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ABSTRACT
In this work we present the first constrained stochastic op-

timal feedback controller applied to a fully nonlinear, tendon
driven index finger model. Our model also takes into account an
extensor mechanism, and muscle force-length and force-velocity
properties. We show this feedback controller is robust to noise
and perturbations to the dynamics, while successfully handling
the nonlinearities and high dimensionality of the system. By ex-
tending prior methods, we are able to approximate physiological
realism by ensuring positivity of neural commands and tendon
tensions at all times.

INTRODUCTION
Stochastic optimal control theory is considered as a valu-

able tool to understand neuromuscular behavior [1–3]. In con-
trast, other approaches to neuromuscular control require target
time histories of limb kinematics, kinetics and/or muscle activ-
ity. See [4] for a review. The application of the dominant optimal
control methods such Linear Quadratic Regulator (LQR) and
Linear Quadratic Gaussian (LQG) control, however, has been
limited to cases of linear dynamical systems. This cannot capture
the nonlinear behavior of muscles and multi-body limbs. In [5],
an Iterative Linear Quadratic Regulator (iLQG) was introduced
to allow the optimal control of nonlinear neuromuscular models.
Until now, the iLQG formulation has not been scaled up or ap-
plied to high-dimensional neuromuscular plants. Here we extend
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the iLQG formulation to be applicable in these conditions and
thus can, for the first time, use the optimal control framework
to predict biologically plausible tendon tensions for a nonlinear
neuromuscular finger model.

METHODS
1 Muscle Model

The rigid-body triple pendulum finger model with slightly
viscous joints is actuated by Hill-type muscle models. Joint
torques are generated by the seven muscles of the index fin-
ger (FDP, FDS, EI, EC, LUM, DI, PI), whose tendons act via
a simulated extensor mechanism [6]. The resulting torques are
formulated as τ = M(θ) ·T

(
α,L(θ) ,V

(
θ, θ̇

))
where M(θ) is

the moment arm matrix. The tension T
(
α,L(θ) ,V

(
θ, θ̇

))
de-

pends on the activation of the muscles but also varies as a func-
tion of muscle velocity V = V (θ, θ̇) and muscle length L =
L(θ). Therefore the tension is mathematically formulated as
T

(
α,L(θ) ,V

(
θ, θ̇

))
= FL (L(θ)) · FV

(
V

(
θ, θ̇

))
· α + FP (L(θ))

where the terms FL (L(θ)), FV
(
V

(
θ, θ̇

))
and FP (L(θ)) are force

functions that describe the force - length and force-velocity prop-
erties of muscles [7].

2 Constrained Iterative Stochastic Optimal Control
We consider the class of stochastic optimal control problem

with state and control constraints. Such optimal control problems
are formulated as

vπ(x, t) = minE
(

h(x(T ))+
Z T

t0
`(τ,x(τ),π(τ,x(τ)))dτ

)
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subject to dx = f (x,u)dt +F(x,u)dω and constrains φ(x,u) < 0,
ψ(x,u) = 0. The variable x ∈ℜn×1 is the state, u ∈ℜm×1 is the
control and ω ∈ ℜp×1 is Brownian noise with variance σ2Ip×p.
The stochastic differential equation above corresponds to a rather
general class of dynamical systems which are found in robotics
and biomechanics. The term h(x(T )) is the terminal cost in the
cost function while the `(τ,x(τ),π(τ,x(τ))) is the instantaneous
cost rate which is a function of the state x and control policy
π(τ,x(τ)). The quantity vπ(x, t) is the cost to go. In the pro-
posed algorithm, the dynamics and the state and control con-
strains are linearly approximated while the cost is expanded up
to the quadratic term. More precisely the deterministic dynamics
are first discretized and thus we have x̄tk+1 = x̄tk + ∆t f (x̄tk , ūtk).
The resulting discrete time dynamics are linearized around x̄tk
according to δxtk+1 = Akxtk + Bkδutk + Γk

(
δutk

)
ξtk with Ak =

I +dt∂f/∂x and Bk = dt∂f/∂u the state and control transition ma-
trices and Γk the noise transition matrix that is control depended.
The quadratic approximation of the cost function is given as
Costk = qk +δxT

tk q+ 1
2 δxT

tk Qkxtk +δuT
tk r+ 1

2 δuT
tk Rkutk +δxT

tk Pkutk .
Since the cost to go is quadratically approximated we will have
vk (δx) = sk + sT

k+1δx + δxT Sk+1δx where the terms sk,sk+1 and
Sk+1 are backward propagated from the terminal state. Every
iteration i of the iterative optimal control algorithm consists of:

1. A backward pass of the cost to go function (Sk,sk,sk)
2. Calculation of the control variations δu(i)

t,...,T and update of

the controls u(i)
t,...,T = δu(i)

t,...,T +u(i−1)
t,...,T .

3. A forward pass of the dynamics x̄tk+1 = x̄tk +∆t f (x̄tk , ū
i
tk) to

get the new state trajectory x̄i
t,...,T .

4. Calculation of the approximations of dynamics and cost
around the state and control trajectories (x̄i

t,...,T ,u(i)
t,...,T ).

We extended the above formulation by the addition of La-
grange multipliers that enforce active constraints on the states
and controls. Minimizing this new adjoint cost function finds the
optimal state and non-negative control trajectories. In these ex-
ample,we only constrain the controls to no negative. The task
for the finger is to move downwards to tap a specific point on a
surface by arriving with non-zero velocity.

RESULTS AND CONCLUSIONS
The iLQG algorithm with constraints on the controls is able

to predict optimal tendon tension time histories on its own, and
these time histories are both physiologically realistic and reflect
the time varying interactions needed to orchestrate the coordi-
nated finger flexion movement, see figure. We note the impor-
tance of the coordinated action among the intrinsic (LUM, DIP
and PI), extensor (EIP and EDC) and flexor superficialis (FDS)
muscles. The absence of a decelerating burst in the extensors
and the relative silence of the flexor digitorum profundus (FDP)
is sensitive to moment arm parameters. Future work will estab-
lish whether EMG signals measured in human subjects [8] are
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Figure 1. Sequence of postures, final posture in red. Right panel shows
tendon tensions. Note all are positive.

compatible with this optimal control policy. Our advances enable
the testing of these hypotheses in future work because it demon-
strates a first example of the scalability and applicability of the
iLQG framework to complex nonlinear neuromuscular systems.
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