliers). The main insight is that

these algorithms assume Markovity, which does not hold for a loop. One

could also use a finite-horizon method with a very long horizon, that loops

around the limit-cycle several times. By truncating the transients at both

ends, we can get a decent approximation to the infinite-horizon solution.

Clearly this is an inefficient use of computational resources, but can serve

as a useful validation procedure for our algorithm.

The second related body of work involves directly optimizing the total

cost of a limit-cycle, while enforcing periodicity. Wampler and Popovic

(2009) and Ackermann and den Bogert (2010) are two recent examples,

respectively from the computer graphics and biomechanics communities.

The log-likelihood that we end up maximizing below is indeed analogous to

such a cost, however our method generates a feedback controller around the

limit-cycle, rather than simply open-loop controls.

Finally, the last several years have seen research into the subclass of

stochastic nonlinear Optimal Control problems which are dual to Bayesian

estimation. Specifically, Toussaint (2009) explores message-passing algo-



66 Chapter 6: Solving for Limit-Cycles

rithms (Expectation Propagation) for the solution of Optimal Control prob-

lems. Murphy et al. (1999) and others have shown that when a graph has

a loopy structure, message passing converges to the right mean but the

wrong covariance. The procedure we describe below does not suffer from

this drawback.

6.3 Optimal control via Bayesian inference

The basic intuition behind the duality we exploit here is that the negative

log-likelihood in estimation corresponds to a state-dependent cost in con-

trol, and the difference (KL divergence) between the prior and the posterior

corresponds to a control-dependent cost. The class of stochastic optimal con-

trol problems which have Bayesian inference duals in the above sense have

received a lot of attention recently, because these problems have a num-

ber of other interesting properties, including the fact that the (Hamilton-

Jacobi) Bellman equation becomes linear after exponentiation (Kappen,

2005; Todorov, 2008).

6.3.1 Linearly-Solvable Framework

A linearly-solvable MDP (or LMDP) is defined by a state cost q (x) ≥ 0 and a

transition probability density p (x′|x) corresponding to the notion of passive

dynamics. The controller is free to specify any transition probability density

π (x′|x) with the restriction that π (x′|x) = 0 whenever p (x′|x) = 0 . In

infinite-horizon average-cost problems p, π are further required to be ergodic.

The cost rate function is

` (x, π (·|x)) = q (x) +DKL [π (·|x) ||p (·|x)]

The KL divergence term is a control cost which penalizes deviations from

the passive dynamics. Defining the desirability function z (x) , exp (−v (x))

where v (x) is the optimal cost-to-go, the optimal control is

π
(
x′|x

)
∝ p

(
x′|x

)
z
(
x′
)



Chapter 6: Solving for Limit-Cycles 67

The exponentiated Bellman equation becomes linear in z. In particular, for

finite horizon problems this equation is

zt (x) = exp (−q (x))
∑

x′
p
(
x′|x

)
zt+1

(
x′
)

(1)

with zN (x) initialized from the final cost. One can also define the function

r (x) as the solution to the transposed equation:

rt+1

(
x′
)

=
∑

x
exp (−q (x)) p

(
x′|x

)
rt (x) (2)

with r0 (x) being a delta function over the fixed initial state. Then the

marginal density under the optimally-controlled stochastic dynamics can be

shown to be

µt (x) ∝ rt (x) zt (x) (3)

The duality to Bayesian inference is now clear: z is the backward filtering

density, r is the forward filtering density, p is the dynamics prior, q (x) is

the negative log-likelihood (of some unspecified measurements), and µ is the

marginal of the Bayesian posterior. We can also write down the density p∗

over trajectories generated by the optimally-controlled stochastic dynamics,

and observe that it matches the Bayesian posterior over trajectories in the

estimation problem:

p∗ (x1, x2, · · ·xN |x0) ∝∏N
t=1 exp (−q (xt)) p (xt|xt−1) . (4)

These LMDPs can be used to model the continuous systems we are primarily

interested in as follows. It has been shown that for controlled Ito diffusions

in the form

dx = a (x) dt+B (x) (u dt+ σdω) (5)

and cost functions in the form

` (x, u) = q (x) +
1

2σ2
‖u‖2 (6)

the stochastic optimal control problem is a limit of continuous-state discrete-

time LMDPs. The LMDP passive dynamics are obtained via explicit Euler

discretization with time step h:

p
(
x′|x

)
= N

(
x+ ha (x) , h σ2B (x)B (x)T

)
(7)



68 Chapter 6: Solving for Limit-Cycles

where N denotes a Gaussian. The LMDP state cost is simply hq (x). Note

that the h-step transition probability of the controlled dynamics (with u 6= 0)

is a Gaussian with the same covariance as (7) but the mean is shifted by

hB (x)u. Using the formula for KL divergence between Gaussians, the

general KL divergence control cost reduces to a more traditional control

cost quadratic in u.

6.3.2 Periodic optimal control as Bayesian inference

Our goal now is to write down the trajectory probability p∗ for infinite-

horizon average-cost problems, and then interpret it as a Bayesian posterior.

This cannot be done exactly, because here (4) involves infinitely-long trajec-

tories which we cannot even represent unless they are periodic. Therefore we

will restrict the density to the subset of periodic trajectories with period N .

This of course is an approximation, but the hope is that most of the prob-

ability mass lies in the vicinity of such trajectories. Then p∗ (x1, x2, · · ·xN )

is the same as (4), except we have now defined x0 = xN .

While the trajectory probability for the control problem is no longer ex-

act, (4) is still a perfectly valid Bayesian posterior for a graphical model

with a loop. More precisely, exp (−q (xt)) are single-node potentials which

encode evidence, while p (xt|xt−1) are pair-wise potentials which encode the

prior. One caveat here is that, since the state space is continuous, the den-

sity may not be integrable. In practice however we approximate p (xt|xt−1)

with a Gaussian, so integrability comes down to making sure that the joint

covariance matrix is positive definite – which can be enforced in multiple

ways (see below).

Once the Bayesian posterior over limit-cycle trajectories is computed, we

need to recover the underlying control law for the stochastic control problem.

The obvious approach is to set

π (xt|xt−1) =
p∗ (xt, xt−1)

p∗ (xt−1)

where p∗ (xt, xt−1) and p∗ (xt−1) are the corresponding marginals of the tra-

jectory probability, and then recover the physical control signal u (xt) by

taking the mean. However this yields N different conditional distributions,

and we need to somehow collapse them into a single conditional π (x′|x)

because the control problem we are solving is time-invariant. We have ex-



Chapter 6: Solving for Limit-Cycles 69

plored the two obvious ways to do the combination: average the π’s weighted

by the marginals p∗ (xt), or use the π corresponding to the nearest neigh-

bor. Empirically we found that averaging blurs the density too much, while

the nearest neighbor approach works well. An even better approach is to

combine all the p∗ (xt, xt−1) into a mixture density, and then compute the

conditional π (x′|x) of the entire mixture. This can be done efficiently when

the mixture components are Gaussians.

6.4 Algorithm

Probabilistic graphical models (Jordan, 1998) are an efficient way of describ-

ing conditional independence structures. A cycle-free directed graph (a tree)

represents a joint probability as a product of conditionals

p(x) =
K∏

k=1

p(xk|parents(xk))

This equation represents the factorization properties of p. Message Passing

algorithms, which involve sequentially propagating local distributions along

directed graphs, provably converge to the true posterior.

An alternative to directed graphical models are Markov Fields, whose

graph is undirected, and may contain cycles. The joint distribution of a

Markov Field is given by

p(x) ∝
∏

c∈C
ψc(xc),

where C is the set of maximal cliques in the graph, and the ψ are called

potential functions. Message Passing algorithms are not guaranteed to con-

verge on this type of model. In particular, for models where the nodes

are distributed as gaussians (as we will assume below), Weiss and Freeman

(2001) had shown that posteriors and marginals converge to correct means,

but not to the correct variances.

6.4.1 Potential Functions

Let {xi}Ni=1 be a set of state variables xi ∈ Rn, with the conditional depen-

dency structure of a cycle. Let ij index over the pairs of sequential states



70 Chapter 6: Solving for Limit-Cycles

x1

ψ12(x1, x2)

ψ1(x1)

x2
x3xN

xN−1

Figure 6.1: Illustration of probabilistic graphical model. State costs are en-
coded in the leaf potentials ψi(xi). Dynamics and control costs are encoded
in the edge potentials ψij(xi, xj). See section 6.4.1.

ij ∈ {(1, 2), (2, 3), . . . , (N, 1)}. The discrepancy between the controlled dy-

namics and the discrete-time passive dynamics for each pair is

aij = xi + ha(xi)− xj .

The gaussian noise leads to pairwise potentials, corresponding to p(xj |xi),

ψij(xi, xj) = p(xj |xi) = exp(−1
2a

T
ijΣ
−1
i aij),

where Σi = hσ2B (xi)B (xi)
T, as in (7). The leaf potentials ψi(xi) are

composed of two parts, the state-cost q(xi), and an optional prior on xi.

This prior, not used below, could be useful when we wish to clamp certain

states to specified values. For example, in the finite-horizon case where the

graph is a chain, we could place a gaussian prior on a known initial state

ψ1(x1) = exp(−q(x1))N (x1|m1,Σ1).

The joint distribution of the entire model is

p(x) = p(x1, x2, . . . , xN ) ∼
N∏

i=1

ψi(xi)

N∏

ij=1

ψij(xi, xj)



Chapter 6: Solving for Limit-Cycles 71

Where x = stack{xi} = [xT1 x
T
2 · · ·xTN ]T is the stacked vector of all states.

The negative log-likelihood is

l(x) =
∑

i

qi(xi) +
∑

ij

1
2a

T
ijΣ
−1
i aij . (8)

The first term is the total state-cost and the second term is the total control-

cost.

6.4.2 Gaussian approximation

Modeling p(·) as a gaussian: p(x) ∼ N (x|x̄,S), is equivalent to fitting a

quadratic model to the negative log likelihood.

l(x) ≈ 1
2(x− x̄)TS−1(x− x̄) = l0 + xTg + 1

2xTHx. (9)

The normalization term 1
2 log(det(2πS)) is folded into the constant l0. The

mean x̄ (which maximizes the likelihood) and the covariance S are given by

x̄ = −H−1g (10a)

S = H−1 (10b)

6.4.3 Iterative inference

Given a current approximation to the mean x̄ of the Bayesian posterior over

trajectories, we expand l(x̄+δx) to second-order in δx by computing H and

g, and then find a new mean as

x̄′ = x̄ + argmin
δx

l(x̄ + δx) = x̄−H(x̄)−1g(x̄), (11)

until convergence. The actual inversion of the precision matrix or Hessian

H, as required by (10b), can be performed only once, at the end. During

the iterations of (11), we can use iterative methods (e.g. preconditioned

conjugate gradients) to solve Hy = g, which are very cheap for sparse

systems. Again, this process can be interpreted either as repeated estimation

of a joint gaussian model, or sequential quadratic minimization of the total

cost.



72 Chapter 6: Solving for Limit-Cycles

6.4.4 Dynamics model

We now turn to the computation of H and g. Placing the cost Hessians

on a the block-diagonal of the matrix Q = diag{ ∂2
∂x2

qi(x̄i)} ∈ RnN×nN and

stacking the local cost gradients qx = stack{ ∂∂xqi(x̄i)} ∈ RnN , the last term

of (8) can be approximated

∑

i

qi(x̄i + δxi) ≈
∑

i

qi(x̄i) + δxTqx + 1
2δx

TQδx

In order to quadratize the last term of (8), we must approximate the non-

linear dynamics (or rather the dynamic discrepancies aij). We can do this

using either a linear or a quadratic model. The former is faster to compute

at each iteration, while the latter is more accurate and thus could yield con-

vergence in fewer iterations. Which approach is better probably depends

on the problem; in the examples given below we found that the quadratic

model works better.

Linear dynamics approximation:

We expand the dynamic discrepancies to first order around our current ap-

proximation,

aij(x̄i + δxi, x̄j + δxj) = āij + ax(x̄i)δxi − δxj .

We construct the sparse matrix A ∈ RnN×nN as a stack of N block-rows

of dimension n× nN . For each pair ij, we place a negative identity matrix

−In on the j-th column-block and the dynamics Jacobians ax(xi) on the

i-th column-block. Additionally letting a = stack{ai} ∈ RnN , we have in

matrix form

a(x̄ + δx) = ā +Aδx.

Defining M = diag{Σ−1
i } ∈ RnN×nN , the last term of (8) becomes 1

2(ā +

Aδx)TM(ā +Aδx), and the second-order expansion around x̄ is seen to be

l(x̄ + δx) = l(x̄) + δxT(qx +ATM ā) + 1
2δx

T(Q+ATMA)δx.

Comparison with (9) shows that

g = qx +ATM ā



Chapter 6: Solving for Limit-Cycles 73

H = Q+ATMA

Quadratic dynamics approximation:

We can achieve a more accurate approximation by considering a quadratic

model of the passive dynamics

aij(x̄i + δxi, x̄j + δxj) = āij + ax(x̄i)δxi + 1
2δx

T
i axx(x̄i)δxi − δxj ,

where the left and right multiplications with the 3-tensor axx are understood

as contractions on the appropriate dimensions. Though the gradient g is

unaffected by the second order term, the Hessian picks up the product of

second-order and zeroth-order terms. Let the set of n × n matrices Uij =

aTijΣ
−1
i axx(x̄i), contracting with the leading dimension of the tensor axx.

Now define the block-diagonal matrix U = diag{Uij} ∈ RnN×nN . The new

approximation is now

g = qx +ATM ā

H = Q+ATMA+ U

In the experiments described below, the addition of the U term was found

to significantly improve convergence.

6.4.5 Computing the policy

In this section, we describe how to obtain a local feedback control policy

from the posterior marginals, that is the means x̄i and the covariance S.

Let Si = cov(xi) be the i-th diagonal n× n block of S and Sij be the cross-

covariance of xi and xj , the n× n block of S at the i-th n-column and j-th

n-row, so that the mean of the conditional is

E[xj |xi] = x̄j + SijS
−1
i (xi − x̄i).

The feedback policy is then that control which produces the expected con-

trolled dynamics:

u(xi) = B−1(x̄j + SijS
−1
i (xi − x̄i)− a(x̄i)) (14)



74 Chapter 6: Solving for Limit-Cycles

6.4.6 Algorithm summary

Given an initial approximation of x̄:

(a) Repeat until convergence:

Compute g(x̄) and H(x̄) with (13).

Recompute x̄ with (11).

(b) Compute S with (10b), and the feedback control law with (14).

6.5 Experiments

We demonstrate our algorithm on two simulated problems. A toy problem

with 2 state dimensions and and a simulated walking robot with 23 state

dimensions.

6.5.1 2D problem

The continuous diffusion consists of a non-linear spring damper system,

subject to process noise in the velocity variable:

[
dx1

dx2

]
=

[
x2

−(x3
1 + x3

2)/6

]
dt+

[
0

1

]
(udt+ σdω)

and cost function is

`(x2, u) = cx

(
1− e−(x2−2)2 − e−(x2+2)2

)
+

u2

2σ2

The state cost coefficient is cx = 4 and the noise variance is σ2 = 1/4. In

Fig. 6.2(g), we show the cost function, overlayed by a vector plot of the drift,

and one integrated trajectory of the passive dynamics.

We first solved this problem by discretizing the state-space and solving

the resulting MDP. We used a 201 × 201 grid, leading to a 40401 × 40401

state transition matrix with 1.2 × 106 nonzeros. Discrete LMDPs can be

solved by finding the leading eigenvector of a related matrix (Todorov, 2007).

The results are shown in Figures 6.2(a)-6.2(d). Solving the MDP (using

matlab’s “eigs” function) took 86s on a standard PC.



Chapter 6: Solving for Limit-Cycles 75

(a) z(x), mdp. (b) r(x), mdp. (c) µ(x) = z(x)r(x), mdp.

(d) u(x), mdp. (e) u(x), approximation. (f) µ(x), approximation.

(g) Cost and passive dy-
namics.

 

 

initial
final

(h) Snapshots.

2 50
10

−15

10
−10

10
−5

10
0

10
5

(i) Cost reduction V. iter-
ations.

Figure 6.2: (a)-(h) show the area [−4, 4]2 ∈ (x1 × x1). (a)-(d), MDP solutions for a
discretized state-space. (e), (f), (h), (i), solution obtained by the proposed algorithm.
(a) The exponentiated negative value function z(x). (b) The forward filtering density
r(x). (c) The optimally controlled steady-state distribution, formed by elementwise prod-
uct of z(x) and r(x). (d) The policy generated by the MDP solution, superimposed with
one instantiation of the controlled dynamics. (e) The policy generated by the approxi-
mate solution, superimposed with one instantiation of the controlled dynamics. The color
map is clipped to the values in (d), so saturated areas indicate misextrapolation. (f) The
approximate distribution generated by our algorithm. For each pixel we measure the
marginal of the state whose mean is nearest in the Euclidean sense. Note the similarity
to (c). (g) The cost function, superimposed with a vector field of the passive dynamics.
(h) Snapshots of the means for a particular convergence sequence, showing 8 configura-
tions out of a total of 40. The red x’s are the random initialization, followed by a jump
to the center to decrease dynamical inconsistency, followed by a gradual convergence to
the limit-cycle solution. (i) Convergence of the cost. Averaged over 15 runs with random
initialization.



76 Chapter 6: Solving for Limit-Cycles

We then solved the problem with our proposed algorithm. With 150

variables on the ring, the matrix H was 300× 300, with 1800 nonzeros. Full

convergence from a random initialization took an average 0.3s. Of course

this is not a fair comparison, since the MDP solver finds a global rather than

local solution, yet the difference is striking. Once convergence of equation

(11) has been achieved, we compute the posterior with (10). In order to plot

the resulting distribution, for every pixel in Fig. 6.2(f), we plot the value of

the marginal of the closest (euclidean) gaussian. The similarity of figures

6.2(c) and 6.2(f) is remarkable. Of course, our proposed method is still

local, and comparing Figures 6.2(d) and 6.2(e), we see that the generated

policy is valid only close to the limit-cycle. In 6.2(h), we see snapshots of the

convergence of the means. Starting from a random initialization, the means

jump to the center in order to decrease dynamical inconsistency, followed

by a gradual convergence to the limit-cycle solution. In 6.2(i), we show the

cost averaged over 15 runs, relative to the minimum cost achieved over all

the runs. We see that all runs converged to the global minimum, with a

quadratic convergence rate towards the end.

6.5.2 Simulated walking robot

Figure 6.3: Frames from the limit-cycle solution of an optimal walking gait.
See section 6.5.2.

Our planar walking model is made of two legs and a trunk, each leg hav-

ing three segments (thigh, shin and foot). The following parameter values

can all be assumed to have the appropriate units of a self-consistent system

(e.g. MKS). The length of the foot segments is 1, and all other segments

are of length 2. The segment masses are 0.1 for the foot, 0.4 for the shin,

1 for the thigh, and 4 for the trunk. A control signal of dimension 6 acts

on the joints (hips, knees, ankles), but not directly. In order to model the

excitation-activation dynamics associated with muscular activity, we aug-

ment the state space with 6 first-order filters of the control signal, with a



Chapter 6: Solving for Limit-Cycles 77

time constant of 25/1000. The seven segment angles, together with the pla-

nar position of center-of-mass, make for a system with 9 degrees-of-freedom,

or 18 state dimensions. In order to allow the gait to take a limit-cycle form,

we remove the horizontal position dimension of the center-of-mass, for a

total of 23 state dimensions.

The equations of motion are simulated using our own general purpose

simulator1. We imposed joint-angle constraints that ensure a biomechanically-

realistic posture. Ground reaction forces are computed using the method

described by Tassa and Todorov (2010). We used 80 time-steps of length

1/80, for a step period of 1. The matrix H was 1840 × 1840, with 105840

non-zeros. Each iteration took 0.2 seconds, with an average of 300 iterations

until convergence (depending on initial conditions).

In order to produce upright walking, we use a cost function with three

terms: First, a quadratic penalty for deviation of the center-of-mass’s hor-

izontal velocity vx from a desired value of 2. Second, a linear reward for

the vertical hight of the trunk’s upper tip hT , to promote upright posture.

Third, a cost term that is quadratic in the muscle activation dimensions c.

The total weighted state-cost was

q(x) = (vx − 2)2 − 0.1hT + 0.01‖c‖2.

Convergence for this problem was robust, with different initializations con-

verging to the same solution. The resulting gait is demonstrated in Fig. 6.3.

6.5.3 Feedback control law

One of the main advantages of the algorithm presented here is that the

generated control law (14) includes feedback terms, forming an effective

basin-of-attraction around the optimal limit-cycle. In Fig. 6.4, we illustrate

convergence to the limit cycle from perturbed states, of the simulated walk-

ing robot. The means x̄i are projected onto {d1, d2} ∈ R23, the two leading

eigenvectors of the covariance cov(x̄i) (i.e. the two leading PCA directions).

One state is then randomly perturbed, and used as an initial state for a con-

trolled trajectory. The distribution of the perturbations was chosen so that

most trajectories (solid) are within the basin-of-attraction and converge to

the limit-cycle (successful walking), while several (dashed) diverge (falling

1Available at alice.nc.huji.ac.il/~tassa/

alice.nc.huji.ac.il/~tassa/


78 Chapter 6: Solving for Limit-Cycles

d
1

d
2

Figure 6.4: Robustness to perturbations of the simulated walking robot,
under the feedback control law. The axes d1 and d2 are the largest eigen-
vectors of the covariance of the x̄i. The optimal limit cycle is in thick red,
superimposed with simulated trajectories. Converging trajectories are thin
solid lines, diverging ones are thicker dashed lines. See section 6.5.3.

down).

6.6 Conclusions

We presented a method of solving Optimal Control problems with a peri-

odic solution. Using the control-estimation duality which holds for prob-

lems of the form (5),(6), we recast the problem as Bayesian inference, and

maximized the likelihood of a gaussian approximation. The computational

complexity of the methods scales either linearly or quadratically with the

state dimension, depending on the order of the dynamics approximation.



Chapter 6: Solving for Limit-Cycles 79

Several interesting questions remain open.

Here we focused on limit cycles, but the presented algorithm is also valid

for simple chains, where message passing algorithms of the type described

by Toussaint (2009) are applicable. A performance comparison would be

interesting.

The algorithm produces a local feedback control law around the trajec-

tory, but the volume of the basin-of-attraction is limited by the validity of

the gaussian approximation. One way of increasing it is by using higher-

order approximations, like a mixture-of-gaussians. Another possibility is to

combine this offline method with online methods like Model Predictive Con-

trol, by using the infinite-horizon cost-to-go as a final-cost for a finite-horizon

trajectory optimizer.



80 Chapter 6: Solving for Limit-Cycles



Chapter 7

Discussion and Future Work

This thesis describes several contributions, mostly to algorithmic aspects of

optimal control. They can be discussed on two levels – engineering develop-

ments and biological implications.

In engineering terms, the headline is that we are at the threshold of

synthesizing controllers which are as powerful as neural systems. The type

of algorithm which seems most promising is some combination of local and

global methods. In particular if the algorithm is based on Value approxima-

tion, a rough approximation computed by a global method can be used as

the final cost of a trajectory optimizer. Local methods are fast enough to

be applied online, a procedure known as “Model Predictive Control”. The

implied combination of local-online/global-offline therefore seems promising.

The largest computational burden of all of these methods is the physics sim-

ulator. Simulators which exploit the power of modern multi-core CPUs and

GPUs will be useful, as will fast methods of approximating the dynamics,

perhaps by fitting an approximator the simulation. The explicit modeling

of stochasticity appears indispensable for global methods. Noise makes the

Value function smooth, greatly reducing the required representational power

of approximators.

Biological implications are far more conjectural. The basic machineries

of optimization, namely gradient descent and Newton’s method, require ac-

curate linear algebra to work efficiently. There is no good evidence for neural

circuits that implement these computations. However, the central feature

shared by all efficient methods is the explicit use of derivatives, in partic-

ular derivatives of the dynamics model and of the cost. Perhaps the most

81



82 Chapter 7: Discussion and Future Work

likely neuroanatomical candidate for derivative computation is the cerebel-

lum. This is because it exists even in basic nervous systems, and has a

simple repetitive structure.

The estimation-control duality of linearly-solvable optimal control de-

scribed in Section 6.3.1 provides a rich pasture for interpretation. The re-

casting of optimal control in Bayesian terms holds the promise of similar

algorithms and representations in sensory and motor areas. The exponen-

tiated Value function z (Eq. 1) is a good candidate for representation by

neurons due to its non-negativity. The forward filtering density r (Eq. 2)

can be used to implicitly represent the optimally-controlled steady-state

distribution µ (Eq. 3), which is the natural quantity for determining the

relative importance of points in state-space. These observations are very

preliminary, and it is clear that we have only just scratched the surface of

this important duality.



Bibliography

M. Ackermann and A. J Van den Bogert. Optimality principles for model-

based prediction of human gait. Journal of biomechanics, 2010.

H. Attias. Planning by probabilistic inference. In Proc. of the 9th Int.

Workshop on Artificial Intelligence and Statistics, 2003.

N. Bernstein. The co-ordination and regulation of movements, volume 1.

Pergamon Press Oxford:, 1967.

Dimitri Bertsekas. Dynamic programming and optimal control. Athena Sci-

entific, Belmont Mass., 2nd ed. edition, 2000. ISBN 9781886529083.

M. G Crandall and P. L Lions. Viscosity solutions of Hamilton-Jacobi equa-

tions. Transactions of the American Mathematical Society, 277(1):142,

1983.

A. G. Feldman. Functional tuning of the nervous system with control of

movement or maintenance of a steady posture. II. controllable parameters

of the muscle. Biophysics, 11(3):565578, 1966.

T. Flash and N. Hogan. The coordination of arm movements: an experi-

mentally confirmed mathematical model. Journal of neuroscience, 5(7):

1688, 1985.

A. P Georgopoulos, J. F Kalaska, R. Caminiti, and J. T Massey. On the

relations between the direction of two-dimensional arm movements and

cell discharge in primate motor cortex. Journal of Neuroscience, 2(11):

1527, 1982.

D. H Hubel and T. N Wiesel. Receptive fields, binocular interaction and

functional architecture in the cat’s visual cortex. The Journal of Physiol-

ogy, 160(1):106, 1962. ISSN 0022-3751.

83



84 BIBLIOGRAPHY

D. H. Jacobson and D. Q. Mayne. Differential Dynamic Programming. El-

sevier, 1970.

M. I Jordan. Learning in graphical models. Kluwer Academic Publishers,

1998.

B. Kappen, V. Gomez, and M. Opper. Optimal control as a graphical model

inference problem. arXiv, 901, 2009.

H. J. Kappen. Path integrals and symmetry breaking for optimal control

theory. Journal of statistical mechanics: theory and experiment, 2005:

P11011, 2005.

A. D. Kuo. An optimal control model for analyzing human postural balance.

IEEE Transactions on Biomedical Engineering, 42(1):87101, 1995. ISSN

0018-9294.

M. G Lagoudakis and R. Parr. Least-squares policy iteration. The Journal

of Machine Learning Research, 4:11071149, 2003.

G. Lantoine and R. P Russell. A hybrid differential dynamic programming

algorithm for robust low-thrust optimization. In AAS/AIAA Astrody-

namics Specialist Conference and Exhibit, 2008.

L. Z Liao and C. A Shoemaker. Convergence in unconstrained discrete-

time differential dynamic programming. IEEE Transactions on Automatic

Control, 36(6):692, 1991.

L. Z. Liao and C. A Shoemaker. Advantages of differential dynamic pro-

gramming over newton’s method for discrete-time optimal control prob-

lems. Cornell University, Ithaca, NY, 1992.

G. E. Loeb, W. S. Levine, and J. He. Understanding sensorimotor feedback

through optimal control. In Cold Spring Harbor symposia on quantitative

biology, volume 55, page 791, 1990.

D. Marr. Vision: A computational investigation into the human representa-

tion and processing of visual information. Henry Holt and Co., Inc. New

York, NY, USA, 1982. ISBN 0716715678.

D. Q. Mayne. A second-order gradient method of optimizing non-linear

discrete time systems. Int J Control, 3:8595, 1966.



BIBLIOGRAPHY 85

P. A. Merton. Speculations on the servo-control of movement. In The Spinal

Cord, Ciba Foundation Symposium, page 247260, 1953.

D. E Meyer, R. A Abrams, S. Kornblum, C. E Wright, and J. E.K Smith.

Optimality in human motor performance: Ideal control of rapid aimed

movements. Psychological Review, 95(3):340370, 1988.

S. K Mitter and N. J Newton. A variational approach to nonlinear estima-

tion. SIAM Journal on Control and Optimization, 42(5):18131833, 2004.

R. Munos and A. Moore. Variable resolution discretization in optimal con-

trol. Machine learning, 49(2):291323, 2002.

K. Murphy, Y. Weiss, and M. I Jordan. Loopy belief propagation for ap-

proximate inference: An empirical study. In Proceedings of Uncertainty

in AI, page 467475, 1999.

B. A Olshausen et al. Emergence of simple-cell receptive field properties

by learning a sparse code for natural images. Nature, 381(6583):607609,

1996. ISSN 0028-0836.

L. S Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F.

Mishchenko. The mathematical theory of optimal processes. Interscience

New York, 1962.

I. Ross and Fariba Fahroo. Legendre pseudospectral approximations of opti-

mal control problems. In New Trends in Nonlinear Dynamics and Control

and their Applications, pages 327–342. 2004.

R. A Schmidt. A schema theory of discrete motor skill learning. Psychological

review, 82(4):225260, 1975. ISSN 0033-295X.

W. Schultz, P. Dayan, and P. R Montague. A neural substrate of prediction

and reward. Science, 275(5306):1593, 1997.

Charles Sherrington. The integrative action of the nervous system. CUP

Archive, 1923.

Robert F. Stengel. Optimal Control and Estimation. Dover Publications,

September 1994. ISBN 0486682005.



86 BIBLIOGRAPHY

Richard Sutton. Reinforcement learning : an introduction. MIT Press,

Cambridge Mass., 1998. ISBN 9780262193986.

Y. Tassa and E. Todorov. Stochastic complementarity for local control of

discontinuous dynamics. In Proceedings of Robotics: Science and Systems

(RSS), 2010.

Yuval Tassa and Tom Erez. Least squares solutions of the HJB equation

with neural network Value-Function approximators. IEEE Transactions

on Neural Networks, 18(4):1031–1041, 2007. ISSN 1045-9227. doi: 10.

1109/TNN.2007.899249.

Yuval Tassa, Tom Erez, and William Smart. Receding horizon differen-

tial dynamic programming. In J.C. Platt, D. Koller, Y. Singer, and

S. Roweis, editors, Advances in Neural Information Processing Systems

20, page 1465. MIT Press, Cambridge, MA, 2008.

E. Todorov. Linearly-solvable markov decision problems. Advances in neural

information processing systems, 19:1369, 2007.

E. Todorov. General duality between optimal control and estimation. In

proceedings of the 47th ieee conf. on decision and control, 2008.

E. Todorov. Efficient computation of optimal actions. Proceedings of the

National Academy of Sciences, 106(28):11478, 2009.

E. Todorov and Weiwei Li. A generalized iterative LQG method for locally-

optimal feedback control of constrained nonlinear stochastic systems. In

Proceedings of the 2005, American Control Conference, 2005., pages 300–

306, Portland, OR, USA, 2005. doi: 10.1109/ACC.2005.1469949.

Emanuel Todorov. Optimality principles in sensorimotor control. Nature

Neuroscience, 7(9):907–915, 2004. ISSN 1097-6256. doi: 10.1038/nn1309.

M. Toussaint. Robot trajectory optimization using approximate inference.

In Proceedings of the 26th Annual International Conference on Machine

Learning, 2009.

J. N Tsitsiklis and B. Van Roy. Feature-based methods for large scale dy-

namic programming. Machine Learning, 22(1):5994, 1996. ISSN 0885-

6125.



BIBLIOGRAPHY 87

J. N Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning

with function approximation. Automatic Control, IEEE Transactions on,

42(5):674690, 2002. ISSN 0018-9286.

N. J Wade and S. Finger. The eye as an optical instrument: from camera

obscura to helmholtz’s perspective. Perception, 30(10):11571178, 2001.

ISSN 0301-0066.

K. Wampler and Z. Popovic. Optimal gait and form for animal locomotion.

ACM Transactions on Graphics (TOG), 28(3):18, 2009.

Y. Weiss and W. T Freeman. Correctness of belief propagation in gaus-

sian graphical models of arbitrary topology. Neural computation, 13(10):

21732200, 2001.



88 BIBLIOGRAPHY



Summary in Hebrew

89



  תיאוריה ויישומים של

  בקרת תנועה ביולוגית
  

  

  חיבור לשם קבלת תואר דוקטור לפילוסופיה

  מאת

  

  יובל טסה

  

  

  

  

  

  הוגש לסנט האוניברסיטה העברית בירושלים בשנת תשע'א

  

   



 

II 

  

  

   



 

III 

  

  

 עבודה זו נעשתה בהנחייתם של 

  עמנואל טודורובפרופ' נפתלי תשבי ופרופ' 

   



 

IV 

   



 

V 

  תקציר

  
מש מטרה. מוחות מפעולה על מערכת דינמית באופן שמ – משמעה בקרה

 ,והסביבה גוףה דרכםשרירים ופעולתם על השב הם הבקרים הביולוגים
ועיכובים לינאריות, רעש -מטרות מורכבות. זאת למרות אי ממשים

  , והפרעות חיצוניות.במערכת

להתחרות בזריזות,  וכלושי מלאכותייםחיבור זה עוסק בעיצובם של בקרים 
שהבנה היא  תנותקוו בעמידות וביכולת הלמידה של מערכות עצבים.

וביל לתובנות אודות בקרים תיסודית ומופשטת של בעיית הבקרה 
הן ההתפתחויות בעשורים האחרונים לכך דוגמא והשראה ביולוגיים. 

 התקבלו מהןותורת האיפורמציה, והתובנות העמוקות שבהסקה בייסאנית 
אף הבדלים בין מנגנוני החישוב הביולוגיים  אודות עיבוד חושי במוח. על

  תקפים. נמצאו והספרתיים, אותם עקרונות כלליים 

. המיטביתהמסגרת התיאורטית שבה נעשה שימוש היא תורת הבקרה 
עתידי, מחיר קטין תורה זו מתארת את בחירתן של פעולות באופן שי

בהן נתמקד, יישום לבעיות -תוב להיותה כלליתבהנתן מחיר כלשהו. מעבר 
תכונות מסויימות של התנהגות ביולוגית מוסברות היטב על ידי ההנחה 

  ציה.זהעצבי מתקיים תהליך אופטימי בסיסהשב

שתי ו, מספר בעיות בקרה ולהלן נפתרשמתוארים ניסויים במהלך ארבעת ה
בקר  שלהעיצוב והאילוצים עקרונות אודות התגבשו תובנות עיקריות 

אופטימלי. הראשונה היא היעילות הגדולה של שיטות מקומיות שעושות 
  . במידולו של רעששימוש במשתני מצב רציפים, והשניה היא החשיבות 

כדי לקרב  ,שכבתית קלאסית-בניסוי הראשון השתמשנו ברשת ניורונים רב
את פונקצית הערך על ידי הקטנת השארית הריבועית של משוואת 

שיטה זו איננה מקומית ומאבדת מיעילותה במרחבי  .יעקבי-המילטון
מצבים בעלי מימד גדול מארבע. כאן גילינו לראשונה את היתרון הגדול 
שטמון במידול מפורש של הרעש הדינמי, ואת השיפור שהוא מקנה 

  התכנסות.ב



 

VI 

מקומי "תכנון דינמי הסוי השני אנו עושים שימוש באלגוריתם בני
כדי לבנות ספרייה של בקרים מקומיים שממשים שחיה. גישה  דיפרנציאלי"

ומצליחה להתמודד עם עד עשרים  ,זו היא רק ריבועית במימד המצב
  וארבעה מימדים.

המגע. היעילות של השיטות בעיית ב עוסקיםבניסוי השלישי אנו 
שפיתחנו נשענת על גזירותה של הדינמיקה, אך מגע וחיכוך  המקומיות

רציפות שלה, בקירוב ראשון. אנו משתמשים -גזירות ואי-גורמים לאי
בתובנה מהניסוי הראשון כדי להטמיע את אי הוודאות שלנו אודות המצב 
לתוך המודל של הדינמיקה. באופן אפקטיבי אנו מקנים לגופים בחלל 

 משתמשיםאנו . הגזיר שתהיהחליקים את הדינמיקה מכך גבולות עמומים, ו
שימוש  תוךובב גוף על ציר סלאצבע על במודל זה כדי לפתור בעיה שבה 

  ספריית הבקרים שפותח בניסוי השני.רעיון בעושים שימוש . אנו במגע

בניסוי הרביעי אנו מתארים אלגוריתם מקומי חדש לבעיות בקרה עם 
הקודמים, הפתרון המחזורי איננו  במקריםשלא כמו פתרון מחזורי. 

 מרקובי, וכן לא ניתן להשתמש בתכנון דינמי. אנו עושים שימוש בדואליות
כדי להמיר את בעיית הבקרה לבעיה מיטבית בין אמידה בייסיאנית ובקרה 

בעזרת  ., ואז פותרים את בעיית ההיסקשל היסק על מודל גרפי טבעתי
בקר שממש הליכה ברובוט בעל עשרים ושלושה מימדי  וניםבאנו  שיטה

  מצב. מודל החיכוך בין כף הרגל לריצפה הוא זה שפותח בניסוי השלישי.

  

  


	Abstract
	Introduction
	Prologue: the Analogy of the Eye
	Motor Control and Optimization
	Outline

	Background
	Optimal Control – Theory
	Discrete State
	Continuous State

	Optimal Control – Algorithms
	Discrete State – Global Methods
	Continuous State – Local Methods
	Improvements to Differential Dynamic Programming


	Neural-Network representation of the Value Function
	Receding-Horizon Differential Dynamic Programming
	Smoothing Contact with Stochasticity
	Solving for Limit-Cycles
	Introduction
	Related work
	Optimal control via Bayesian inference
	Linearly-Solvable Framework
	Periodic optimal control as Bayesian inference

	Algorithm
	Potential Functions
	Gaussian approximation
	Iterative inference
	Dynamics model
	Computing the policy
	Algorithm summary

	Experiments
	2D problem
	Simulated walking robot
	Feedback control law

	Conclusions

	Discussion and Future Work
	Bibliography
	Summary in Hebrew

