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Abstract— Our long-term goal is to find control princi-
ples to control robotic hands with dexterity and robustness
comparable to that of the human hand. Here we explore a
control strategy capable of accommodating the nonlinearities,
high dimensionality and endogenous noise intrinsic to complex,
tendon-driven biomechanical structures. We present the first
stochastic optimal feedback controller (i.e., an iterative Linear
Quadratic Gaussian controller) applied to a tendon-driven
simulated robotic index finger model. In our model we take
into account both the tendon network driving of the index
finger, and we consider first-order muscle activation-contraction
dynamics. Our feedback controller shows robustness against
noise and perturbation of the dynamics. Moreover, it can
also successfully overcome the nonlinearities intrinsic to the
mechanics of the finger for large postural changes, and the
need for non-negative control signals. Our simulations provide,
for the first time, the complete time history of tendon tensions,
lengths and velocities for the tasks of tapping with nonzero
terminal velocities required for dynamic manipulation.

We find that the optimal control of realistic tendon-driven
systems fundamentally stretches current methods to their limits.
To find a successful control strategy, the algorithm and user
must overcome several critical challenges inherent to the control
of tendon-driven fingers systems in which all uni-directional
control commands can actuate all joints (either directly or
through dynamic coupling). Therefore, all elements of the so-
lution are interwoven including the tuning of the cost function,
the dynamics of the plant, and the initial guesses for state and
control trajectories.

I. INTRODUCTION

Despite the work to build ”smart” biologically inspired
robotic hands, there is no mechanical hand that can compete
the robustness and the dexterity of the hand in tasks such
as grasping objects with uncertain loads and various shapes,
playing music instruments, or manipulating objects.

The gap in the functionality and robustness between
robotic and human hands has its origins in our lack of
understanding of design principles based on solid control
theoretic principles applicable to complex bio-mechanical
structures such as the hand.

From the control theoretic standpoint, the control of a
highly dimensional and nonlinear stochastic plant of the
complexity of a robotic or biomechanical hand is not an easy
task–which also makes it difficult to understand the neuro-
muscular control of the handmanipulation. To appreciate the
high dimensionality, it is enough to consider that more than
35 tendons must be controlled by the nervous system. Some
critical questions that remain open are:
• What strategies does the nervous system use for moving

the finger given the geometrical and mechanical char-
acteristics of the muscular-tendon-bone structure? What

are the underlying tensions applied to tendons? What is
the role of each tendon?

Our recent experimental work [5] investigated the neu-
ral control of contact transition between motion and force
during tapping. In [4] we found that such transitions from
motion to well-directed contact force are a fundamental part
of dexterous manipulation, and that such tasks are likely
controlled optimally. Moreover, one of the main assumption
in [4] is that the underlying control strategy of the finger is
considered to be open loop. In addition, the neuromuscular
delays are modeled as activation contraction dynamics at the
level of the torques driving the 3 joints of the index finger.
Even though with this simple model the optimality principles
of the motion to force transition for the task of tapping
were investigated, an open loop control strategy would have
failed in tasks such as object manipulation where feedback
control is critical requirement for successfully performing
the manipulation task. Furthermore, since only 3 sets of
differential equation that model the activation contraction
dynamics are considered, the full structure and redundancy
of the index finger is was not explored.

Motivated by the limitations of previous work, we address
the problem of controlling the index finger in the framework
of stochastic optimal feedback control theory. In particular,
we make use of the iterative Linear Quadratic Gaussian
controller (iLQG) - one of the few methods in optimal
control that can handle nonlinear dynamical systems with
complexity and dimensionality equivalent to the complexity
and dimensionality of the index finger. Our index finger
model is based on the accurate biomechanical model in [1]
driven by 11 tendons. Our stochastic optimal controller gives
us the complete time history of the tendon lengths and tendon
velocities for the tasks of tapping with nonzero, as well as
the resulting 11 tensions applied from the tendons to the
bone structure of the index finger, and torques at the 3 joints
of the index finger. The information regarding the tension
profiles of the tendons is of critical importance to the field
of neuromuscular control of the hand since because it sheds
light into the underlying patterns of force production at the
level of individual muscles. Furthermore it also illustrates
the synergetic mechanism as a requirement for the central
nervous system to control the index finger.

This paper is organized as follows: in section II we discuss
the index finger model. In section II-A we derive the moment
arm matrix of the index finger. In section IV we discuss the
iLQG framework and provide the main equations while in
II-B we provide the overall dynamic system which includes
the multibody dynamics. We then show our simulation results



for the tapping task with index finger under non-zero and we
analyze the results regarding the underlying kinetics of the
tendon structure of the index finger. Finally in the last section
we present our conclusions and discuss future work.

II. INDEX FINGER MODEL

The skeleton of the human index finger consist of 3
joints connected with 3 rigid links. The two joints (prox-
imal interphalangeal (PIP) and the distal interphalangeal
(DIP)) are described as hinge joints that can generate both
flexion-extension. The metacarpophalangeal joint (MCP) is
a saddle joint and it can generated flexion-extension as well
as abduction-adduction. Fingers have at least 6 muscles,
and the index finger is controlled by 7. Starting with the
flexors, the index finger has the Flexor Digitorum Profundus
(FDS) and the Flexor Digitorum Superficialis (FDP). The
the Radial Interosseous (RI) acts on the MCP joint. Lastly,
the extensor mechanism acts on all three joints. It is an
interconnected network of tendons driven by two extensors
Extensor Communis (EC) and the Extensor Indicis (EI),
and the Ulnar Interosseous (UI) and Lumbrical (LU). We
also include 4 passive tendon elements that complete this
network. These passive tendons are the Terminal Extensor
(TE), the Radial Band (RB) the Ulnar Band (UB) and the
Extensor Slip (ES). We simulate 11 tendons in total, 7 active
(i.e., driven by independently controlled muscles) and 4
passive. The basic equation for modeling the tendon lengths
L according to [1] is given by:

L = θd +2y
(

1− θ/2
tan(θ/2)

)
(1)

where d is the distance from the straight part of the
tendon towards the long axis and θ is the corresponding
angle rotation. The term y corresponds to the distance from
the end of the straight part towards the joint centre (i.e.,
moment arm). This distance is measure along the axis of
the bone. A second order polynomial approximation of the
equation above is formulated as L = (b+hθ)θ , where b and
h are constants. With the exception of FDS and FDP, the
equation above is used for modeling the lengths of tendons
that are involved in flexion-extension as well as for abduction
- adduction. A subscript, a, will be used to denote the
dependence of the tendon length of the abduction-adduction
motion, with φ being the adduction angle.

For the FDS and FDP tendons we decided to use the
more accurate model for tendon length (1) since these
tendons depend on the majority of rotational variables. More
precisely,the length of FDS depends on θ1,θ2,θ3 and φ

while the length of FDP depends on θ1,θ2 and φ . Obviously,
the use of approximated model L = (b+ hθ)θ for the case
of FDS and FDP would have caused higher approximation
errors than for the case of tendons which depend only on 1
or 2 rotational variables. More precisely we will have

LFDP = θ1dFDP
1 +2yFDP

1

(
1− θ1/2

tan(θ1/2)

)
+ θ2dFDP

1 +2yFDP
2

(
1− θ2/2

tan(θ2/2)

)
+ θ3dFDP

3 +2yFDP
3

(
1− θ3/2

tan(θ3/2)

)
+

(
bFDP

a +hFDP
a φ

)
φ (2)

LFDS = θ1dFDS
1 +2yFDS

1

(
1− θ1/2

tan(θ1/2)

)
+ θ2dFDS

1 +2yFDS
2

(
1− θ2/2

tan(θ2/2)

)
+

(
bFDS

a +hFDS
a φ

)
φ (3)

The tendon length mechanism for EC and TE is rather
simple due to their dependence on the rotation of only one
joint. The tendon extensor for EC is a function of the rotation
at the DIP join while the tendon length of TE is function of
the rotation at the PIP joint.

LT E =−rT E
θ3, LES =−rES

θ2 (4)

The tendon lengths of the RB and UB are functions of
the rotation around the PIP joint with the addition of the
terminal extensor.

LRB =−
(
bRB +hRBθ2

)
θ2 +β

RBET E (5)

LUB =−
(
bUB +hUBθ2

)
θ2 +β

UBET E (6)

For the RI the tendon length is a function of the MCP
rotation only that includes flexion - extension and abduction
- adduction. Therefore the tendon length is formulated as
follows:

LRI =
(
bRI +hRIθ1

)
θ1

−
(
bRI

a +hRI
a φ
)

φ (7)

Similarly, the tendon length for the LI is a function of the
MCP rotation but with the addition of the tendon length of
the UB. Consequently the LI tendon length is formulated by
the following equation:

LLI =
(
bUI +hUIθ1

)
θ1

−
(
bUI

a +hUI
a φ
)

φ +LUB (8)

The length of the LU tendon is a function of the MCP
rotation with the addition of the UB and the subtraction of
the FDP tendon lengths . The length of FDP is subtracted
from the total lengths of LU since the origin of LU is on
FDP. Thus we will have that:



LLU =
(
bLU +hLU θ1

)
θ1

−
(
bLU

a +hLU
a φ

)
φ

+ LRB−LFDP (9)

Finally the tendon lengths of the main extensors of the
index finger, EC and EI are function of the MCP rotation and
with the addition of the displacements that are transformed to
the next joints PIP and DIP through the extensor mechanism.

LEC = −rEC
θ1−

(
bEC

a +hEC
a θ1

)
θ1

+ min(L1,L2,L3) (10)

and

LEI = −rEI
θ1−

(
bEI

a +hEI
a φ
)

φ

+ min(L1,L2,L3) (11)

where the terms L1,L2 and L3 are defined as follows:

L1 = LES (12)
L2 = LUB +

(
1−β

UB)LT E (13)

L3 = LRB +
(
1−β

RB)LT E (14)

In this work we have slightly modified the extensor me-
chanics for the EI and the EC tendons to avoid the nonlinear
operator min by assuming that:

LEC = −rEC
θ1−

(
bEC

a +hEC
a θ1

)
θ1

+ E (L1,L2,L3) (15)

LEI = −rEI
θ1−

(
bEI

a +hEI
a φ
)

φ

+ E (L1,L2,L3) (16)

with the length function E (L1,L2,L3) defined as
E (L1,L2,L3) = ∑

3
j=1 w jL jwith ∑

3
j=1 w j = 1 and w j > 0∀ j =

1,2,3. There are 39 parameters for the equations 11 tendons
lengths of the index which are provided in table I.

A. Index Finger Moment Arm

Since the tendon lengths have been defined for the 11
tendons of the index finger, the moment arm matrix for the
7 active tendons can been found according to the equation:

M(Θ) = ∇ΘL (17)

where Θ = (θ1,θ2,θ3,φ)
T and L ∈ ℜ7×1 defined as L =(

LFDS,LFDP,LLU ,LRI ,LLU ,LEC,LEI
)T . More precisely the

moment arm vector for the FDP tendons is expressed as
MFDP

Θ
=
(

MFDP
θ1

,MFDP
θ2

,MFDP
θ3

,MFDP
φ

)
where ∀i = 1,2,3 we

have that

MFDP
θi

= dFDP
i + yFDP

i

(
sin(θi)−θi

2sin2 (θi)

)
(18)

and MFDP
φ

= haφ . In cases where θi = 0 then the mo-
ment arm of the FDP is given by the following equa-
tion limθi→0 MFDP

θi
= dFDP

i , ∀i = 1,2,3. The moment
arm vector for the FDS tendon is expressed as MFDS

Θ
=(

MFDS
θ1

,MFDS
θ2

,MFDS
θ3

,MFDS
φ

)
where ∀i = 1,2 we have that:

MFDS
θi

= dFDS
i + yFDS

i

(
sin(θi)−θi

2sin2 (θi)

)
(19)

(20)

and MFDS
θ3

= 0, MFDS
φ

= haφ . Similarly when θi = 0 then
the moment arm of the FDS is given by the following
equation:limθi→0 MFDS

θi
= dFDS

i ∀i = 1,2. For the LU tendon
the moment arm vector is expressed as:

MLU
Θ

=


MLU

θ1
MLU

θ2
MLU

θ3
MLU

φ

=


bLU +hLU θ1−MFDP

θ1
MRB

θ2
−MFDP

θ2
MRB

θ3
−MFDP

θ3
−bLU

a −hLU
a φ −MFDP

φ

 (21)

Similarly for the UI and RI tendons we will have

MRI
Θ

=


MRI

θ1
MRI

θ2
MRI

θ3
MRI

φ

=


bRI +hRIθ1

0
0

bRI
a +hRI

a φ

 (22)

and

MUI
Θ

=


MUI

θ1
MUI

θ2
MUI

θ3
MUI

φ

=


bUI +hUIθ1

MUB
θ2

MUB
θ3

bUI
a +hUI

a φ

 (23)

As we can see from above the moment arm vectors for UI
and RI are function of the moment arm vectors of UB and
RB tendons which are defined as follows

MUB
Θ

=


MUB

θ1
MUB

θ2
MUB

θ3
MUB

φ

=


0

−(bUB +hUBθ2)
−rT E

0

 (24)

and

MRB
Θ

=


MRB

θ1
MRB

θ2
MRB

θ3
MRB

φ

=


0

−(bRB +hRBθ2)
−rT E

0

 (25)

Finally, the moment arm vectors of the main extensor
tendons EC and EI of the index finger are expresses as:

MEC
Θ

=
[

MEC
θ1

MEC
θ2

MEC
θ3

MEC
φ

]T
= (26)

=


−rEC

−w1rES−w2(bUB +hUBθ2)−w3(bRB +hRBθ2)
−w2rT E −w3rT E

−bEC
a +hEC

a φ


(27)



Tendon(Joint) r b h d y ba ha
TE(DIP) 1.88 - - - - - -

FDP(DIP) - - 2.97 3.96 - - -
ES(PIP) 2.92 - - - - - -

RB - 2.54 -0.47 - - - -
UB - 1.7 0.57 - - - -
FDS - - - 4.13 6.73 - -
FDP - - - 5.76 7.5 - -

EC(MCP) 8.3 - - - - 2.08 -0.09
EI 8.82 - - - - 0.59 0.8
RI - 5.62 -1.29 - - 5.63 0.54
UI - 18.76 -8.16 - - 5.77 0.03
LU - 12.53 -2.17 - - 4.96 -0.18

FDS - - - 9.56 8.14 1.1 0.68
FDP - - - 8.32 8.32 0.52 0.66

TABLE I
PARAMETERS FOR THE TENDON LENGTHS OF THE INDEX FINGER

MODEL.

Joint Tendons
DIP Terminal Extensor (TE)

Flexor Digitorum Profundus (FDP)
PIP Extensor Slip (ES)

Radial Band (RB)
Ulnar Band (UB)

Flexor digitorum superficialis (FDS)
Flexor digitorum profundus (FDP)

MCP Extensor digitorum Communis (EC)
Extensor indicis (EI)

Radial Interosseous (RI)
Ulnar Interosseous (UI)

Lumbrical (LU)
Flexor digitorum superficialis (FDS)
Flexor digitorum profundus (FDP)

TABLE II
CORRESPONDENCE OF THE 7 ACTIVE TENDONS OF THE INDEX FINGER

WITH THE 3 JOINTS MCP, PIP AND DIP.

and

MEI
Θ

=
[

MEI
θ1

MEI
θ2

MEI
θ3

MEI
φ

]T
=

=


−rEI

−w1rES−w2(bUB +hUBθ2)−w3(bRB +hRBθ2)
−w2rT E −w3rT E

−bEI
a +hEI

a φ


(28)

The moment arm matrix for the active tendons MΘ is
therefore defined:

[
MFDP

Θ
MFDP

Θ
MLU

Θ
MUI

Θ
MRI

Θ
MEI

Θ
MEC

Θ

]
(29)

Since the tendon length is a function Θ(t) the velocity
with which the tendon length changes over time is given
by dL(Θ)

dt = ∂L(Θ)

∂Θ
∂Θ
∂ t . Thus we will have that: V

(
Θ,Θ̇

)
=

MΘ× Θ̇ where MΘ = ∂L(Θ)

∂Θ
and Θ̇ = ∂Θ

∂ t .

B. Index Finger Dynamics

The full model of the index finger is given by the equations
that follow:

θ̈ = −I(θ)−1 ·C
(
θ , θ̇

)
+ I(θ)−1 ·T (30)

T = M(θ) ·F (31)

Ḟ = −1
τ
(F−u) (32)

u > 0 (33)

where I ∈ℜ6×6 is the inertial matrix and C(θ , θ̇) ∈ℜ6×1
is matrix of Coriolis and centripetal forces. The matrix
M∈ℜ3×7 is the moment-arm matrix, T∈ℜ3×1 is the torque
vector, F ∈ ℜ7×1 is the force-tension on the tendons and
u is the control vector. Equation (32) is used to model
delays in the generation of tensions on the tendons. For
our simulations we have excluded the abduction-adduction
movement at MCP joint and we examine planar movements
and we investigate the necessary length and velocity profiles
of the tendons for producing such movements. Therefore, the
state space formulation of our model has dimensionality of
13, corresponding to 6 states related to joint space kinematics
(angles and velocities) and 7 states for the tensions applied on
the 7 active tendons. The quantities θ and θ̇ are vectors of di-
mensionality θ ∈ℜ3×1,θ̇ ∈ℜ3×1 defined as θ = (θ1,θ2,θ3)
and θ̇ =

(
θ̇1, θ̇2, θ̇3

)
. The inertia I(θ)terms of the forward

dynamics are given as follows:

I11 = I31 +µ1 +µ2 +2µ4 cosθ2

I21 = I22 +µ4 cosθ2 +µ6 cos(θ2 +θ2)

I22 = I33 +µ2 +2µ5 cosθ3

I31 = I32 +µ6 cos(θ3 +θ3)

I33 = µ3

while the term of coriolis and centripetal forces C(θ , θ̇)
is formulated as follows:

C1 = µ4 sinθ2
[
−θ̇2

(
2θ̇1 + θ̇2

)]
+µ5 sinθ3

[
−θ̇3

(
2θ̇1 +2θ̇2 + θ̇3

)]
−µ6 sin(θ2 +θ3)

(
θ̇2 + θ̇3

)
×
(
2θ̇1 + θ̇2 + θ̇3

)
C2 = µ5 sinθ2θ̇

2
1

−µ5 sinθ3
[
θ̇3
(
2θ̇1 + θ̇2 + θ̇3

)]
+µ6 sin(θ2 +θ3) θ̇1

2

C3 = µ5 sinθ3
(
θ̇1 + θ̇2

)
+µ6 sin

(
θ̇2 + θ̇3

)
θ̇

2
1

The terms µ1,µ2,µ3 are functions of the masses
(m1,m2,m3) = (0.05,0.04,0.03)Kgr and the lengths
(l1, l2, l3) = (0.0508,0.0254,0.01905)m of the 3
bones of the index finger. They are specified as
mu1 = (m1 +m2 +m3) ,µ1 = (m1 +m2 +m3) l2

1 ,µ3 =
m3l2

3 ,µ4 = (m2 +m3) l1l2,µ5 = m3l2l3 and µ6 = m3l1l3.

III. COMPLEXITY OF THE INDEX FINGER.

Based on the model of the index finger dynamics there is
a significant amount of complexity which results from two
facts:

1) Almost all tendons create rotations around the three
joints of the index finger. This characteristic creates



Fig. 1. Length profile of active tendons for the 0.3 s tapping movement
starting from the initial configuration θ 0 = (60o,−90o,−18o) to target
configuration θ

∗ = (−60o,−45o,−15o).

a sophisticated actuation mechanism in which the
role of each tendon is poorly understood. To further
understand the complexity it suffices to consider the
structure of the moment arm matrix:

MΘ =

 ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ 0 ∗ ∗ ∗ ∗
∗ 0 0 ∗ ∗ ∗ ∗

 (34)

Clearly all tendons contribute to rotations around the 3
joins of the index finger. Exception is the FDS, which
does not contribute to rotations around the MCP joint
and the RI, that does not contribute to rotations around
the MCP and PIP.

2) The constraints in controls reduce the space of possible
control solutions. These constraints come from the
fact that tendon only pull and they do not push. This
property of tendons driven systems in combination
with the structure of the moment arm matrix make the
process of finding a control, challenging.

One of the main questions we ask in this paper is related
to the role of each tendon. In general, there is no a priori ex-
pectation regarding the role of each tendon because, in multi-
articular tendons, the resultant change in length depends on
the combined changes at all joints. Nevertheless, one could
come up with a hypothesis for tendons such as the FDS, FDP
and EC, EI since their attachment on the bone structure of
index finger is similar to the one of the flexor and extensor
as they are illustrated in figure 1. Thus, for FDS and FDP
we expect that their length increases while for the EC and
EI their length should decrease for the tapping task. For the
rest tendons RI,UI and LU there is no a priori expectation
as to whether they act as extensors of flexors for the task of
tapping

IV. ITERATIVE STOCHASTIC OPTIMAL CONTROL

We consider the nonlinear dynamical system described by
the stochastic differential equation that follows:

dx = f (x,u)dt +F(x,u)dω

where x ∈ℜn×1 is the state, u ∈ℜm×1 is the control and
ω ∈ ℜp×1 Brownian motion noise with variance σ2Ip×p.
The stochastic differential equation above corresponds to a
rather general class of dynamical systems which are found in
robotics and biomechanics. The term h(x(T )) is the terminal
cost in the cost function while the `(τ,x(τ),π(τ,x(τ))) is
the instantaneous cost rate which is a function of the state
x and control policy π(τ,x(τ)). The cost-to - go vπ(x, t)
is defined as the expected cost accumulated over the time
horizon (t0, ...,T ) starting from the initial state xt to the final
state x(T ).

vπ(x, t) = E
[

h(x(T ))+
∫ T

t0
`(τ,x(τ),π(τ,x(τ)))dτ

]
The expectation above is taken over the noise ω . We next

discretize the deterministic dynamics and therefore we will
have x̄tk+1 = x̄tk +∆t f (x̄tk , ūtk). Furthermore the determinis-
tic dynamics are linearized according to the equation that
follows around x̄tk

δxtk+1 + x̄tk+1 = x̄tk +δ x̄tk ∆t f (x̄tk +δ x̄tk , ūtk +δ ūtk)

The first order approximation of the nonlinear dynamics
leads the linearized dynamics: δxtk+1 = Akxtk + Bkδutk +
Γk
(
δutk

)
ξ tk where Γk is the noise transition matrix that is

control depended and it is defined as follows:

Γk
(
δutk

)
=
[

c1,k +C1,kδutk · · · cp,k +Cp,kδutk

]
with ci,k =

√
dtF(i) and Ci,k =

√
dt∂F(i)/∂δu. The state

and control transition matrices are expressed as: Ak = I +
dt∂ f/∂x and Bk = dt∂ f/∂u. The quadratic approximation of
the cost function is given as follows:

Costk = qk +δxT
tk q+

1
2

δxT
tk Qkxtk (35)

+δuT
tk r+

1
2

δuT
tk Rkutk +δxT

tk Pkutk

where the terms : qk,qk ∈ ℜn×1,Qk ∈ ℜn×n,rk ∈
ℜm×1,Rk ∈ ℜm×m,Pk ∈ ℜn×m are defined as: qk = dt ` ,
qk = dt ∂`/∂x, Qk = dt ∂ 2`/∂x∂δx, Pk = dt ∂ 2`/∂u∂x, rk =
dt ∂`/∂δu and Rk = dt ∂ 2`/∂u∂u. In [3],[2] we have shown
by induction that the cost to go vk (δx) is quadratic and
therefore it has the form: vk (δx)= sk+sT

k+1δx+δxT Sk+1δx,



where the terms sk,sk+1 and Sk+1 are backward propagated
from the terminal or goal state to the initial state. More pre-
cisely starting with the terminal conditions sk+1 = qT ,sk+1 =
qT and Sk+1 =QT , for k = T−1 we find the following terms:

g = rk +BT
k sk+1 +∑

i
CT

i,kSk+1ci,k

G = Pk +BT
k Sk+1Ak (36)

H = ∑
i

CT
i,kSk+1Ci,k +BT

k Sk+1Bk +Rkg

By using the terms above the we can now calculate the
correction in the control policy δutk is formulated as δutk =
−H−1

(
g+Gδxtk

)
or in a more compact form δutk = lk +

Lkδxtk where lk = −H−1g and Lk = −H−1G. As we can
see the correction in the control policy consist of an open
loop gain lk and a close loop gain Lk which guarantees local
stability around the point of linearization of the nonlinear
dynamics. Since the open and close loop gains lk and Lk have
been specified the next step is the backward propagation of
the terms sk,sk+1 and Sk+1. This backward propagation is
expressed by the equations that follow:

Sk = Qk +AT
k Sk+1Ak +LT

k HLk +LkG+GT Lk

sk = qk +AT
k sk+1 +LT

k Hlk +GT Lk +LT
k g (37)

sk = qk + sk+1 +
1
2 ∑

i
cT

i,kSk+1ci,k +
1
2

lT
k Hlk + lT

k g

The control policy at the next iteration is given by
the adding the correction δu(i)

t,...,T in the control policy of

the current iteration. Therefore we will have that u(i+1)
t,...,T =

u(i)
t,...,T +δu(i)

t,...,T . Using the updated control policy u(i+1)
t,...,T and

by propagating the nonlinear dynamics a new trajectory is
generated in state space. The linear and quadratic approxima-
tion of the dynamics and cost are found and the algorithms
is repeated again until convergence. The update law of the
control policy above, changes if one considers constrains in
control of the kind umin � u� umax where x� y is defined
as the element-wise inequality between the two vectors x and
y. In this case, the update law of the current control policy
is expressed by the equations:

uc = max
(

umin,min
(

u(i)
tk +δu(i)

tk ,umax

))
u(i+1)

tk = uc, ∀t < tk < T

The control law δutk = −H−1
(
g+Gδxtk

)
is the optimal

one for as long as the matrix H is positive definite. As
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Fig. 2. The stochastic optimal feedback controller reduces the variability
and perturbations MCP rotation.

we have shown in [3],[2] the cost-to -go function vπ (δx)
depends on the control law δuk = πk (δx) through the
term α(δx,δu) = δuT (g + Gδx) + 1

2 δuT Hδu. Therefore
minimization of the cost to go function is equivalent to the
minimization of the quadratic function α(δx,δu) which is
convex iff the its Hessian H > 0. In highly dimensional
dynamical systems H might loose its positive definiteness.
In such cases we follow an approach similar to Levenberg-
Marquardt : (1) compute the eigenvalue decomposition of H,
[V,D] = eig(H)(2) replace all the negative elements of the
diagonal matrix with 0 (3) add a small positive number λ

to the diagonal of D (4) set H =V DV T using the modified
diagonal matrix D from the steps (2) and (3). The iLQG
algorithm in a pseudocode form is illustrated in table (IV)

Finally, to see the effectiveness of the stochastic optimal
feedback controller we illustrate in figure 2 the effect of noise
in the kinematic trajectories of the MCP joint for the open
loop and close loop case. In the open loop case only the
open loop gain lkis applied to the system. In the close loop
case both open lk and close loop gain Lk are applied. As
we can see, under the presence of perturbation and noise in
the dynamics the feedback gain reduces the variability of the
trajectories towards the target. Similar behavior is observed
for the kinematic trajectories of PIP and DIP joints.

V. RESULTS AND DISCUSSION

We apply the iLQG to the model of the index finger to
generate a 400 ms tapping task. Note that for the tapping
task we do not assume any desired trajectory(none desired
by us, but algorithmically one will be converged upon
as the iterative optimization proceeds), and the immediate
cost function `(τ,x(τ),π(τ,x(τ))) is only function of the
controls and not function of the state. Therefore it is for-
mulated as: `(τ,x(τ),π(τ,x(τ))) = πT Rkπ with control cost
weight matrix Rk = rI7×7 and r = 0.0000001. The terminal
cost h(x(T )) is specified as h(x(T )) = (θ −θ

∗)T Q(θ −θ
∗)

with Q= 1000I3×3. The parameter θ
∗ = (−60o,−45o,−15o)
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is the target configuration of the index finger just be-
fore contact occurs while the initial configuration is θ 0 =
(60o,−90o,−18o).

Figure (3) illustrates the sequence of postures during tap-
ping, starting from the initial posture in black and reaching
the target posture in red. In figure (4) the lengths of the
active tendons are illustrated for the time horizon of 0.4
s during tapping. Clearly the lengths of the active tendons
are specified by the geometry of the system as defined by
the moment arm model. That is, when a joint rotates, all
active tendons that cross it must change length appropriately.
Note that by ‘length we mean what is called the ‘excursion
biomechanics. That is, this is the amount by which the
musculotendon as a whole needs to shorten or lengthen to
keep the tendon from going slack, or from locking the joint
rotation [6] 1. Typically, this change in the musculotendon is
accommodated by shortening or lengthening of the muscle
fibers given that the tendon is sufficiently stiff to only change
its length by a small amount (like what we see in the passive
tendons in our model). As we can see during this down-
ward stroke of the tapping motion, the FDS, FDP tendons
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Fig. 5. Length profile of the passive tendons for the 0.4s tapping movement
starting from the initial configuration θ 0 = (60o,−90o,−18o) to target
configuration θ

∗ = (−60o,−45o,−15o).
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Fig. 6. Tendon tensions for 0.4s tapping movement starting from the
initial configuration θ 0 = (60o,−90o,−18o) to target configuration θ

∗ =
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increase their length (i.e., we defined positive length changes
when the proximal end of the tendon moves proximally,
towards the elbow) while the main extensors of the index
EC and ES decrease their length (i.e., we defined negative
length changes as the proximal end of the tendon moving
distally, towards the fingertip). This corresponds correctly
to the intuition that the flexor musculotendons will shorten,
while the extensor musculotendons will lengthen.The tendons
UI and LU decrease their length and therefore behave as
extensors, which can be explained by their insertions on the
extensor mechanism. The RI remains at a constant length
in this model because its line of action passes close to the
center of rotation. RI is most often considered an abductor
of the MCP joint, and at times a flexor of the MCP that our
equations for moment arm do not emphasize without loss
of generality. The changes in the length of UI andLU create
rotations around all joins of the index finger while the length
reduction of RI creates rotation in the MCP join.

Figure (5) illustrates the changes in length of the passive
tendons TE, ES, RB and UB of the index finger. As we
observe, the change in the length of the passive tendons is



of three orders of magnitude smaller than the corresponding
length change of the active tendons. This observation is
compatible with the passive nature of TE,ES, RB and UB
and its role to pass the force applied by the active tendons
to most distant ligament of the index finger.

Figure (6) illustrates the forces applied on the actuating
tendons FDS, FDP, RI, LU, EC, EI, UI. According to figure
(6) there are three overlapping phases. More precisely in the
first phase, that is from 0 to 150ms, the applied forces on
LU, FDS and RI reach their peak value while there is an
increase in the force on FDP. In the second phase, that is
from 100ms to 230ms, the force on FDP reaches its peak,
the forces on LU, FDS and RI are decreasing and the forces
on UI, EI and EC are increasing. Finally in the last phase,
that is defined is the time interval from 0.15ms to 0.4ms, the
forces on tendons UI, EI and EC reach their maximum value
while the applied forces for the rest of the tendons are very
small.

Our stochastic optimal controller gives us the complete
time history of the tensions in the active tendons see figure
(6). Knowledge of these tensions is of critical importance
to the field of neuromuscular control of the hand. This
information sheds light into the underlying patterns of force
production at the level of individual muscles because these
tensions are presumably provided by eccentric and concentric
contractions of the muscles, which are in turn regulated by a
neural command that interacts with active and passive prop-
erties of muscle [6]. At another level, the product of tendon
tensions and musculotendon lengths and velocities reveals
the work and power done by individual musculotendons.
Note that because most muscles are active most of the time,
there are invariably some muscles that do positive or negative
work (i.e., they are sources and sinks of mechanical energy,
respectively). Negative work is done by a muscle when
its musculotendon is lengthening while its tendon has non-
zero tension. The delicate interplay among musculotendons
at the level of tensions, work, power and neural activation
(command signal) during such dynamical tasks are now
for the first time elucidated by these simulations. While
we do not claim that these first simulations are necessarily
physiologically valid (see future work), the importance of
the fact that we are now for the first time able to describe at
least some feasible solutions to the necessary and sufficient
interplay of control signals needed to perform such a task
cannot be overemphasized.

VI. CONCLUSIONS AND FUTURE WORK

In this work we present the application of stochastic
optimal feedback control framework to a full tendon driven
model of the index finger. Our simulations suggests that

stochastic feedback control can successfully handle the
highly nonlinear dynamics of the index finger which result
from the addition of tendon model. Furthermore, the under-
lying biomechanics are better understood since the role of
the extensors and flexors is investigated and the synergetic
control strategy of the tendon tensions is analyzed. To our
knowledge this paper is the first use of optimal control for
the index finger with realistic complexity in the tendon paths.

One of the next steps for future research is to repeat the
same study for different movements as well as different
models of the moment arm matrix. The main goal is to
investigate the sensitivity of the underlying control strategies
with respect to different actuation characteristics and model
variations of the index finger. Furthermore, extensions for the
case of 3D movements will be also considered. In this case
the dimensionality of the state vector will increase. On the
biomechanics side, we can use the predicted tendon length
and velocity profiles for comparison with experimental data.
Unfortunately, noninvasive technology to measure tendon
lengths in live human subjects is still under development and
it faces many challenges. However we believe that in the near
future we will be in the position to make such comparisons.
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