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Abstract— We provide optimal control laws by using tools
from stochastic calculus of variations and the mathematical
concept of δ−sensitivity. The analysis relies on logarithmic
transformations of the value functions and the use of linearly
solvable Partial Differential Equations(PDEs). We derive the
corresponding optimal control as a function of the δ−sensitivity
of the logarithmic transformation of the value function for the
case of nonlinear diffusion processes affine in control and noise.

I. INTRODUCTION

Stochastic optimal control for Markov diffusion process
affine in controls and noise has been considered in different
areas of science and engineering such as machine learning,
control theory and robotics [1], [3]–[6], [9]–[11], [15], [16].
One of the common methodologies for solving such optimal
control problems is based on the exponential transformations
of value functions. The main idea is inspired by the fact
that linear PDEs can be solved with the application of the
Feynman-Kac lemma which provides a tractable sampling
numerical scheme. Therefore, instead of working with the
initial nonlinear PDE that is the Hamilton-Jacobi-Bellman
(HJB) equation, one can use the exponential transformation
of the initial value function to get the corresponding lin-
ear PDE and then apply the Feynman-Kac lemma to find
stochastic representations of its solution.

Parallel to the work in control theory, machine learn-
ing and robotics, researchers in the domain of financial
engineering developed tools based on stochastic calculus
of variations to find sensitivities of expectations of pay-
off functions with respect to changes in the parameters of
the underlying diffusion processes [2], [7], [8], [12]. These
sensitivities are named Greeks because they are often denoted
by Greek letters. More precisely, many financial applications
involve the computation of cost function:

Ψ(x) = E

(
φ(~x)

)
(1)

where ~x is a sample path ~x = {xt1 ,xt2 , ...,xtN } gener-
ated by forward sampling of the diffusion process:

dx = b(x)dt+ σ(x(t))dw(t) (2)

The cost function Ψ(x) can be computed with Monte-
Carlo simulations. Despite the estimation of the cost based on
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sample paths, financial applications require the computation
of its differential with respect to the initial condition xt0 (δ-
delta sensitivity), drift b(x)(ρ-rho sensitivity) and diffusion
σ(x) (ν-vega sensitivity) of the stochastic dynamics in (2).

The contribution of this work is to show that the
δ−sensitivity appears in the computation of the optimal con-
trol under the logarithmic transformation of value function.
In particular we provide explicit formulas for the stochastic
optimal control of Markov diffusion processes affine in con-
trol and noise. The analysis relies on the stochastic calculus
of variations and the concept of Malliavin derivative. Related
work in this area traces back to [13] as well as more recent
work on the application of Malliavin calculus to finance [7],
[8]. Here we are revisiting the topic of stochastic calculus of
variations and show its applicability to find optimal control
laws. In addition we provide all the underlying assumptions
regarding smoothness and differentiability conditions of the
stochastic dynamics under consideration.

The paper is organized as follows. In section III we review
basic theorem of the stochastic calculus of variations which
will be used for computing the δ- sensitivity. In section V
we present the derivation of stochastic optimal control based
on the logarithmic transformation of the value function. In
the last section VI we conclude.

II. NOTATION

We denote the norm x ∈ L2(P ) as ||x||L2(P ) =
(E[x2])1/2 = (

∫
x2(ω)P (dω))1/2. Let x ∈ <n and the

function h(x) : <n → < then ∇h(x) = (∂h(x)∂x1
, ..., ∂h(x)∂xn

)T .
Let b(x) : <n → <n then Jb(x) : <n → <n × <n is
the Jacobian of b(x) with respect to x defined as JTb(x) =
[∇bi(x), ....,∇bN (x)]. Let x = (x1, ..., xn) then the norm
||x||2 =

√
x21 + x22 + ...+ x2n. We denote the Banach spaces

D1,2 equipped with the corresponding norm ||F ||1,2 that is
defined in the next section.

III. STOCHASTIC CALCULUS OF VARIATIONS.

In this section we provide the basic definitions and prop-
erties of the stochastic calculus of variations in the form of
propositions and definitions.

Definition 1-(Malliavin Derivative): Let {w(t), 0 ≤ t ≤
T} be a n-dimensional brownian motion on a complete prob-
ability space (Ω,F ,P). Let the set G of random variables
F of the form:

F = f

(∫ ∞
0

h1(t)dw(t), ...

∫ ∞
0

hn(t)dw(t)

)
(3)



with f ∈ G(<n). The set G(<n) consists of infinitely
differentiable and rapidly decreasing function on <n and
h1, h2, ..., hn ∈ L2(Ω × <+). For F ∈ G the Malliavin
derivative DF of f is defined as the process {DtF, 0 ≤ t}
with DtF : L2(Ω × <+) → L2(<+) and expressed by the
equation:

DtF =

n∑
1

∂f

∂xi

(∫ ∞
0

h1(t)dw(t), ...

∫ ∞
0

hn(t)dw(t)

)
hi(t)

(4)
for t ≥ 0.

Definition 2: Let the norm ||F ||1,2 denoted as:

||F ||1,2 = E(F 2)1/2 +

(
E

(∫ ∞
0

(DtF )2dt

))1/2

(5)

then D1,2 denotes the Banach space that is the completion of
G with respect to the norm || ||1,2. The stochastic derivative
operator Dt is the a closed linear operator defined in D1,2

that takes values in L2(Ω×<+). .
Next we provide a set of propositions regarding the use

of the Malliavin derivative.
Proposition1-(chain rule): Let q(x) : <n → < be a

continuously differentiable function with bounded partial
derivatives and F = (F1, F2, ..., Fn) a random vector whose
components Fi ∈ D1,2 then q(F ) ∈ D1,2 and its Malliavin
derivative is defined as:

Dtq(F ) =

n∑
i=1

∂q

∂xi
(F ) DtF (6)

Proposition 2-(The fundamental theorem of Calculus)
Let u = u(s), s ∈ [0, T ] be a stochastic processes such that
E
∫ T
0
u2(s)ds < ∞ and assume that ∀s ∈∈ [0, T ], u(s) ∈

D1,2 then
∫ T
0
u(s)δw(s) is well defined and belongs to D1,2

and

Dt

(∫ T

0

u(s)δw(s)

)
=

∫ T

0

Dtu(s)δw(s) + u(t) (7)

Proposition 3-(Duality Formula): Let F ∈ D1,2 be FT
measurable and let u be an F-adapted process with:

E

(∫ tN

0

u2dt

)
<∞

Then:

E

(
F

∫
u(t)dW (t)

)
= E

(∫
u(t)DtFdt

)
(8)

Next we provide an important proposition that shows that
for the case of Markov diffusion processes the stochastic
derivative operator is related to the derivative of the processes
with respect to the initial condition.

Proposition 4-(Malliavin Derivative and Diffusions Pro-
cesses): Let x(t), t ≥ 0 be an <n valued Itô process whose
dynamics are driven by the stochastic differential equation:

dx = b(x)dt+ σ(x(t))dw(t) (9)

where b(x) and σ(x) are continuously differentiable func-
tions with bounded derivatives. Let Υ(t) = dx(t)

dx(t0)
, t ≥ 0 be

the associated first variation process defined by the stochastic
differential equation:

dΥ(t) = Jb(x(t))Υ(t)dt+

n∑
i=1

Jσi
(x(t))Υ(t)dwi(t) (10)

where the initial condition Υ(0) = In and Jb(x(t)) and
Jσi

(x(t)) the jacobians of b and σi. In is the identity
matrix of <n, with σi(x(t)) denoting the i − th column
vector σ. Then the process {x(t), t ≥ 0} belongs to D1,2

and its Malliavin derivative is given by:

Dsx(t) = Υ(t)Υ(s)−1σ(x(s))1s≤t, s ≥ 0 (11)

Hence, if ψ ∈ C1
b (<n) then we have:

Dsψ(xT ) = ∇ψ(xT )Υ(t)Υ(s)−1σ(x(s))1s≤t (12)

and also:

Ds

∫ T

0

ψ(xt)dt =

∫ T

s

∇ψ(xt)Υ(t)Υ(s)−1σ(x(s))dt

(13)
Proof: We consider the stochastic dynamics

dx = b(x)dt+ σ(x(t))dw(t)

written in the form:

x(t)− x(0) =

∫ t

0

b(x)dτ +

∫ t

0

σ(x(t))dw(τ) (14)

or

x(t)− x(0) =

∫ t

0

b(x)dτ +

∫ t

0

N∑
j=1

σj(x(τ))dwj(τ)

We take the derivative with respect to the initial state:

dx(t)

dx(0)
− In =

∫ t

0

d

dx(0)
b(x)dτ

+

∫ t

0

d

dx(0)

N∑
j=1

σj(x(τ))dwj(τ)

we will have that:

Υ(t)− In =

∫ t

0

db(x)

dx(τ)

dx(τ)

dx(0)
dτ

+

∫ t

0

N∑
j=1

dσj(x(τ))

dx(τ)

dx(τ)

dx(0)
dwj(τ) (15)

where the term Υ(t) ≡ dx(t)
dx(t0)

. In a more compact the
equation above is written as:

Υ(t)−In =

∫ t

0

Jb(x)Υ(τ)dτ +

∫ t

0

N∑
j=1

Jσj(x)Υ(τ)dwj(τ)

or in a more compact form:

dΥ(t) = Jb(x)Υ(t)dt+

N∑
j=1

Jσj(x)Υ(t)dwj(t), Υ(0) = I.

(16)



Similarly we define Z(t) ≡ Dsx(t)and ∀t ≥ s so we will
have from (14):

Dsx(t) = Ds

∫ t

s

b(x)dt+Ds

∫ t

s

σ(x(t))dw(t)

which, after applying the fundamental theorem of calculus
from (7), can be further written as:

Z(t) =

∫ t

s

Jb(x)Z(τ)dτ+

∫ t

s

Dsσ(x(τ))dw(τ)+σ(x(s))

or

dZ(t) = Jb(x)Z(t)dt+

N∑
j

Jσj(x(t))Z(t)dwj(t) (17)

=

(
Jb(x) +

N∑
j

Jσj(x(t))dwj(t)

)
Z(t) (18)

with initial condition Z(s) = σ(x(s)). From the equation
(16) and (17) we will have that

Z(t) = Dsx(t) = Υ(t)Υ(s)−1σ(x(s))1s≤t, s ≥ 0 (19)

To see that we solve the equation above with respect to Υ(t),
Υ(t) = Z(t)σ(x(s))−1Υ(s)1s≤t and then substitute into
(16). More precisely we write (16) starting from the initial
time τ = s and we will have:

Υ(t)−Υ(s) =

∫ t

s

Jb(x)Υ(τ)dτ+

∫ t

s

N∑
j=1

Jσj(x)Υ(τ)dwj(τ)

substitution Y(t) results in:(
Z(t)σ(x(s))−1 − I

)
Υ(s) =(∫ t

s

Jb(x)Z(τ)dτ +

∫ t

s

N∑
j=1

Jσj(x)Z(τ)dwj(τ)

)
× σ(x(s))−1Υ(s)

Multiplication of both sides of the equation above with
Υ(s)−1σ(x(s)) will provide us with (17). Equations 12 and
11 can be trivially proved by application of the chain rule as
defined in (6).

Next we derive another identity that will be used later
in our derivations. More precisely let a(t) ∈ [0 T ] be a
deterministic function such that:∫ T

t0

a(t)dt = 1

Then from (11) we have that for t = ti the expression that
follows:

Z(ti) = Dsx(ti) = Υ(ti)Υ(s)−1σ(x(s))1s≤ti , (20)

and therefore we can write the following expression:

Υ(ti) = Z(ti)σ(x(s))−1Υ(s)1s≤ti

we multiply from both sides with α(s) and then integrate:∫
α(s)Υ(ti)ds =

∫
α(s)Z(ti)σ(x(s))−1Υ(s)1s≤tids

The equation above can be written as:

Υ(ti)

∫ T

0

α(s)ds =

∫ T

0

α(s)Z(ti)σ(x(s))−1Υ(s)1s≤tids

By making use of (20) we have the expression:

Υ(ti) =

∫ tN

0

α(s)Z(ti)σ(x(s))−1Υ(s)1s≤tids

and for ti = tN the final result is:

Υ(tN ) =

∫ tN

0

α(s)Z(tN )σ(x(s))−1Υ(s)ds

In the remaining of the analysis in this paper we as-
sume that: Assumption 1: The diffusion matrix σ satisfies
the uniform ellipticity condition: ε > 0, ξTσTσξ ≥
ε||ξ||22, ∀ξ,x ∈ <n.

IV. THE δ- SENSITIVITY.

The goal in this section is to to find the gradient of the
expectation of the form:

E

(
J (~x)

∣∣∣∣xti) = E

(∫ tN

t

q(x)dt

∣∣∣∣xti) (21)

with respect to the changes in the initial state xt of the
diffusion process:

dx = b(x)dt+ σ(x(t))dw(t) (22)

The trajectories ~x are defined as ~x =
(xti+1 ,xti+2 , ...,xtN ). We also denote by ∇i the partial
derivative with respect to the i-th argument and we introduce
the set Γm as follows:

ΓN = {α ∈ L2([0.T ])|
∫ ti

0

αdt = 1, ∀i = 1, 2, ...,m}
(23)

Lemma 1: Under the assumption 1, and for any x ∈ <n
and for any α ∈ ΓN we have that:

∇xti
E

(
J (~x)

∣∣∣∣xti) = E

( N∑
j=i+1

∇xtj
J (~x)TΥ(tj)

∣∣∣∣xti)
where Υ(t) is the stochastic flow defined as:

dΥ(t) = Jb(x(t))Υ(t)dt+

n∑
i=1

Jσi
(x(t))Υ(t)dwi(t) (24)



with the initial condition Υ(0) = In.
Proof: We assume that the functional J (~x) is continu-

ously differentiable and therefore we will have that:

∇xti
E

(
J (~x)

∣∣∣∣xti)T = E

(
∇xti

J (~x)

∣∣∣∣xti)T
= E

( N∑
j=i+1

∇xtj
J (~x)T

dxtj
dxti

∣∣∣∣xti)

= E

( N∑
j=i+1

∇xtj
J (~x)TΥ(tj)

∣∣∣∣xti)

For the case where J (~x) = φ(xT ) and therefore J (~x)
depends on the last state of the state trajectory ~x =
{xt1 , ...,xtN } we have the following proposition:

Proposition 3: Under the assumption 1, and for any x ∈
<n and for any α ∈ ΓN we have that:

∇xti
E

(
φ(xtN )

∣∣∣∣xti)
= E

(
φ(xtN )

∫ tN

ti

α(t)

(
σ(x)−1Υ(t)

)T
dw(t)

)
where Υ(t) is the stochastic flow defined as:

dΥ(t) = Jb(x(t))Υ(t)dt+

n∑
i=1

Jσi
(x(t))Υ(t)−1dwi(t)

(25)
with the initial condition Υ(0) = In.

Proof: Since the stochastic flow is defined as Υ(tj) =∫ T
0
Dtx(ti)α(s)σ(x(s))−1Υ(s)1s≤tids we will have that:

∇xti
E

(
φ(xtN )

∣∣∣∣xti)T =

= E

( N∑
j=i+1

∇xtj
φ(xtN )TΥ(tN )

)
= E

(
∇xtN

φ(xtN )TΥ(tN )

)
= E

(
∇xtN

φ(xtN )T
∫ tN

0

Dtx(tN )α(s)σ(x(s))−1Υ(s)ds

)
= E

(∫ tN

0

∇xtN
φ(xtN )TDtx(tN )α(t)σ(x(t))−1Υ(t)dt

)
= E

(∫ tN

0

Dtφ(xtN )T α(t)σ(x(t))−1Υ(t)dt

)
= E

(
φ(xtN )

∫ T

0

α(t)

(
σ(x(t))−1Υ(t)

)
dw

)
where in the last line we make use of (8). Thus we have

the final result:

∇xti
E

(
φ(xtN )

∣∣∣∣xti) = E

(
φ(xtN )v(t)

)

where the term v(t) =
∫ T
0
α(t)

(
σ(x(t))−1Υ(t)

)T
dw(t) is

the forms the stochastic derivative.
The derivation for the case where J (~x) is not continuously

differentiable can be found in [8].

V. STOCHASTIC OPTIMAL CONTROL

In this section we will show how δ−sensitivity is used
for computing the optimal control in feedback form. More
precisely, we consider stochastic optimal control in the clas-
sical sense, as a constrained optimization problem, with the
cost function under minimization given by the mathematical
expression:

V (x) = min
u
E(1)

[
J(x,u)

]
= min

u
E(1)

[
φ(x(tN )) +

∫ tN

to

L(x,u, t)dt

]
(26)

subject to the nonlinear stochastic dynamics:

dx = F(x,u)dt+ B(x)dw (27)

with x ∈ <n×1 denoting the state of the system, u ∈ <p×1
the control vector and dw ∈ <p×1 brownian noise. The
function F(x,u) is a nonlinear function of the state x and
affine in controls u and therefore is defined as F(x,u) =
f(x) + G(x)u . The matrix G(x) ∈ <n×p is the control
matrix, B(x) ∈ <n×p is the diffusion matrix and f(x) ∈
<n×1 are the passive dynamics. The cost function J(x,u) is
a function of states and controls. Under the optimal controls
u∗ the cost function is equal to the value function V (x). The
term L(x,u,t) is the running cost and it is expressed as:

L(x,u, t) = q0(x, t) + q1(x, t)u +
1

2
uTRu (28)

Essentially, the running cost has three terms, the first
q0(xt, t) is a state-dependent cost, the second term depends
on states and controls and the third is the control cost with
the term R > 0 the corresponding weight. The stochastic
HJB equation [5], [14] associated with this stochastic optimal
control problem is expressed as follows:

−∂tV = min
u

(
L + (∇xV )TF +

1

2
tr
(
(∇xxV )BBT

))
(29)

To find the minimum, the cost function (26) is inserted into
(29) and the gradient of the expression inside the parenthesis
is taken with respect to controls u and set to zero. The
corresponding optimal control is given by the equation:

u(xt) = −R−1
(
q1(x, t) + G(x)T∇xV (x, t)

)
(30)

These optimal controls will push the system dynamics
in the direction opposite that of the gradient of the value
function ∇xV (x, t). The value function satisfies nonlinear,
second-order PDE:



−∂tV = q̃ + (∇xV )T f̃ − 1

2
(∇xV )TGR−1GT (∇xV )

+
1

2
tr
(
(∇xxV )BBT

)
(31)

with q̃(x, t) and f̃(x, t) defined as

q̃(x, t) = q0(x, t)− 1

2
q1(x, t)TR−1q1(x, t) (32)

and
f̃(x, t) = f(x, t)−G(x, t)R−1q1(x, t) (33)

and the boundary condition V (xtN ) = φ(xtN ). Given
the exponential transformation V (x, t) = −λ log Ψ(x, t)
and the assumption λG(x)R−1G(x)T = B(x)B(x)T =
Σ(xt) = Σ the resulting PDE is formulated as follows:

−∂tΨ = − 1

λ
q̃Ψ + f̃T (∇xΨ) +

1

2
tr ((∇xxΨ)Σ) (34)

with boundary condition: Ψ(x(tN )) =
exp

(
− 1
λφ(x(tN ))

)
. By applying the Feynman-Kac

lemma to the Chapman-Kolmogorov PDE (34) yields its
solution in form of an expectation over system trajectories.
This solution is mathematically expressed as:

Ψ (xti) = E(0)

[
exp

(
−
∫ tN

ti

1

λ
q̃(x)dt

)
Ψ(xtN )

]
(35)

The expectation E(0) is taken on sample paths ~xi =
(xi, ...,xtN ) generated with the forward sampling of the
uncontrolled diffusion equation:

dx = f̃(xt)dt+ B(x)dw (36)

The optimal controls are specified as:

uPI(x, t) = −R−1
(
q1(x, t)− λG(x)T

∇xΨ(x, t)

Ψ(x, t)

)
(37)

Since, the initial value the function V (x, t) is the minimum
of the expectation of the objective function J(x,u) subject
to controlled stochastic dynamics in (27), it can be trivially
shown that:

V (x, ti) = −λ logE(0)

[
exp

(
−
∫ tN

ti

1

λ
q̃(x)dt

)
Ψ(xtN )

]
≤ E(1)

(
J(x,u)

)
(38)

The expectation E(1) is taken on sample paths ~xi =
(xi, ...,xtN ) generated with the forward sampling of the
controlled diffusion equation in (27). Closer look into the
feedback control law in (37) reveals the use of the δ− sen-
sitivity. In particular, the feedback control involves the term
∇xΨ(x, t) which correspond to the δ− Greek sensitivity of
the functions Ψ(x, t) with respect to the initial state of the
diffusion in (36). The analysis above is summarized by the
following theorem:

Theorem 1: Consider the stochastic optimal control
problem with performance criterion and stochastic dynam-
ics expressed as in (26),(28) and (27) with the terms
q0(x, t), q1(x, t), f(x),B(x),G(x) be continuously differen-
tiable, f(x), B(x),G(x) have bounded Lipschitz derivatives
and q̃(x, t) and f̃(x, t) are given by (32) and (33). Under the
assumption of twice continuous differentiabilty of the value
function V (x), the optimal control law is expressed as:

uPI(xti , ti) = −R−1q1(xti , t)

+ R−1
λG(xti)

T

Ψ(xti , ti)
E

( N∑
j=i+1

Υ(tj)
T∇x(tj)J (~x)

)]
The term J (~x) is defined as J (~x) =

exp

(
− 1

λ

∫ tN
ti

q̃(x(s))ds

)
while Υ(t) = dx(t)

dx(ti)
∀t > ti

is the stochastic flow:

dΥ(t) = Jf̃(x(ti))Υ(t)dt+

n∑
k=1

JBk
(x(ti))Υ(t)dwk(t)

that corresponds to the stochastic differential equation:

dx = f̃(xt)dt+ B(x)dw

VI. CONCLUSIONS

We derived the optimal control law by using the δ−
sensitivity. Consider the case of estimating the expectation
of a cost function over state paths generated by sampling of
a diffusion process. Essentially δ−sensitivity corresponds to
the differential of the expected cost function with respect to
the initial state of the underlying diffusion process. Future
research will involve the development of efficient algorithms
for applications to dynamical systems in robotics and biol-
ogy. Another line of research involves the use of stochastic
calculus of variations for optimal control of Markov jump
diffusion processes.
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