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Abstract— This paper presents a new approach for Active
Simultaneous Localization and Mapping that uses the Relative
Entropy(RE) optimization method to select trajectories which
minimize both the localization error and the corresponding
uncertainty bounds. To that end we construct a planning cost
function which includes, besides the state and control cost, a
term that encapsulates the uncertainty of the state. This term
is the trace of the state covariance matrix produced by the
estimator, in this case an Extended Kalman Filter. The role
of the RE method is to iteratively guide the selection of the
trajectories towards the ones minimizing the aforementioned
cost. Once the method has converged, the result is a near-
optimal path in terms of achieving the pre-defined goal in
the state space while also improving the localization error and
the total uncertainty. In essence the method integrates motion
planning with robot localization. To evaluate the approach we
consider scenarios with single and multiple robots navigating
in presence of obstacles and various conditions of landmark
densities. The results show a behavior consistent with our
expectations.

I. INTRODUCTION

Over the last 10 years there has been a significant amount
of work in the area of Simultaneous Localization And
Mapping or otherwise SLAM with a plethora of applications
which include single robot, multi-robot exploration scenar-
ios. Research in this area relates to testing, comparison and
evaluation of different nonlinear estimation methods such
as Particle, Unscented and Extended Kalman Filters for
the purpose of fusion information gathered by the sensors
onboard. The map precision, the computational complexity
and consistency of the underlying state estimators and the
existence of provable upper bounds on the map uncertainty
and robot localization error are only just few of the desirable
specifications in robot localization and exploration scenarios.

In a typical localization scenario, the goal for a robot is
to localize its position while at the same time reducing the
uncertainty of the map of the environment under exploration.
The central idea is that the detection of a landmark that
has been previously seen, causes map uncertainty reduction.
Stochastic estimation is separated from control and planning
and therefore estimation is treated without investigation of
how feedforward policies for planning or feedback policies
for control affect the robot localization error. The afore-
mentioned epistemological approach has its origin in the
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separation principle of stochastic optimal control [2], [3],
[8] according to which, the control and estimation problems
are dual and they can be solved completely separately. In
fact the estimation Ricatti and control Ricatti equations are
separated in the sense that control policy is not a function of
the Kalman gain and vice versa. This is however true only for
linear systems with additive process and observation noise.

In this work we integrate planning and stochastic opti-
mization with robot localization in order to perform planning
under uncertainly. The approach is known as Active SLAM
and it has been studied elsewhere [5]–[7]. In particular, in
[6] and [5] model predictive control was used for planning
trajectories which improve SLAM performance. Simulations
and experiments were performed for a single robot explo-
ration scenario. In [7] active SLAM was performed for the
case of single robot while the metric used for planning was
the information gain.

Here we study the case where the robot reaches a desired
target while simultaneously minimizing its localization er-
ror and map uncertainty. However, in contrast to previous
work we consider the problem of multi-robot active SLAM
which takes into account optimal trajectory planning and
uncertainty reduction for a team of robots. We assume that
localization processing occurs in a central station or robot
and thus the only task that the robots have to perform is
to gather information and send it to the central station for
processing. Robots besides measuring their relative position
with respect to Landmarks, can also detect each other.
Consequently each robot can measure its relative position
with respect to other robots in the team. We demonstrate
multi robot optimal coordination and planning which results
in trajectories that do not only reach pre-specified targets but
also reduce the robots’ localization error and map uncertainty
while avoiding obstacles. To do so we make use of stochastic
optimization for continuous state actions spaces based on
Relative Entropy (RE) minimization a.k.a. Cross Entropy
(CE) [1]. The RE optimization method has been used for
Unmanned Aerial Vehicle (UAV) path planning and obstacle
avoidance in [4]. Here the RE method is applied to Active
SLAM for the cases of single-robot as well as homogeneous
multi-robot exploration and planning scenarios.

The paper is organized as follows: in Section II we provide
a brief description of Optimal Control followed by Section
III where we present the Cross Entropy method. In Section
IV we provide the EKF equations. In Section V we present
the state space as well as observation models for the single
robot and multirobot cases. Section VI contains all of our
simulation experiments. We conclude this paper in Section
VII with a discussion and future extensions of this work.



II. OPTIMAL CONTROL

The optimal control is defined as a constrained optimiza-
tion problem with the cost function:

min
u

Ep[L(x)] = min
u

Ep

(
tN∑
t=t0

l (x(t),u(t)) dt

)
(1)

subject to dynamics:

x(tk+1) = f

(
x(tk),u(tk)

)
+ C(x(tk))w(tk) (2)

with x ∈ <n is the state, u ∈ <p the control parameters
and w(t) ∈ <l is the process zero mean Gaussian noise with
covariance Σw. The functions f , C are defined as f(x,u) :
<p × <n → <n, C(x) : <n → <n × <l . In this work we
parameterize the time varying controls u(t) ∈ <p ×<tN−t0
as a function a parameter θ ∈ <m and therefore we will have
that u(t) = u(t;θ). Instead therefore of minimizing the cost
function in (1) with respect to u(t) we will minimize it with
respect to the lower dimensional vector θ.

III. RELATIVE ENTROPY OPTIMIZATION

In this section we present stochastic optimization based on
relative Entropy minimization and explain how this method is
used for stochastic optimal control. In particular, we consider
the estimation [1] of the cost function in (1) written as:

J (x) = Ep(x)[L(x)] =

∫
p(x)L(x)dx (3)

with L(x) a non-negative cost function and p(x) the
probability density. This is the probability density corre-
sponding to sampling trajectories based on (2). Under the
parameterization of the baseline probability density we will
have that p(x) = p(x;µ). We perform importance sampling
from a proposal probability density q(x) and evaluate the
expectation as follows:

J (x) =

∫
p(x;µ)

q(x)
L(x)q(x)dx = Eq

[
p(x;µ)

q(x)
L(x)

]
(4)

The expression above is numerically evaluated as:

Ĵ (x) =
1

N

N∑
i=1

[
p(xi;µ)

q(xi)
L(xi)

]
(5)

with Ĵ (x) being an unbiased estimator. The probability
density that minimizes the variance of the estimator Ĵ is:

q∗(x) = argmin
q

V ar

[
L(x)

p(x;µ)

q(x)

]
(6)

The solution to which is q∗(x) =
p(x;µ)L(x)

Ĵ (x)
and it is

the optimal importance sampling density. Inside the relative
entropy optimization framework [1] the main idea is to find
the parameters θ within the parametric class of pdfs p(x,θ)
such that the probability distribution p(x;θ) is close to

the optimal distribution q∗(x). We use the Kullback-Leibler
divergence as a distance metric between q∗(x) and p(x;θ)
and thus we will have .

D (q∗(x||p(x;θ)) =

∫
q∗(x) ln q∗(x)dx

−
∫
q∗(x) ln p(x;θ)dx

The minimization problem is now specified as:

θ∗ = argminD (q∗(x)||p(x;θ))

= argmax

∫
q∗(x) ln p(x;θ)dx

= argmax

∫
p(x;µ)L(x)

Ĵ (x)
ln p(x;θ)dx

= argmax

∫
p(x;µ)L(x) ln p(x;θ)dx

= argmaxEp(x;µ) [L(x) ln p(x;θ)]

The optimal parameters can be approximated numerically as:

θ∗ = argmax
1

N

N∑
i=1

L(xi) ln p(xi;θ) (7)

with sample paths evaluated under the density p(x;µ).

A. Optimization as Estimation of Rare-Event Probabilities

We consider the problem of estimating the probability that
a trajectory τ sampled from the distribution p(x;µ) has a
cost that is smaller than a constant γ. More precisely we will
have:

P (L ≤ γ) = Ep(x;µ)[I{L≤γ)}]

The probability above can be numerically approximated by
the equation:

P̂ (L ≤ γ) =
1

N

N∑
i=1

[
p(xi;µ)

p(xi;θ)
I{L(xi)≤γ)}

]
where xi are i.i.d samples from p(x;θ). The goal here is

to find the optimal θ∗ which is defined as:

θ∗ = argmax
1

N

N∑
i=1

I{L(xi)≤γ)} ln p(x;θ) (8)

where now the samples xi are generated according to
probability density p(x;µ). Since the event {L ≤ γ} is rare
its probability is difficult to be estimated. Instead of keeping
the γ fixed, an alternative approach is to start with a γ1 for
which the probability of the event {L ≤ γ1} is equal to
ρ > 0. Thus the value γ1 is set to the ρ -th quantile of L(x)
which means that γ1 is the largest number for which

P (L(x) ≤ γ1) = ρ. (9)



The parameter γ1 can be found by sorting the samples
according to their cost in a increasing order and setting
γ1 = LdρNe. The optimal parameter θ1 for the level
γ1 is calculated according to (7). The iterative procedure
terminates when γk ≤ γ in this case the corresponding
parameter θk is the optimal one and thus θ∗ = θk .

For the case of continuous optimal control, optimization
is treated as an estimation problem of rare event probability.
In particular the cost function optimum is defined as γ∗ =
minL(x). To find the optimal trajectory x∗ and optimal
parameters θ∗ we iterate the process of estimating rare event
probabilities until γ → γ∗. Since γ∗ is not know a-priori we
choose as γ∗ the value γ for which no further improvement
in the iterative process is observed.

IV. EKF BASED ACTIVE SLAM

We consider the stochastic dynamics as expressed as in
(2) together with the observation model:

y(tk+1) = h(x(tk+1)) + v(tk+1) (10)

The parameters y ∈ <q correspond to measurements while
v(t) ∈ <q is the observation noise that is also zero mean
with covariance Σv while the function h(x) : <n → <q .

In this work we make use of the Extended Kalman Filter
for state estimation. There are two phases in the estimation
process, namely the propagation and the update phase. The
equations of the propagation phase of EKF are given as
follows:

x̂(tk+1|k) = f

(
x̂(tk,k),u(x̂(tk,k), t;θ)

)
Φ = ∇xf

(
x̂(tk,k),u(x̂(tk,k), tk;θ), 0

)
Σ(tk+1|k) = ΦΣ(tk+1|k)ΦT + CΣwCT

(11)

For the update phase we consider the Joseph form of EKF.
The update equation are expressed as follows:

H(x(t)) = ∇xh(x(t))

ŷ(tk+1) = H(x̂(tk+1|k))

y(tk+1) = H(x(tk+1)) + v(tk+1)

r(tk+1) = y(tk+1)− ŷ(tk+1)

S(tk+1) = HΣ(tk+1|k)HT + Σv

L(tk+1) = Σ(tk+1|k)HTS(tk+1)−1

x̂tk+1|k+1
= x̂tk+1|k + L(tk+1)r(tk+1)

Σ(tk+1|k+1) = (I −LH) Σ(tk+1|k) (I −LH)
T

+ LΣvLT

(12)

Note that in the equation of the update of the covariance
matrix both matrices are symmetric, the first being positive
definite and the second positive semidefinite. Due to the
aforementioned form of the covariance-update equation, the
Joseph form of Kalman Filtering ensures symmetry and
positive definiteness of Σ(tk+1|k+1).

V. STATE SPACE MODELS

In this section we present the state space and observation
models for the single-robot and multi-robot case and provide
the corresponding changes in the update and propagation
equation of Kalman Filter as presented in the previous
section.

A. Single Robot Case

In this subsection we describe the state space model used
for our simulations. In particular the kinematics of the robot
are expressed as:

x(tk+1) = x(tk) + Vm cos(φ(tk))δt (13)
y(tk+1) = y(tk) + Vm sin(φ(tk))δt (14)
φ(tk+1) = φ(tk) + ωm(tk)δt (15)

where x, y correspond to the position and φ to the orien-
tation of the robot. Vm and ωm are the linear and rotational
velocities as measured. The aforementioned velocities are
further expressed as functions of the wheel velocities V1m
and V2m measured by the odometers. More precisely we
will have: Vm = V1m+V2m

2 and ωm = V1m−V2m

α with
V1m = V1 +w1(t) and V2m = V2 +w2(t). The quantities V1
and V2 are the true velocities. Clearly the measured linear
and rotational velocity can be further written as:

Vm =
V1m(t) + V2m(t)

2
= V (t) +

w1(t) + w2(t)

2

ωm =
V1m(t)− V2m(t)

α
= ω(t) +

w1(t)− w2(t)

α

We define ε1(tk) = w1(tk)+w2(tk)
2 and ε2(tk) = w1−w2

α
and substitute back to the kinematics of the mobile robot
which yields for the state x = [x, y, φ]:

x(tk+1) = f(x(tk) + g(x(tk))w(tk) (16)

where f(xtk), g(xtk) are defined as:

f(x(tk)) =

 x(tk) + V cos(φ(tk))δt
y(tk) + V sin(φ(tk))δt

φ(tk) + ω(tk)δt

 (17)

g(x(tk)) =

 0.5 cos(φ(tk)) 0.5 cos(φ(tk))
0.5 sin(φ(tk)) 0.5 sin(φ(tk))

1
α − 1

α

 (18)

and w(tk) = (w1(tk), w2(tk))T . We assume that land-
marks are fixed and therefore: dpi

dt = 0, ∀i = 1, 2, 3..., N
where N is the number of Landmarks. The complete state
space model is expressed as:


x(tk+1)
p1(tk+1)

...
pN (tk+1)

 =


f(x(tk))
p1(tk)
...

pN (tk)

+


g(x(tk))

02×2
...

02×2

w(tk)

(19)



The nonlinear equation above matches the form of the
state space model in (2) with the state x ∈ <N+3 defined
as x = (x, y, φ,p1, ...,pN ) and w ∈ <2. The observation
model is nonlinear and it has the form:

y(tk) = R
GR(φ(tk))

(
Gpi(tk)− GpR(tk)

)
+ v(tk) (20)

with Gpi(tk)T =
(
Gpxi

(tk), Gpyi(tk)
)

and GpR(tk) =(
Gx(tk), Gy(tk)

)
being the position of the landmarks and

the robot with respect to the global frame of reference {G}
and v Gaussian distributed zero mean noise with covariance
Σv = diag(σ2

v1, σ
2
v2). The matrix R

GR(φ(tk)) is the rota-
tional matrix which expresses rotation from the global {G}
to local(=robot) frame of reference {R}.

B. Multirobot Case

For the multi-robot case we consider two robots with linear
and rotational velocities VR1, VR2 and ωR1, ωR2 respectively.
The state space model for the two robot case is expressed as
follows:

X(tk+1) = F(X(tk)) + G(X(tk))w(tk) (21)

where the state X ∈ <6+2×N in the equation
above is defined as X =

(
xT1 ,x

T
2 ,p

T
1 , ...,p

T
N

)T
=

(x1, y1, φ1, x2, y2, φ2, px1
, py1 , ..., pxN

, pyN )
T and the noise

term w ∈ <4 is defined as wT =
(
wT
R1, wT

R2

)
with wT

R1(tk) =
(
w

(1)
R1(tk), w

(2)
R1(tk)

)
and wT

R2(tk) =(
w

(1)
R2(tk), w

(2)
R2(tk)

)
corresponding to process noise for

robot 1 and 2 with covariance matrices Σw1
= diag(σ2

1 , σ
2
2)

and Σw2 = diag(σ2
3 , σ

2
4). The drift F(X(tk)) and diffusion

G(X(tk)) are expressed as follows:

F(X(tk)) =


f(x1(tk))
f(x2(tk))
p1(tk)
...

pN (tk)

 ,G(X(tk)) =


G(x1(tk))
G(x2(tk))

0
...
0


(22)

Observation for the multi-robot case consists of 4 models.
The first model corresponds to the detection of a landmark pi
by robot 1. The second model corresponds to the detection of
a landmark pi by robot 2. The 3rd and 4th models correspond
to detection of one robot by the other. In mathematical terms
we will have:

R1y1(tk) = R1
G R(φ1(tk))

(
Gpi(tk)− GpR1(tk)

)
+ v1(tk)

(23)
R2y2(tk) = R2

G R(φ2(tk))

(
Gpi(tk)− GpR2(tk)

)
+ v2(tk)

(24)
R1y3(tk) = R1

G R(φ1(tk))

(
GpR2(tk)−GpR1(tk)

)
+v1(tk)

(25)

R2y4(tk) = R2
G R(φ2(tk))

(
GpR1(tk)−GpR2(tk)

)
+v2(tk)

(26)
with Gpi(tk)T =

(
Gpxi

(tk), Gpyi(tk)
)

and GpR1(tk) =(
Gx1(tk), Gy1(tk)

)
, GpR2(tk) =

(
Gx2(tk), Gy2(tk)

)
be-

ing the position of landmarks, the robot 1 and robot 2 with
respect to a global frame of reference {G} . The parameters
v1 and v2 correspond to the observation noise of robot 1 and
2 with covariance matrices Σv1

= diag(σ2
5 , σ

2
6) and Σv2

=
diag(σ2

7 , σ
2
8) respectively. The matrices R1

G R(φ(tk)) and
R2
G R(φ(tk)) are the rotational matrices which express rota-
tional transformations from the global {G} to local(=robot1)
and local(=robot2) frame of reference {R1}, {R2}. In a
compact form the observation model is formulated as:

yj(tk) = Hj (x(tk),v(tk)) , ∀j = 1, 2, 3, 4. (27)

The function Hj (x(tk),v(tk)) : <n×<q → <q is defined
such that it matches the observation scenarios as expressed
in (23),(24),(25) and (26). Given the observation model for
the multi-robot case the Kalman Filter update equations are:

Hj(x(t)) = ∇xHj(x(t)), ∀j = 1, 2, 3, 4.

ŷj(tk+1) = Hj(x̂(tk+1|k))

yj(tk+1) = Hj(x(tk+1)) + vi(tk+1)

rj(tk+1) = yj(tk+1)− ŷj(tk+1)

S(tk+1) = HjΣ(tk+1|k)HT
j + Σvi

L(tk+1) = Σ(tk+1|k)HT
j S(tk+1)−1

x̂tk+1|k+1
= x̂tk+1|k + L(tk+1)rj(tk+1)

Σ(tk+1|k+1) = (I −LHj) Σ(tk+1|k) (I −LHj)
T

+ LΣvLT

(28)

There are many observation scenarios depending on the
location of the robot and the landmark as well as the sensing
range and the sensing capability of each robot. In particular,
these scenarios include cases in which 1) only one robot
detects landmarks 2) both robots detect landmarks and they
detect each other 3) robots detect only landmarks but they
can not detect each other 4) robots do not detect landmarks
but they can detect each other. All these scenarios result in
a number of updates based on the observation models in
(28) which cause a reduction of the total covariance and
an improvement in the localization of landmarks and robot
position state.

VI. SIMULATION- RESULTS

Our simulation results consist of a number of a single
robot and multi-robot experiments. The assumptions used in
this work are summarized as follows:
• We assume that all landmarks have been previously

detected. Thus the map of the area where the robot
navigates is partially known. With the term partially we
mean the map is known with an initial uncertainty that
is potentially large. The task for the robot is to navigate
through the environment and reach pre-specified goals



while at the same time reducing its localization error as
well as the map uncertainty.

• We consider that computation and processing takes
place in a centralized fashion either in one of the
robots or in a central base station. In that sense all
that the robots do is to gather information with their
proprioceptive and exteroceptive sensors and transmit
this information to the central station.

• We assume that there are no communication latencies
and therefore the information gathered locally is sent
with zero delay to the central station-Robot.

• In our experiments none of the robot has access to GPS
sensor measurements.

• We assume that the robot have the same sensors onboard
which include an odometer to measure the linear and
rotational velocity and a laser scanner which measures
relative distance between robot-landmarks and robot-
robot. In that sense we are dealing with a homogeneous
team of robots.

• The robots can perfectly associate the detected land-
marks with the corresponding ones stored in the state
vector. Therefore, we are not dealing here with the
problem of data association and its impact in the per-
formance of localization.

• The policies constructed for planning are feedforward
and they do not include feedback terms.

• We parameterize the rotational velocity with a differen-
tial equation of the form:

ω(tk) = u

(
ω(tk−1), αω(tk−1;θ)

)
= ω(tk−1) + αω(tk−1;θ)δt

(29)

The parameter αω(tk−1;θ) can be thought as rotational
acceleration and it is parameterized as a trajectory split
in 6 parts. For each part i there are two parameters, the
duration ∆Ti and the acceleration αi which remains
constant in time interval ∆Ti. The sum of all time
intervals is fixed and equal to the pre-specified time
horizon, thus

∑6
i ∆Ti = TN . The parameter vector θ

is defined as θT = (∆T1, α1, ...,∆T6, α6).
The choice of parameterizing the rotational velocity as
in (29) is made so that to ensure smooth sampled tra-
jectories during learning and planning. The smoothness
of the trajectories helps to keep the EKF consistent.
From the stochastic estimation point of view, keeping
EKF consistent is critical such that the Gaussian approx-
imation of the underlying distribution of the transition
dynamics remains accurate.

In all of the experiments that involve two robots we pro-
vide the optimal trajectories as learned by the cross entropy
method as well as the 3 sigma bounds of the error state of
the robots to demonstrate the EKF preserved consistency as
well as to show how the aforementioned error bounds are
affected by the cost function design.

A. Single-Robot

The task for the robot is to reach the target at p∗ =
[5, 14]T . The linear velocity is constant V = 0.31 while
the discretization is dt = 0.05 and the horizon tN = 1000
timesteps. The cost function under minimization is: L(x) =
φ(xtN ) +

∫ tN
0

(
q(x) + 1

2uTRuδt
)

where the terminal cost
is φ(xtN ) = ||p∗ − pR||2 + wΣ × trace (Σ(tN )) with
pR =

(
Gx, Gy

)
and wΣ the weight for the trace of

the covariance given by the EKF at terminal time tN . For
this experiment we assume that the state dependent cost
accumulated over the time horizon q(x) = 0. The results
are illustrated in Figure 1. In that Figure, the blue line is the
optimal trajectory when wΣ = 0. In this case the robot
selects a path to go to the goal without considering the
localization as well as the map uncertainty. Marked with the
red, is the optimal trajectory when wΣ = 105. Clearly, in
the latter case the task is to reach the desired target but also
minimize the localization error. For this reason the optimal
path is different than the first case as it visits the part of
the state space with maximum landmark visibility. Thus the
robot can see more landmarks than in the first case, update
more times its state and further reduce the total uncertainty.
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Fig. 1. The trajectories with (red) and without (blue) the trace of the
covariance in the cost. The dotted lines encircle the areas within which
each landmark is visible to the robot’s sensor.
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Fig. 2. Trajectories of two robots reaching a common goal. The sampled
trajectories are marked orange and magenta for robots 1 and 2 respectively.
The minimum cost trajectory is marked with blue for robot 1 and green for
robot 2.
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Fig. 3. The 3σ bounds (red) for the localization error (blue) of the robots
for the trajectories shown in Figure 2. Subfigures (a)(c),(e) correspond to
x,y, φ of Robot1 and (b)(d)(f) to the x,y, φ of Robot2

B. Multi - Robot

To further investigate the behavior of the algorithm, we
conducted four experiments that involved more than one
robot. In this multi robot scenario, we assume that we have
two identical robots. The task for the first experiment is for
the robots to meet at p1∗ = p2

∗ = [5 14]T . The linear
velocity of each robot, the discretization and the time horizon
remain the same as in the case of the single robot described
in the previous paragraph. Figure 2 shows the resulting
trajectories where it can be seen that the robots reach
the aforementioned point. Furthermore, the EKF remains
consistent through the trajectory as it can be deduced by
the 3σ bound plots shown in Figure 3.

The second experiment illustrates the influence of the
inclusion of the trace of the covariance matrix into the cost.
In this case the task is to reach p1

∗ = [15 0]T and p2
∗ =

[13 8]T in the absence of landmarks. When the cost includes
the trace of the covariance the planner choses trajectories
that will bring the robots within sensing distance for a longer
period of time as can be seen in Figure 7. Conversely, when
the trace of the covariance is not considered, the selected
trajectories make the robots visible to each other for a shorter
part of the path as shown in Figure 6. Note, that the points
where the two robots can detect each other are marked with
a wider trajectory line. Figures 4 and 5 show the estimation
error for the x, y, φ state variables of each robot along with
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Fig. 4. The sub-figures (a)(c),(e) correspond to x,y, φ state of Robot 1
and (b)(d)(f) x,y, φ state of Robot 2. In this experiment no localization
error is considered in the cost for planning.

the 3σ bounds. Again, the estimator remains consistent. It
is also evident, that the uncertainty bounds for the estimates
are tighter when the localization error is considered in the
planning cost (Figure 5) than when it is not (Figure 4).

In the third experiment the task is to reach another set
of points p1∗ = [−9.5 17]T and p2

∗ = [−4.5 18]T in the
presence of various landmarks along the possible paths. Since
this minimization problem is significantly more difficult than
those of the previous experiments, we allowed for a higher
number of path segments as well as for a longer horizon of
tN = 1500 timesteps. The linear velocity remains constant
at V = 0.3. The resulting trajectories are shown in Figures
9 and 8. By comparing these two Figures it is again evident
that, when the localization error is included in the cost for
planning the resulting trajectories bring the robots within
sensing range of each other for a longer part of the path
(see Figure 9) than the trajectories which resulted from
planning with no consideration of the localization error (see
Figure 8). In Figure 10 the covariance bounds together with
the position error in x for the two robots are illustrated.
By combining the covariance profiles in Figure 10 and the
robot trajectories in Figure 9 we see that robot 1 (on the
right) first detects a landmark. This detection reduces only
the localization error of robot 1 since the robots have not
been in a close enough range to detect each other. When
robot to robot detection occurs this event causes the drastic
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Fig. 5. The sub-figures (a)(c),(e) correspond to x,y, φ state of Robot 1
and (b)(d)(f) x,y, φ state of Robot 2. In this experiment the trace of the
covariance is considered for planning.

reduction of the localization error in robot 2 (on the left)
even though robot 2 has not detected any landmark. The
localization error of robot 1 is not drastically reduced from
this event due to continuous landmark detection that keeps
its localization error small and bounded. Finally, detection
of a new landmark in later phase of the trajectory results in
a simultaneous reduction of the localization error for both
robots since they are now in the proximity to detect each
other.

The fourth and final experiment incorporates an obstacle in
the map placed at p∗obs = [−1.5 10]T . It is assumed that the
robots cannot at any point enter a circle or radius Rsafety =
2 centered at the object. Any trajectory that enters the circle
is discarded. The target points are set at p1∗ = [−7 17]T and
p2
∗ = [−4.5 18]T while the time horizon and linear velocity

remain the same as in the third experiment. The trajectories
presented in Figure 11 show the robots reaching their target
while avoiding the obstacle that is in their way.

VII. DISCUSSION

We present a new approach for active SLAM and consider
the single-robot and multi-robot cases. We integrate ideas on
stochastic optimization [1] together with nonlinear stochastic
estimation and SLAM for addressing the problem of planning
under uncertainty. The main idea in this work is how to
perform planning in a partially known environment and
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Fig. 6. Trajectories of two robots without considering the trace of the
covariance in the cost. The sampled trajectories are orange and magenta for
robots 1 and 2 respectively. The minimum cost trajectory is marked with
blue for robot 1 and green for 2.
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Fig. 7. Trajectories of two robots when the trace of the covariance is
included in the cost. The sampled trajectories are orange and magenta for
robots 1 and 2 respectively. The minimum cost trajectory is marked with
blue for robot 1 and green for 2.
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Fig. 8. Trajectories of two robots reaching individual targets through a
landmark rich environment when the localization error is not included is the
planning cost. The wider and darker trajectory lines corresponds to points
where the robots are visible to each other.

consider the localization error as well as the uncertainty of
the map of the environment.

Designing a cost function for active SLAM is not straight
forward. Previous work in this area suggests the maximiza-
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Fig. 9. Trajectories of two robots reaching individual targets through a
landmark rich environment when the localization error is included is the
planning cost. The wider and darker trajectory lines corresponds to points
where the robots are visible to each other.
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Fig. 10. The covariance bounds and the position error in x for the two
robots for experiment 3.
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Fig. 11. Trajectories of two robots reaching individual targets while
avoiding an obstacle indicated with the red dashed circle. The wider and
darker trajectory lines correspond to points where the robots are visible to
each other.

tion of information-gain as part of the objective function. The
information gain at time tk+1 is defined as IGain(tk+1) =
trace

(
Σ(tk+1|k+1)

)
− trace

(
Σ(tk+1|k)

)
where the terms

Σ(tk+1|k+1) and Σ(tk+1|k) are the state covariances after
the update and propagation phases of EKF [7]. The total
information gain gathered over a trajectory is defined as:
IGain(t0 → tN ) =

∑N
i=0 IGain(ti).

Maximization of the information gain over state trajecto-
ries may result either from the summation of many uncer-
tainty reductions which are small(=high landmark density
regions), or from the summation of few but rather large
reductions in uncertainty(=low landmark density regions).
To avoid this ambiguity in this work we use the trace
of covariance matrix at the terminal state as a measure
of the uncertainty of the robot localization error and map
uncertainty. As we have demonstrated with our simulations,
our cost function formulation results in expected behaviors
that validate basic intuitions regarding how robots should
navigate to reach desired targets while minimizing their
localization error.

We are currently working towards incorporating different
communication protocols between the robots and the central
station. On the reinforcement learning side, we will compare
RE with other methods such as Policy Improvement with
Path Integrals [9] and free energy based policy gradients [10].
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