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Abstract— We consider the problem finite horizon stochastic
optimal control for nonlinear markov jump diffusion processes.
In particular, by using stochastic calculus for markov jump
diffusions processes and the logarithmic transformation of the
value function we demonstrate the transformation of the cor-
responding Hamilton-Jacobi-Bellman (HJB) Partial Differential
Equation (PDE) to the backward Chapman Kolmogorov PDE
for jump diffusions. Furthermore we derive the Feynman-Kac
lemma for nonlinear markov jump diffusions processes and
apply it to the transformed HJB equation. Application of the
Feynman-Kac lemma yields the solution of the transformed
HJB equation. The path integral interpretation is derived.
Finally, conclusions and future directions are discussed.

I. INTRODUCTION
Nonlinear stochastic optimal control theory [1], [2], [3] is

one of the most fundamental control theoretic frameworks
with a plethora of applications in domains that span from
biology [4], [5] and neuroscience [6] to vehicle and mobile
robot control [7]. The nonlinear and stochastic nature of most
dynamical systems in engineering and biology results in the
broad applicability of stochastic nonlinear optimal control
framework.

Despite and progress in terms and theory and applications
of stochastic optimal control, there are still open theoretical
and algorithmic questions as to weather or not stochastic
optimal control, under different than brownian noise profiles,
is feasible. Stochastic models that incorporate brownian and
Poisson distributed noise offer a suitable description of
phenomena in which sudden changes in state may occur. The
source of these changes varies with the dynamical system
under consideration. For example, in case of neuromuscular
systems stochasticity comes from noisy neural commands
in which the neural firing rate is Poisson distributed. In
humanoid and mobile robotics randomness may be caused
due to noise in the readings of proprioceptive sensors such
as odometers, gyros, accelerometers etc. Very often these
readings include sudden changes due to contact phenomena
with the environment.

Even when only brownian noise is considered, one of the
main issues with stochastic optimal control is that its solution
requires the solution of a nonlinear and second order partial
differential equation, the so called Hamilton Jacobi Bellman
equation [1], [8]. How to solve such partial differential
equation especially for high dimensional state space models
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is still an open research problem. The challenges in solving
this PDE have limited the use of stochastic optimal control
to low dimensional control problems.

Recently there has been a number of studies [9], [10],
[11], [12], [13] and [14] which have shown promising results
in terms of efficiency applicability and robustness of the
proposed path integral control framework to high dimen-
sional stochastic optimal control problems. In particular, in
[10], [11] the path integral control framework was first intro-
duced and its application to symmetry breaking phenomena
was investigated. In [9], the path integral approach was
applied to the case of multi-agent optimal control problems.
An alternative formulation of stochastic optimal control in
discrete time was presented in [12]. An advantage of this
work is that the control cost is defined as the Kullback-
Leibler divergence between the state transition probabilities
of the controlled and uncontrolled dynamics. This component
allows for the use of, more general than quadratic, control
cost functions. In [13], [15] the path integral control frame-
work was generalized for the case of nonlinear diffusions
processes with state depended control and diffusion matrices.
In addition, an iterative version of the path integral control
framework capable of scaling to high dimensional learning
control problems, the so called Policy Improvement with
Path Integral (PI2) was presented. In [16], [15], [17], [18],
[19] there has been a number of applications of PI2 to
learning robotic control. These applications include planning
and gain scheduling for tasks such as grasping, reaching,
manipulating objects and jumping with humanoid, quadruped
and manipulator robotic systems.

The path integral approach solves nonlinear stochastic
optimal control problems with forward sampling of diffu-
sions processes. The main rational of this framework is that
under 1) an assumption between the weight in the control
cost and the variance of the noise and 2) the logarithmic
transformation of the value function, the HJB equation is
transformed into a linear and second order PDE. The linear
PDE corresponds to the backward Chapman-Kolmogorov
PDE. Solutions of the linear PDE can be found via the
use of the Feynman-Kac lemma. The Feynman-Kac lemma
creates a bridge between PDE and Stochastic Differential
Equations(SDEs) and its use can be twofold. On one side, it
can be use to find solution of PDE with forward sampling
of SDE. On the other side it can be used to find solution
of SDE by deterministically solving the corresponding PDE.
The approach of using the Feynman- Kac lemma for solving
PDEs is very promising especially in cases where an initial
policy is considered and successive policy improvements are



performed with successive application of the Feynman-Kac
lemma.

In this work, we follow the rational of path integral control
for diffusions processes in [13], [15], [14] but this time
we consider stochastic optimal control for markov jump
diffusion processes. More precisely, in Section II we review
important properties of Poisson processes. In Section III
we provide the HJB equation for the case of markov jump
diffusion processes and demonstrate its transformation to
a linear PDE. This linear PDE is the so called backward
Chapman Kolmogorov PDE modified for the case of markov
jump diffusions. In section IV we derive the Feynman-
Kac lemma for markov jump diffusions and apply it to the
transformed HJB PDE. In Section V we discuss the path
integral formulation of the solution of the transformed PDE.
Finally in the last Section VI, we conclude and discuss future
directions.

II. ELEMENTS OF POISSON STOCHASTIC CALCULUS

In this section we present [20], [21] fundamental elements
of the Poisson stochastic calculus. More precisely, let P(t) be
a m-dimensional Poisson vector process with the differential
having the common mean and variance:

E (dPi(t)) = µidt, Var (dPi(t)) = µidt, for i = 1, ...,m
(1)

where µi(t) > 0 is the ith jump rate or jump density and
µidt is the mean count of the ith Poisson process in the
time interval (t, t+ dt]. Poisson processes obey the Markov
property while they also have independent increments. Thus:

Cov [dPi(tj)dPi(tk)] = Var [dPi(tj ] δk,j = µi(tj)dtδk,j

where δk,j is the Kronecker delta. If s and t are continuous
arguments then:

Cov [dPi(s)dPi(t)] = µi(tj)dtδ(t− s)ds (2)

For the Poisson differential vector dP we have that
Var [dP] = Diag (µ1, ..., µm). In case where the Poisson
increments are not independent then Var [dP] = Σpdt. The
processes Pi, dPi are all Poisson distributed and therefore:

Prob
(
Pi(t) = k

)
= exp(−νi)

νki
k!

(3)

Prob
(
dPi(t) = k

)
= exp(−µi)

(µidt)
k

k!
(4)

Poisson distribution takes a simplified form for the differ-
ential dPi(t) if one use dt−precision. In this case the Poisson
distribution specifies the Zero-One Law(ZOL) for jumps of
dPi(t). In mathematical terms we have:

Prob
(
dPi(t) = k

)
=

(
1−µi(t)dt

)
δk,0 +µi(t)dtδk,1 (5)

This is a special case in which Poisson distribution reduces
to bernoulli distribution since there are only two possible
events of zero and one jump. A consequence of ZOL is that:

〈
(dPi(t))

ν

〉
=

(
1− µi(t)dt

)
· 0ν + µi(t)dt · 1ν = µi(t)dt

(6)
The powers of Poisson distribution do not truncate to a

finite number, in contradiction to wiener differentials which
truncate at the second order and thus contributing derivatives
up to second order. The Poisson differential contributes
derivatives of all orders, usually represented as functional
integrals or delayed arguments that cause global dependence
rather than local dependence of partial derivatives of finite
order.

III. STOCHASTIC OPTIMAL CONTROL FOR MARKOV
JUMP DIFFUSION PROCESSES

We consider the stochastic optimal control problem with
the objective function under minimization, expressed as
follows:

V (x, t0) = min
u
J(u,x) = min

u

〈
φ(xtN )+

∫ tN

t0

L(x,u)dt

〉
(7)

where L(x,u) = q(x) + 1
2uTRu is the running cost

accumulated during the time horizon ∆T = tN − t0 and
with t0 being the starting time and tN the end time. An
essential assumption in this work is that the running cost is
quadratic with respect to controls. More general formulations
of the running cost which include quadratic terms and linear
terms in u could be considered but we do not show these
generalizations here. The term φ(xtN ) in the cost function
(7) is the terminal cost with V (x, tN ) = φ(xtN ). The
minimization is subject to the dynamical constrains:

dx = (f(x, t) + G(x, t)u) dt+B(x, t)dw(t)+h(x, t)dP(t)
(8)

with xt ∈ <n×1 denoting the state of the system, G(x, t) :
<n × < → <n×p the control matrix, B(x, t) : <n × < →
<n×p is the diffusions matrix f(x, t) : <n × < → <n the
passive dynamics, ut ∈ <p×1 the control vector and dw ∈
<p×1 brownian noise. The term P(t) ∈ <m×1 is Poisson
distributed and h(x, t) : <n × < → <n×m is the jump-
amplitude or the Poisson process coefficient. We assume that
G(x, t),B(x, t), f(x, t) and h(x, t) ∈ C1. The conditional
expectation of the state differential process is expressed as:

E (dx|x(t)) =

(
f(x, t) + G(x, t)u + h(x, t)µ(t)

)
dt (9)

where µ(t) ∈ <m×1 is the jump-rate vector. The condi-
tional covariance is given as:

Cov
(
dx dxT |x(t)

)
=

(
B(x, t)B(x, t)T + h(x, t)Σph(x, t)T

)
dt



where Σp = diag (µ1(t), ...., µm(t)) is the Poisson co-
variance matrix for the case where the Poisson process has
undepended increments. The stochastic Bellman principle of
optimality yields:

V (x, t) =

min
u[x,(t,t+∆t)]

〈∫ t+∆t

t

L(x,u, τ)dτ + V (x, t+ ∆t)

〉
(10)

The HJB equation for the case of markov jump diffusions
[20] of the form of equation (8) is expressed as follows:

− ∂V (x, t)

∂t
= min

u[x,(t,t+dt)]

(
L(x,u, τ)

+∇xV (x, t)T
(

f(x, t) + G(x, t)u

)
+

1

2
tr

(
∇xxV (x, t)B(x, t)B(x, t)T

)
+

m∑
k=1

µk(t)

[
V

(
x(t) + hk(x(t), t), t

)
− V

(
x(t), t

)])
(11)

The optimal control based on the minimization above is
given as:

u(x, t) = −R−1G(x, t) ∇xV (x, t) (12)

Substitution of the optimal control above into (11) yields
the following PDE:

− ∂V (x, t)

∂t
= q(x, t) +∇xV (x, t)T f(x, t)

− 1

2
∇xV (x, t)TG(x, t)R−1G(x, t)T∇xV (x, t)

+
1

2
tr
(
(∇xxV (x, t))B(x, t)B(x, t)T

)
+

m∑
k=1

µk(t)

[
V

(
x(t) + hk(x(t), t), t

)
− V

(
x(t), t

)])
(13)

The PDE above is second order and nonlinear. More-
over, in comparison to the HJB PDE for diffusions pro-
cesses, equation (13) incorporates an additional term that
corresponds to the jump hk(x(t), t) of the SDE in (8).
In fact in case where no Poisson noise is incorporated
µ(t) = 0 equation (13) collapses to the HJB for diffusion
processes. We follow the rational in [13], [15], [14] and
therefore we apply the logarithmic transformation V (x, t) =
−λ log Ψ(x, t) to the PDE in (13) and assume that there is
a connection between control cost and noise expressed as:
λG(x, t)R−1G(x, t)T = B(x, t)B(x, t)T . The intuition for
the last assumption is that since the term B(x, t)B(x, t)T

corresponds to the variance of the brownian noise high
variance means low weight in the control cost the therefore

”cheap” controls. Similarly, low variance is equivalent to
high weight in the control cost and therefore ”expensive”
controls. High variability leads to an increased control au-
thority while low variability has the effect of reducing control
authority.

It is evident that the strength of the stochastic disturbances
determines how much control authority is required for the
system such that it can optimally perform the task. There-
fore, for the cases where stochastic disturbances have high
variability, the control cost is low and thus larger control
commands are available. For cases where G(x, t) = B(x, t)
the control weight is specified as R = 1

λI . Next, we find all
the partial derivatives and the difference term in (13) as a
function of the new value function Ψ(x, t). More precisely
we will have that:

∂V (x, t)

∂t
= −λ 1

Ψ(x, t)

∂Ψ(x, t)

∂t

∇xV (x, t) = −λ 1

Ψ(x, t)
∇xΨ(x, t)

∇xxV (x, t) = λ
1

Ψ2
t

∇xΨ(x, t) ∇xΨ(x, t)T

− λ 1

Ψ(x, t)
∇xxΨ(x, t)

djumpV (x, t) =
∂V (x, t)

∂Ψ(x, t)
djumpΨ(x, t)

= − λ

Ψ(x, t)
djumpΨ(x, t)

(14)

where the terms djumpV (x, t) and djumpΨ(x, t) are de-
fined as:

djumpV =

m∑
k=1

µk

[
V

(
x(t)+hk(x(t), t), t

)
−V

(
x(t), t

)]
(15)

and:

djumpΨ =

m∑
k=1

µk

[
Ψ

(
x(t)+hk(x(t), t), t

)
−Ψ

(
x(t), t

)]
(16)

By applying the equalities (14) above and under the
assumption λG(x, t)R−1G(x, t)T = B(x, t)B(x, t)T we
have the resulting PDE:

−∂tΨ(x, t)

∂t
= − 1

λ
q(x, t)Ψ(x, t) + f(x, t)T ∇xΨ(x, t)

+
1

2
tr

(
(∇xxΨ(x, t))B(x, t)B(x, t)T

)
+ djumpΨ(x, t)

with the terminal condition Ψ(x, tN ) =
exp (− 1

λφ(x(tN )). By using the differential operator
D defined as:



DΨ(x, t) = − 1

λ
q(x, t)Ψ(x, t) + f(x, t)T ∇xΨ(x, t)

+
1

2
tr

(
(∇xxΨ(x, t))B(x, t)B(x, t)T

)
+ djumpΨ(x, t)

(17)

we can write the PDE as follows:

−∂Ψ(x, t)

∂t
= DΨ(x, t) or

∂Ψ(x, t)

∂t
+ DΨ(x, t) = 0

(18)
The initial nonlinear HJB equation in V (x, t) is trans-

formed into the linear PDE in Ψ(x, t) which corresponds
to the backward Chapman Kolmogorov PDE for nonlinear
jump diffusions. When µ(t) = 0 equation (18) corresponds
to the Chapman Kolmogorov PDE for diffusion proccesses.
The solution of the linear PDE in (18) is found with the
application of the Feynman - Kac lemma extended to markov
jump diffusion processes. In particular, application of the
Feynman-Kac lemma results in the numerical process of
computing Ψ(x) with forward sampling of the uncontrolled
jump diffusion dynamics and evaluation of the expectation
of the exponential of state dependent q(x) cost function on
the trajectories generated by the forward sampling process.
This process will become clear in the next section in which
Feynman-Kac lemma for markov jump diffusions is derived.

Finally, the optimal control law as function of the value
function V (x, t) is given in (12), while as a function of the
exponentiated value function Ψ(x, t) is formulated by the
equation:

u(x, t) = λR−1G(x, t)
∇xΨ(x, t)

Ψ(x, t)
(19)

Essentially under the logarithmic transformation the op-
timal control u(x, t) in (19) is acting such that stochastic
dynamical systems visits states that maximize Ψ(x, t). In
the initial formulation in (12), the optimal controls are acting
such that the stochastic dynamical system visits states that
minimize the value function V (x, t).

IV. FEYNMAN KAC LEMMA FOR MARKOV JUMP
DIFFUSION PROCESSES.

The Feynman-Kac lemma is one of the most fundamental
theoretical tools that bridges the gap between SDEs and
PDEs and offers an alternative methodology for solving
PDEs with forward sampling of SDEs. There are numer-
ous applications of the Feynman-Kac lemma in financial
engineering. Rigorous derivations of different versions of
Feynman-Kac lemma are found in classic books for brownian
stochastic calculus such as [22], [23]. The version of Feyn-
man Kac Dynkin lemma for one-dimensional jump diffusions
is published as an exercise for the reader in chapter 7 of
[20], but no derivation is provided. In this work, we provide
the proof of the Feynman-Kac lemma for multidimensional
markov jump diffusions.

Lemma: Lets consider the linear parabolic PDE:

∂tΨ(x, t)

∂t
+ DΨ(x, t) = Ξ(x, t)

with the boundary condition: Ψ(x(tN ), tN ) = ξ(tN ) and
the differential operator D defined in (17). Then its solution
takes the form

Ψ(x, t0) =

〈
Ψ(x, tN ) exp

(
− 1

λ

∫ tN

t0

q(x)dτ

)

−
∫ tN

t0

Ξ(x, t) exp

(
−
∫ t

t0

q(x)dτ

)
dt

〉 (20)

with the expectation in (20) taken under the forward
sampling of the markov jump diffusion process:

dx = f(x, t)dt+ B(x, t)dw(t) + h(x, t)dP(t)

Proof: Let us consider G(x, t0, t) = Ψ(x, t) Z(t0, t)
where the term Z(t0, t) is defined as follows:

Z(t0, t) = exp

(
−
∫ t

t0

q(x)dτ

)
(21)

We apply the multidimensional version of the Itô lemma:

dG(x, t0, t) = dΨ(x, t) Z(t0, t) + Ψ(x, t) dZ(t0, t)

+ dΨ(x, t) dZ(t0, t)
(22)

Since dΨ(x, t) dZ(t0, t) = 0 we will have that:
dG(x, t0, t) = dΨ(x, t) Z(t, tN ) + Ψ(x, t) dZ(t0, t). We
calculate the differentials dΨ(x, t), dZ(t, tN ) according to
the Itô differentiation rule. More precisely for the term
dZ(t0, tN ) we will have that:

dZ(t0, t) = −q(x)Z(t0, t) dt (23)

while the term dΨ(x, t) is specified according to the chain
rule of the Markov Jump Diffusion processes. More precisely
we will have that:

dΨ(x, t) =
∂Ψ(x, t)

∂t
dt+∇xΨ(x, t)T f(x, t)dt

+∇xΨ(x, t)T
(

B(x, t)dw

)
+

1

2
tr

(
∇xxΨ(x, t)B(x, t)B(x, t)T

)
dt

+

m∑
k=1

[
Ψ

(
x(t) + hk(x(t), t), t

)
−Ψ

(
x(t), t

)]
dPk(t)

(24)

By substituting (23) and (24) back to (22) and taking the
expectation with respect the diffusion and Poisson differen-
tials given the the state x(t0) 1 we will have:

1This means that x(t0)is treated as deterministic variable



〈
dG(x, t0, t)

〉
=

(
∂Ψ(x, t)

∂t
dt+∇xΨ(x, t)T f(x, t)dt

+
1

2
tr

(
∇xxΨ(x, t)B(x, t)B(x, t)T

)
dt

+

m∑
k=1

µk(t)

[
Ψ

(
x(t) + hk(x(t), t), t

)
−Ψ

(
x(t), t

)])
×Z(t0, t)

−Ψ(x, t) q(x)Z(t0, t) dt
(25)

By considering the operator Ddefined in the previous
section we will have:〈

dG(x, t0, t)

〉
=

(
∂Ψ(x, t)

∂t
dt+ DΨ

)
Z(t0, t) (26)

We integrate the equation above from t0 to tN therefore
we get: 〈∫ tN

t0

dG(x, t0, t)dt

〉

=

∫ tN

t0

(
∂Ψ(x, t)

∂t
dt+ DΨ

)
Z(t0, t)dt

With substitution of ∂Ψ(x,t)
∂t dt+ DΨ = Ξ(x, t) we have:〈

G(x, t0, tN )− G(x, t0, t0)

〉
=

∫ tN

t0

Ξ(x, t)Z(t0, t)dt

and then since Z(t0, t) = exp
(
−
∫ t
t0
q(x)dτ

)
we get the

equation: 〈
G(x, t0, tN )− G(x, t0, t0)

〉

=

∫ tN

t0

Ξ(x, t) exp

(
−
∫ t

t0

q(x)dτ

)
dt

Finally since

G(x, t0, t0) = Ψ(x, t0)

G(x, t0, tN ) = Ψ(x, tN ) exp

(
− 1

λ

∫ tN

t0

q(x)dτ

)

we reach the final result:

Ψ(x, t0) =

〈
Ψ(x, tN ) exp

(
− 1

λ

∫ tN

t0

q(x)dτ

)

−
∫ tN

t0

Ξ(x, t) exp

(
−
∫ t

t0

q(x)dτ

)
dt

〉
The expectation above is taken based on trajectories gen-

erated with forward sampling of the uncontrolled markov
jump diffusion:

dx = f(x, t)dt+ B(x, t)dw(t) + h(x, t)dP(t) (27)

This is the end of the proof of the Feynman-Kac lemma.
For the linear HJB in (13) the Feynman-Kac Lemma takes
the form:

Ψ

(
x(t0), t0

)
=〈

Ψ

(
x(tN ), tN

)
exp

(
− 1

λ

∫ tN

t0

q(x)dτ

)〉
The expectation above can also be written as:

Ψ

(
x(t0), t0

)
=∫

P

(
xN , tN |x0, t0

)
exp

(
− 1

λ

∫ tN

t0

q(x)dτ

)
ΨtNdx

In the next section we compute the probability

P

(
xN , tN |x0, t0

)
under the uncontrolled jump diffusion in

(27).

V. PATH INTEGRAL FORMULATION FOR MARKOV JUMP
DIFFUSION PROCESSES.

We compute the path integral formulation for the case
of markov jump diffusions processes of the form in (27)
We follow the approach in [24] and we consider the one-
dimensional case. Thus the jump diffusion in (27) will take
the form:

x(s)−x(t) = f(x(t), t)δt+B(x(t), t)dw(t)+h(x(t), t)dP (t)
(28)

where s = t + δt. Next we start with the conditional
probability density function and marginalize with respect
to all possible outcome of the jump differential dP . In
particular, we will have:

P

(
x(s), s

∣∣∣∣x(t), t

)
=

∫
P

(
x(s), dP, s|x(t), t

)
dP (29)



By using the bayes rule, the equation above can be further
formulated as:

P

(
x(s), s

∣∣∣∣x(t), t

)
=∫

P

(
x(s), s|x(t), dP, t

)
Prob

(
dP = k

)
dP

Since the probability Prob
(
dP = k

)
is written as:

Prob
(
dP = k

)
=

=

(
1− µ(t)δt

)
δk,0 + µ(t)δtδk,1

=

(
1− µ(t)δt

)
δ(dP − 0) + µ(t)δtδ(dP − 1)

we will have that:

P

(
x(s), s

∣∣∣∣x(t), t

)
=(

1− µ(t)δt

)
P

(
x(s), s

∣∣∣∣x(t), dP = 0, t

)
+ µ(t)δtP

(
x(s), s

∣∣∣∣x(t), dP (t) = 1, t

)
or in a more compact form:

P

(
x(s), s

∣∣∣∣x(t), t

)
= Pnospike

(
1−µ(t)δt

)
+Pspikeµ(t)δt

(30)

where Pnospike = P

(
x(s), s

∣∣∣∣x(t), dP = 0, t

)
is the con-

ditional probability density function when no spike occurs

and Pspike = P

(
x(s), s

∣∣∣∣x(t), dP = 1, t

)
is the when a

spike occurs. Given the markov jump diffusion in (28) the
conditional probability density functions are determined as
follows:

P

(
x(s), s

∣∣∣∣x(t), dP = 0, t

)
=

1√
2πσδt

exp

[
− (x(s)− x(t)− f(x, t)δt)

2σ

]
and

P

(
x(s), s

∣∣∣∣x(t), dP = 1, t

)
=

1√
2πσδt

× exp

[
− (x(s)− x(t)− (f(x, t) + h(x, t)µ)δt)

2

2σ

]

with the parameter σ defined as σ = B(x, t)2. After
defining the CPDF under the markov jump diffusion (28)
the path integral formulation is expressed as:

P

(
xN , tN |x0, t0

)
=

N−1∏
i=0

P

(
xi+1, ti+1|xi, ti

)
(31)

with P
(
xi+1, ti+1|xi, ti

)
defined as

P

(
xi+1, ti+1|xi, ti

)
= P

(i)
nospike

(
1− µ(ti)δt

)
+ P

(i)
spikeµ(ti)δt

and P (i)
nospike, P

(i)
spike expressed as:

P
(i)
nospike = P

(
x(ti+1), ti+1

∣∣∣∣x(ti), dP (ti) = 0, ti

)
and

P
(i)
spike = P

(
x(ti+1), ti+1

∣∣∣∣x(ti), dP (ti) = 1, ti

)
VI. CONCLUSION AND FUTURE WORK.

In this work we consider stochastic optimal control for
nonlinear markov jump diffusion processes. We show that
under the logarithmic transformation of the value function,
and the assumption that relates the weight in controls and
the variance of the brownian noise, the nonlinear and second
order HJB is transformed into the backward Chapman Kol-
mogorov PDE for markov jump diffusions. After deriving the
Feynman-Kac lemma for markov jump diffusions we apply
it to get the stochastic representation of the solution of the
backward Chapman Kolmogorov PDE. Essentially, with the
application of the Feynman-Kac lemma we can solve the
initial stochastic optimal control problem by evaluating the
expectation of the exponential of state dependent part q(x) of
the cost function under the uncontrolled stochastic dynamics.
Finally, we provide the path integral formulation for one-
dimensional markov jump diffusions.

In future work, we will consider more general cases of
jump diffusions in which the amplitude of the jump term is
not only a function of the state but it is also a function of an
additional random variable. This is the class of the ”marked”
jump diffusions. Furthermore, we plan to work on iterative
versions of the proposed framework in which given an initial
policy, successive application of the Feynman-Kac will result
in policy improvement. The iterative scheme could be derived
by using importance sampling based on Girsanov’s theorem



and the Radon-Nikodým derivative as applied to markov
jump diffusion processes. At each iteration only the drift
of the stochastic dynamics will change as the controls are
updated. Finally we are currently working on KL control
[12] as applied to stochastic optimal control for markov jump
diffusions.

VII. APPENDIX

In this section we show how the nonlinear and second
order PDE in (13) is transformed into (18). More precisely by
inserting the logarithmic transformation and the derivatives
of the value function in (13) we obtain:

λ

Ψ

∂Ψ

∂t
= qt −

λ

Ψ
(∇xΨ)T f (32)

− λ2

2Ψ2
t

(∇xΨ)TGR−1GT (∇xΨ)

+
1

2
tr (Γ)− λ

Ψ
djumpΨ

where the term Γ is expressed as:

Γ =

(
λ

1

Ψ2
∇xΨ ∇xΨT − λ 1

Ψ
∇xxΨ

)
BBT

The trace of Γ is therefore:

1

2
tr(Γ) = λ

1

2Ψ2
tr
(
∇xΨTBBT∇xΨ

)
(33)

− 1

2
λ

1

Ψ
tr
(
∇xxΨBBT

)
Comparing the underlined terms in (32) and (33), one can

recognize that these terms will cancel under the assumption
λG(x)R−1G(x)T = B(x)B(x)T = Σ. The resulting PDE
has the form of (18)
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