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Abstract— This paper integrates recent work on Path Integral
(PI) and Kullback Leibler (KL) divergence stochastic optimal
control theory with earlier work on risk sensitivity and the
fundamental dualities between free energy and relative entropy.
We derive the path integral optimal control framework and
its iterative version based on the aforemetioned dualities. The
resulting formulation of iterative path integral control is valid
for general feedback policies and in contrast to previous work,
it does not rely on pre-specified policy parameterizations. The
derivation is based on successive applications of Girsanov’s
theorem and the use of Radon-Nikodým derivative as applied
to diffusion processes due to the change of measure in the
stochastic dynamics. We compare the PI control derived based
on Dynamic Programming with PI based on the duality between
free energy and relative entropy. Moreover we extend our
analysis on the applicability of the relationship between free
energy and relative entropy to optimal control of markov jump
diffusions processes. Furthermore, we present the links between
KL stochastic optimal control and the aforementioned dualities
and discuss its generalizability.

I. INTRODUCTION

Stochastic optimal control for nonlinear diffusion pro-
cesses based on path integrals demonstrated remarkable
applicability to robotic control and planning problems. For
continuous state actions spaces and continuous time, work
in [1], [2] provided the Path Integral (PI) representation of
stochastic optimal control for a special class of dynamics
and presented new insights regarding symmetry breaking
phenomena and their connection to optimal control. In [3],
the PI control framework was extended to stochastic optimal
control problems for multi-agents systems.

In [4], [5] PI control was derived for the case of gener-
alized diffusions processes with state dependent control and
diffusions matrices. Additionally, an iterative algorithm was
provided for the cases in which desired trajectories and/or
control gains are parameterized with the use of Dynamic
Movement Primitives (DMPs). DMPs are nonlinear point
attractors with adjustable landscape and they have been
used in robotics for the purposes of smooth representation
of desired trajectories and/or control gains. The resulting
algorithm Policy Improvement with Path Integrals (PI2) has
been applied to a variety of robotic systems for tasks such
as planning, gain scheduling and variable stiffness control
[6]–[9].
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Parallel to the work in continuous time, in [10], [11] the
Bellman principle of optimality was applied for discrete time
optimal control problems in which the control cost is formu-
lated as the Kullback Leibler (KL) divergence between the
controlled and uncontrolled dynamics. The resulting frame-
work is applicable to a large class of control problems which
include finite, infinite horizon, exponentially discounted and
first exit. In this paper we will derive the connections of PI
and KL control as presented in the machine learning and
robotics communities [1], [2], [10], [11] with earlier work
in controls on the fundamental dualities between relative
entropy and free energy and the logarithmic transformations
of diffusions processes [12]–[17]. More precisely:

• We present PI control and its iterative version based on
the fundamental dualities between free energy and rela-
tive entropy as applied to nonlinear diffusion processes.
In contrast to previous work [4], the derivation and the
resulting formulation of iterative path integral control
holds for general feedback policies and it does not rely
on specific policy parameterizations. The derivation is
based on successive applications of Girsanov’s theorem
due to the change of measure in the stochastic dynamics.
The aforementioned change of measure is the outcome
of the change in the drift of the stochastic dynamics
which, in turn, results from the updates in controls that
take place at every iteration.

• We compare the proposed PI optimal control formu-
lation derived based on the application of Girsanov’s
theorem and Jensen’s inequality with the one derived
based on the Bellman principle of optimality. We spec-
ify the conditions under which the two approaches lead
to the same results and discuss their generazability in
terms of types of cost functions and forms of stochastic
dynamics.

• We extend our analysis to stochastic optimal control for
jump diffusions processes of one dimension based on
the fundamental relationship between free energy and
relative entropy and derive the corresponding bound on
the cost function.

• Finally, we provide the connections of KL stochastic
optimal control with earlier work on risk sensitivity
and discuss the generalizability with respect to different
stochastic optimal control problems.

The paper is organized as follows: in Section II we provide
the basic dualities between free energy and relative entropy.
In Section III we discuss how these dualities are linked
to maximizing or minimizing stochastic optimal control



problems for the case of diffusion processes. In Section IV
we derive the iterative case based on successive applications
of Girsanov’s theorem. In section V we show how the path
integral control framework is derived based on the Bellman
principle of optimality and contrast this approach with the
one in Section III. We expand our analysis on path integral
control for the case of markov jump diffusions in Section VI.
Finally in Section VII we provide links to KL-control and in
Section VIII we conclude by discussing the generalizability
of the aforementioned approaches.

II. BASIC DUALITY RELATIONSHIPS OF FREE ENERGY
AND RELATIVE ENTROPY

In this section we derive the fundamental duality rela-
tionships between free energy and relative entropy [16].
This relationship is important for the derivation of stochastic
optimal control. Let (Z,Z) denote a measurable space and
P(Z) the corresponding probability measure defined on the
measurable space. For our analysis we consider the following
definitions.

Definition 1: Let P ∈ P(Z) and the function J (x) :
Z → < be a measurable function. Then the term:

E
(
J (x)

)
= log

∫
exp (ρJ (x))dP (1)

is called free energy of J (x) with respect to P.
Definition 2: Let P ∈ P(Z) and Q ∈ P(Z), the relative

entropy of P with respect to Q is defined as:

H (Q||P) =

{ ∫
log dQ

dP dQ if Q << P and log dQ
dP dQ ∈ L

1

+∞ otherwise

We will also consider the objective function:

ξ(x) =
1

ρ
E
(
J (x)

)
=

1

ρ
log E(0)

τ i

[
exp (ρJ (x))

]
(2)

with J (x) = φ(xtN ) +
∫ tN
ti

q(x)dt is the state dependent
cost. The objective function above takes the form ξ(x) =

E(0)
τ i (J ) + ρ

2V ar (J ) as ρ→ 0. This form allows us to get
the basic intuition for constructing such objective functions.
Essentially for small ρ the cost is a function of the mean the
variance. When ρ > 0 the cost function is risk sensitive while
for ρ < 0 is risk seeking. To derive the basic relationship
between free energy and relative entropy we express the
expectation E(0)

τ i taken under the measure P as a function
of the expectation E(1)

τ i taken under the probability measure
dQ. More precisely will have:

E(0)
τ i

[
exp (ρJ (x))

]
=

∫
exp (ρJ (x))dP

=

∫
exp (ρJ (x))

dP
dQ

dQ

By taking the logarithm of both sides of the equations
above and making use of the Jensen’s inequality we will
have:

log E(0)
τ i

[
exp (ρJ (x))

]
= log

∫
exp (ρJ (x))

dP
dQ

dQ ≥∫
log

(
exp (ρJ (x))

dP
dQ

)
dQ =

∫ (
ρJ (x) + log

dP
dQ

)
dQ

=

∫
ρJ (x)dQ−H (Q||P)

We multiply the inequality above with 1
ρ for case of ρ < 0

or ρ = −|ρ| and thus we have:

ξ(x) = − 1

|ρ|
E (J (x)) ≤ E(1) (J (x)) +

1

|ρ|
H (Q||P) (3)

where E(1) (J (x)) =
∫
J (x)dQ. The inequality above

gives us the duality relationship between relative entropy and
free energy. Essentially one could define the following two
minimization problems:

− 1

|ρ|
E (J (x)) = inf

[
E(1) (J (x)) +

1

|ρ|
H (Q||P)

]
(4)

and the dual minimization:

− 1

|ρ|
H (Q||P) = inf

[
E(1) (J (x)) +

1

|ρ|
E (J (x))

]
(5)

The infimum in (4) is attained at Q∗ given by:

dQ∗ =
exp (−|ρ|J (x))dP∫
exp (−|ρ|J (x))dP

(6)

When ρ > 0 the inequality in (3) becomes from ≤ to ≥
and the inf in (4) and (5) becomes sup. In the next section
we show how inequality (4) is transformed to a stochastic
optimal control problem for the case of markov diffusion
processes.

III. STOCHASTIC OPTIMAL CONTROL FOR MARKOV
DIFFUSIONS PROCESSES BASED ON THE FUNDAMENTAL

DUALITIES

For our analysis in this section we use the same notation
as in [13], [16]. We consider the uncontrolled and controlled
stochastic dynamics of the form:

dx = f(x)dt+
1√
|ρ|

B(x)dw(0)(t) (7)

dx = f(x)dt+ B(x)

(
udt+

1√
|ρ|
dw(1)(t)

)
(8)

with xt ∈ <n×1 denoting the state of the system, B(x, t) :
<n × < → <n×n is the control and diffusions matrix,
f(x, t) : <n ×< → <n×1 the passive dynamics, ut ∈ <n×1

the control vector and dw ∈ <p×1 brownian noise. Notice
that the difference between the two diffusions above is
on the controls that appear in (8). These controls together
with the passive dynamics define a new drift term. For our
analysis here we assume B−1 exists. Expectations evaluated



on trajectories generated by the controlled dynamics and
uncontrolled dynamics are represented as E(0)

τ i and E(1)
τ i

respectively. The corresponding probability measures of the
aforementioned expectations are P and Q. We continue our
analysis with the main result in (3) and the definition of the
Radon-Nikodým derivative:

dQ
dP

= exp (ζ(u)) and
dP
dQ

= exp (−ζ(u)) (9)

where according to Girsanov’s theorem [18] (see also
section IX) adapted to the diffusion processes (7) and (8)
the term ζ(u) is expressed as follows:

ζ(u) =
1

2
|ρ|
∫ tN

ti

uTudt+
√
|ρ|
∫ tN

ti

uT dw(1)(t) (10)

An informal explanation for the applicability of Girsanov’s
theorem is that it provides the link between expectations eval-
uated on trajectories generated from diffusions with different
drift terms. Substitution of (9) and (21) into inequality (3)
gives the following result:

ξ(x) = − 1

|ρ| log E
(0)
τ i

[
exp (−|ρ|J (x))

]
≤ E(1)τ i

[
J (x) + 1

|ρ|ζ(u)
]

(11)

The expectation on the right side of the inequality in (11)
is further simplified as follows:

ξ(x) ≤ E(1)τ i

[
J (x) + 1

2

∫ tN

ti

uTudt

]
(12)

The right term of the inequality above corresponds to the
cost function of a stochastic optimal control problem that is
bounded from below by the free energy. Besides providing
a lower bound on the objective function of the stochastic
optimal control problem inequality (12) expresses also how
this lower bound should be computed. This computation
involves forward sampling of the uncontrolled dynamics,
evaluation of the expectation of the exponentiated state
depended part φ(xtN ) and q(xt) and the logarithmic trans-
formation of this expectation. Surprisingly, inequality (12)
was derived without relying on any principle of optimality.
It only takes the application of Girsanov theorem between
controlled and uncontrolled stochastic dynamics and the use
of dual relationship between free energy and relative entropy
to find the lower bound in (12). Essentially inequality (12)
defines a minimization process in which the right part of the
inequality is minimized with respect ζ(u) and therefore with
respect to control u. At the minimum, when u = u∗ then
the right part of the inequality in (12) reaches its optimal
ξ(x). Under the optimal control u∗ and according to (13)
the optimal distribution takes the from:

dQ∗(x) =

exp

(
− |ρ|

∫
q(x)dt

)
dP(x)

∫
exp

(
− |ρ|

∫
q(x)dt

)
dP(x)

(13)

An important question to ask is what is the link between
(12) and the dynamic programming principle. To find this
link the next step is to show that ξ(x) satisfies the HJB
equations and therefore it is the corresponding value func-
tion. More precisely, we introduce a new variable Φ(x, t)

defined as Φ(x, t) = E(0)
τ i (exp (ρJ (x))). The Feynman-Kac

lemma [19] tells us that this function satisfies the backward
Chapman Kolmogorov PDE. Therefore the following equa-
tion holds:

−∂tΦ = ρq0Φ + fT (∇xΦ) +
1

2|ρ|
tr
(

(∇xxΦ)BBT
)

(14)

For ρ = −|ρ| < 0 and since ξ(x) = 1
ρ log Φ(x, t) =

− 1
|ρ| log Φ(x, t) we will have that ∂tΦ = −|ρ|Φ∂tξ, ∇xΦ =

−|ρ|Φ∇xξ and ∇xxΦ = |ρ|Φ∇xxξ−|ρ|2Φ∇xξ∇xξ
T it can

be trivially shown that ξ(x) satisfies the nonlinear PDE:

−∂tξ = q0 + (∇xξ)
T f − 1

2
(∇xξ)

TBBT (∇xξ)

+
1

2|ρ|
tr
(

(∇xxξ)BBT
)

(15)

Similarly, for the case of ρ = |ρ| > 0 the resulting PDE
will be:

−∂tξ = q0 + (∇xξ)
T f +

1

2
(∇xξ)

TBBT (∇xξ)

+
1

2|ρ|
tr
(

(∇xxξ)BBT
)

(16)

The nonlinear PDEs above corresponds to the HJB equa-
tion [20] for the case of the minimizing and maximizing
optimal control problem with control weight R−1 = I
and therefore, ξ(x) is the corresponding minimizing or
maximizing value function. Note that in order to derive the
PDEs above we did not use any principle of optimality. The
analysis so far is summarized by the following corollary in
which we use the function sign(x) = −1 ∀x < 0 and
sign(x) = 1 ∀x > 0. More precisely we will have:

Corollary 1: Consider the expectation operators E(0),
E(1) evaluated on state trajectories sampled according to
(7) and (8) respectively. The function ξ(x, t) specified as:

ξ(x, t) =
sign(ρ)

|ρ|
log E(0)

[
exp (sign(ρ)|ρ|J (x))

]
(17)

is the value function of the stochastic optimal control
problems:

ξ(x, ti) = min
u
E(1)

[ ∫ tN

ti

(
q(x)− 1

2
uTu

)
dt

]
, ∀ρ > 0

ξ(x, ti) = max
u
E(1)

[ ∫ tN

ti

(
q(x) +

1

2
uTu

)
dt

]
, ∀ρ < 0

subject to the stochastic dynamics in (8).
Corollary 1 shows how to compute the value function

ξ(x, t). More precisely, the computation involves sampling
of state trajectories based on the uncontrolled dynamics (7)
and evaluation of the expectation in (17) on the resulting
state trajectories. To derive (17) it takes only the application
of Girsanov’s theorem and Jensen’s inequality.



IV. FEEDBACK CONTROL FOR MARKOV DIFFUSION
PROCESSES

There are different ways to make use of the fundamental
inequality in (12) and derive controllers. For lower dimen-
sional stochastic control problems evaluation of the free
energy under the uncontrolled dynamics provides a good
estimate of the value function. For planning and control prob-
lems of dynamical systems in high dimensional state spaces,
the evaluation of the expectation may become numerical
intractable. Here we show the derivation of the iterative case
based on successive application of Girsanov’s theorem for the
change of measure at iteration k of the iterative algorithm.

Lemma 1: Consider the stochastic dynamics dx =

f(x)dt + B(x)

(
ukdt+ 1√

|ρ|
dw(1)(t)

)
with the control

policy uk(x, t) at iteration k. When sampling from these
dynamics, the risk seeking function ξ(x, t) in (17) takes the
form:

ξ(x, t) = − 1

|ρ|
log

∫
exp

[
− |ρ|S(x,uk(x, t))

]
dx

with the path cost S(x,uk) defined as:

S(x,uk) = J (x) +
1

2

(
η(u) +

∫ tN

ti

||µ(x)||2Σ−1δt

)
(18)

The term η(u) in the path cost above is defined as η(u) =∫ tN
ti

uTk ukdt +
∫ tN
ti

2uTkB
−Tµ(x)dt and terms µ(x) =(

δx
δt − f(x)−Buk

)
, Σ = BBT .

Proof: The proof relies on the change of measure and
use of the Radon Nikodym derivative for markov diffusion
processes. More precisely we will have that:

ξ(x)= − 1

|ρ|
log

∫
exp (−|ρ|J (x))dP

= − 1

|ρ|
log

∫
exp (−|ρ|J (x))

dP
dQ

dQ

= − 1

|ρ|
log

∫
exp (−|ρ|J (x)− ζ(u))dQ (19)

The measure dQ takes the form of a path integral [21] and
thus it is expressed as:

Q
(

xN , tN |xi, ti
)

=
exp

(
− |ρ|2

(∫ tN
ti

µ(x)TΣ−1µ(x)dt
))

(2πdt)n/2|Σ|1/2
(20)

where we use the fact that Bdwk =
√
ρµ(x)δt and

µ(x) =
(
δx
δt − f(x)−Buk

)
. Based on the aforementioned

inequalities the term ζ(u) in the Girsanov’s theorem [22],
[23] will become equal to:

ζ(u) =
1

2
|ρ|
∫ tN

ti

uTudt+
√
|ρ|
∫ tN

ti

uT dw(1)(t)

=
1

2
|ρ|
∫ tN

ti

uT
k ukdt+ |ρ|

∫ tN

ti

uT
k B−Tµ(x)dt

=
1

2
|ρ| η(u) (21)

with η(u) defined as:

η(u) =

∫ tN

ti

uT
k ukdt+

∫ tN

ti

2uT
k B−Tµ(x)dt

=

∫ tN

ti

uTudt+
1√
|ρ|

∫ tN

ti

2uT dw(1)(t) (22)

Substitution of the function above ζ(u) and the path
integral into (19) results in the expression:

ξ(x) = − 1

|ρ|
log

∫
exp (−|ρ|J (x)− ζ(uk))dQ =

− 1

|ρ| log
∫

exp

[
− |ρ|

(
J (x) +

η(u) +
∫ tN
ti
||µ(x)||2

Σ−1dt

2

]]
dx

with dx defined as dx = dxti+1 , ..., dxtN . Thus in a more
compact form we will have that:

ξ(x) = − 1

|ρ|
log

∫
exp

[
− |ρ|S(x,uk)

]
dx

with the term S(x,uk) defined as S(x,uk) = J (x) +
1
2

(
η(u) +

∫ tN
ti
||µ(x)||2

Σ−1dt
)

.

A. Iterative Path Integral Control

In this section we derive the iterative optimal control based
on lemma 1. The final result is given in the form of the
theorem that follows:

Theorem 1: Consider the stochastic optimal control
problem:

ξ(x) = min
u
E(1)

[ ∫ tN

to

(
q(x) +

1

2
uTu

)
dt

]
subject to the stochastic constraints:

dx = f(x)dt+B(x)

(
udt+

1√
|ρ|
dw(1)(t)

)
The iterative optimal control solution has the form:

uk+1(x, t)dt = uk(x, t)dt+
1
√
ρ
Epk
(
dwk(t)

)
(23)

with Pk having the form of a path integral expressed
as: Pk = e−|ρ|S(x,uk(x,t))∫

e−|ρ|S(x,uk(x,t)dx
and the path cost term

S(x,uk(x, t) defined as in (18).
Proof: To get the control we take the derivative of

S(x,uk(x, t)) with respect to xti . More precisely we will
have that:

∇xti
ξ(xti) = − 1

|ρ|
∇xti

(
log

∫
exp

[
− |ρ|S(x,uk)

]
dx

)
= − 1

|ρ|
∇xti

∫
e−|ρ|S(x,uk(x,t))dx∫

e−|ρ|S(x,uk(x,t)dx

The support space of the integral is dx with dx =
dxti+1 , ..., dxtN . Under the assumption that the quantities



e−|ρ|S(x,uk(x,t)) and ∇xe
−|ρ|S(x,uk(x,t)) are jointly continu-

ous we will have that:

∇xti
ξ(x) =

∫
e−|ρ|S(x,uk(x,t))∇xti

S(x,uk(x, t))dx∫
e−|ρ|S(x,uk(x,t)dx

=

EPk
(
∇xti

S(x,uk(x, t))

)
=

EPk
(
∇xti

q(x)δt+∇xti
µ(x)TΣ−1(µ(x) + Buk(x, t))dt

)
The probability Pk is defined as follows: Pk =
e−|ρ|S(x,uk(x,t))∫
e−|ρ|S(x,uk(x,t)dx

. The quantity ∇xti
µ(x) is equal to

∇xti
µ(x) = 1

δtI+∇xti
f(x)+B∇xti

u(x) after substituting
back we will have:

∇xti
ξ(x) = EPk

(
∇xq(x)dt

)
+ EPk

((
−I +∇xti

f(x)dt+ B∇xti
u(x)dt

)
Σ−1µ(x)

)
+ EPk

((
−I +∇xti

f(x)dt+ B∇xti
u(x)dt

)
Σ−1Buk(x, t)

)
The optimal controls are given by:

uk+1(x, t)dt = −R−1BT∇xξ(x)dt

= R−1BTEPk
(

Σ−1Buk(x, t)dt+ Σ−1µ(x)dt

)
+O(dt2)

= R−1BTΣ−1BEPk
(

uk(x, t)dt+
1
√
ρ
dwk(t)

)
= EPk

(
uk(x, t)dt+

1
√
ρ
dwk(t)

)
Because limdt→0O(dt2) = 0. Since R = I and Σ = BBT
and B is invertible. The feedback policy uk(x, t) is evaluated
at the current state x we have (23).

There are stochastic dynamical systems in which the
control and diffusion matrices are partitioned such that B =
[0T , BTc ]T with Bc invertible, while the drift term can also
be partitioned accordingly f = [fTm, fTc ]T . In [5] it has been
show that the path integral formulation is expressed as in (20)
with Bcdwk =

√
ρµ(x)dt, µ(x) =

(
δxc
δt − fc(x)−Bcuk

)
and Σc = BcBTc . Our analysis in theorem 1 holds also for
the aforementioned types of systems.

V. DERIVATION BASED ON BELLMAN PRINCIPLE

We consider stochastic optimal control in the classical
sense, as a constrained optimization problem, with the cost
function under minimization given by the mathematical
expression:

V (x) = min
u
E

[
J(x,u)

]
= min

u
E

[ ∫ tN

to

L(x,u, t)dt

]
subject to the nonlinear stochastic dynamics:

dx = F(x,u)dt+ B(x)dw (24)

with x ∈ <n×1 denoting the state of the system, u ∈ <p×1

the control vector and dw ∈ <p×1 brownian noise. The

function F(x,u) is a nonlinear function of the state x and
affine in controls u and therefore is defined as F(x,u) =
f(x) + G(x)u . The matrix G(x) ∈ <n×p is the control
matrix, B(x) ∈ <n×p is the diffusion matrix and f(x) ∈
<n×1 are the passive dynamics. The cost function J(x,u) is
a function of states and controls. Under the optimal controls
u∗ the cost function is equal to the value function V (x). The
term L(x,u,t) is the running cost and it is expressed as:

L(x,u, t) = q0(x, t) + q1(x, t)u +
1

2
uTRu (25)

Essentially, the running cost has three terms, the first
q0(xt, t) is a state-dependent cost, the second term depends
on states and controls and the third is the control cost with the
term R > 0 the corresponding weight. The stochastic HJB
equation [12], [20] associated with this stochastic optimal
control problem is expressed as follows:

−∂tV = min
u

(
L + (∇xV )TF +

1

2
tr
(
(∇xxV )BBT

))
(26)

To find the minimum, the cost function (25) is inserted into
(26) and the gradient of the expression inside the parenthesis
is taken with respect to controls u and set to zero. The
corresponding optimal control is given by the equation:

u(xt) = −R−1

(
q1(x, t) + G(x)T∇xV (x, t)

)
(27)

These optimal controls will push the system dynamics
in the direction opposite that of the gradient of the value
function ∇xV (x, t). The value function satisfies nonlinear,
second-order PDE:

−∂tV = q̃ + (∇xV )T f̃ − 1

2
(∇xV )TGR−1GT (∇xV )

+
1

2
tr
(
(∇xxV )BBT

)
(28)

with q̃(x, t) and f̃(x, t) defined as q̃(x, t) =
q0(x, t) − 1

2q1(x, t)TR−1q1(x, t) and f̃(x, t) =
f(x, t) − G(x, t)R−1q1(x, t) and the boundary condition
V (xtN ) = φ(xtN ). Given the exponential transformation
V (x, t) = −λ log Ψ(x, t) and the assumption
λG(x)R−1G(x)T = B(x)B(x)T = Σ(xt) = Σ the
resulting PDE is formulated as follows:

−∂tΨ = − 1

λ
q̃Ψ + f̃T (∇xΨ) +

1

2
tr ((∇xxΨ)Σ) (29)

with boundary condition: Ψ(x(tN )) =
exp

(
− 1
λφ(x(tN ))

)
. By applying the Feynman-Kac

lemma to the Chapman-Kolmogorov PDE (29) yields its
solution in form of an expectation over system trajectories.
This solution is mathematically expressed as:

Ψ (xti) = E
(0)
τ i

[
exp

(
−
∫ tN

ti

1

λ
q̃(x)dt

)
Ψ(xtN )

]
(30)

The expectation E
(0)
τ i is taken on sample paths τ i =

(xi, ...,xtN ) generated with the forward sampling of the



uncontrolled diffusion equation dx = f̃(xt)δt + B(x)dw.
The expectation E

(1)
τ i above, is evaluated on trajectories

generated with forward sampling of the controlled diffusion
in (24). The optimal controls are specified as:

uPI(x) = −R−1

(
q1(x, t)− λG(x)T

∇xΨ(x, t)

Ψ(x, t)

)
Since, the initial value the function V (x, t) is the minimum

of the expectation of the objective function J(x,u) subject
to controlled stochastic dynamics in (24), it can be trivially
shown that:

V (x, ti) = −λ logE
(0)
τ i

[
exp

(
−
∫ tN

ti

1

λ
q̃(x)dt

)
Ψ(xtN )

]
≤ E(1)

τ i

(
J(x,u)

)
(31)

Note that the inequality above in similar to (12) when the
following equations hold:

q1(x) = 0, R = I, λ =
1

|ρ| ,G = B,B =
1√
|ρ|

B (32)

The first three equalities guarantee that J(x,u) = J (x) −
|ρ|
ρ

∫ tN
ti

uTudt are identical, and the last two equalities make
sure that the expectations are evaluated under the same
diffusions and therefore E(0)

τ i ≡ E
(0)
τ i and E(1)

τ i ≡ E
(1)
τ i . Under

the conditions above the Kolmogorov PDEs (14) and (29)
and the HJB equations (28) and (15) are identical.

VI. MARKOV JUMP DIFFUSIONS PROCESSES

We consider the one-dimensional uncontrolled and con-
trolled markov jump diffusions processes specified as dx =
f(x)dt + 1√

|ρ|
B(x)dw(0)(t) + h(x)dP(0)(t) and dx =

f(x)dt + B(x)(udt + 1√
|ρ|
dw(1)(t)) + h(x)dP(1)(t), with

xt ∈ <1×1 denoting the state of the system, B(x, t) ∈ <1×1

the diffusion-control transition matrix, f(x, t) ∈ <1×1 the
passive dynamics, ut ∈ <1×1 the control vector and dw ∈
<1×1 brownian noise. The term P (t) ∈ <1×1 is Poisson
distributed and h(x, t) ∈ <1×1 is the jump-amplitude or the
Poisson process coefficient with E

(
dP(t)(i)

)
= ν(i)δt and

Var
(
dP(t)(i)

)
= ν(i)δt for i = 0, 1. The term ν(t) > 0 is

the ith jump rate or jump density and νδt is the mean count
of the Poisson process in the time interval (t, t+dt]. Poisson
processes obey the Markov property while they also have in-
dependent increments and thus Cov [dP(t)(tj)dP(t)(tk)] =
ν(tj)dtδk,j . Based on Girsanov’s theorem [24] for markov
jump diffusion processes, the Radon-Nikodým derivative is
now specified as dP

dQ = exp (−ζ(u)) with ζ(u) defined as
follows:

ζ(u) =

∫ tN

ti

1

2
|ρ|u(t)2dt+

√
|ρ|
∫ tN

ti

u(t)dw(1)(t) + V(γ(J))

V(γ(J)(t)) =
∫ tN
ti

((
γ(J)(t)− 1

)
ν0(t)

)
δt +∑P(1)(t)

j=1 log γ(J)(t) and γ(J)(t) = ν(1)(t)
ν(0)(t)

. The lower

bound on the value function is now derived by incorporating
the Radon-Nikodým derivative into (12).

ξ(x) =
1

ρ
log E(0)

[
exp (ρJ (x))

]
≤ E(1)

τ i

[
J (x)− 1

ρ
ζ(u)

]
≤ E(1)

[
J (x) +

1

2

∫ tN

ti

u(t)2δt+ ρV(γ(J)(t))

]
Thus we will have:

ξJ(x) ≤ E(1)

[
J (x) +

1

2

∫ tN

ti

u(t)2dt

]
The new bound under sampling based on markov jump

diffusion processes is defined by the equation ξJ(x) =
ξ(x)−E(1)

(
ρV(γ(J)(t))

)
. For the cases where the change of

measure between the control and uncontrolled markov jump
diffusion includes only changes in the drift γ(J)(t) = 1, the
bound above simplifies to:

ξ(x) = ξJ(x) ≤ E(1)τ i

[
J (x) + 1

2

∫ tN

ti

u(t)2dt

]
Thus when the change of measure in the markov jump

diffusion process is only due to the change in the drift,
the corresponding bound of the cost function has the same
formulation with the one derived for diffusion processes.

VII. CONNECTIONS TO KL CONTROL

In the KL control framework [10], [11], [25] the analysis
starts with the application of the Bellman principle of opti-
mality on Markov Decision Processes (MDP) and under the
running cost specified as a sum of a state depended term
and the Kullback Leibler Divergence between the transition
densities of the controlled and uncontrolled dynamics. In
particular, the running cost is specified as L (x,u) = q(x)+

H (Q||P) = q(x) + E(1)

(
log p(x

′
|x,u)

p(x′|x)

)
. The transition

probabilities under the controlled and uncontrolled dynamics
are represented as p(x′|x,u) and p(x′|x). Application of the
Bellman principle of optimality results in the minimization
of the quantity:

Vt(x) = min
u∈U

(
q(x) + E(1)

(
log

p(x
′ |x,u)

p(x|x)
+ Vt+1(x′)

))
Depending on the stochastic optimal control problem

w(x′) is equal to V (x′), αV (x′), Vt+1(x′). For our presen-
tation here we choose w(x′) = Vt+1(x′) that corresponds to
finite horizon case. The u dependent terms in the functional
above are minimized and thus we will have that:

E(1)

(
log

p(x′|x,u)

p(x′|x)
+ Vt+1(x′)

)
=

E(1)

(
log

p(x′|x,u)

p(x′|x) exp (−Vt+1(x′))

))



For the purposes the normalization term G[Φ](x) is in-
troduced with Φ(x) = exp (−w(x′)) being the desirabil-
ity function defined as G[Φ](x) =

∑
p(x′|x)Φ(x′) =

E(0)

(
Φ(x′)

)
, we will have that:

E(1)

(
log

u(x
′ |x)

p(x′|x)
+ Vt+1(x′)

)
=

− log G[Φ](x) +H
(
p(x′|x,u)

∣∣∣∣∣∣∣∣p(x′|x)Φ(x′)

G[Φ](x)

)
Substitution of the expression above into the Bellman

minimization equation results in:

min
u∈U

(
q(x)− log G[Φ](x) +H

(
u(x|x)

∣∣∣∣∣∣∣∣p(x′|x)Φ(x′)

G[Φ](x)

))
The minimum of the Bellman equation is attained by:

p∗(x′|x,u) =
p(x′|x)Φ(x)

G[Φ](x)

The equation above provides the transition probability
under the optimal control law and in that sense it the optimal
transition probability. Clearly the optimal distribution above
is identical to equations (6) and (13). Substitution of the op-
timal distribution above will result in the Bellman equation:

Φ(x) = exp (−q(x))G[Φ](x′)

The link with the continuous case is established by writing
the Bellman equation for an MDP with continuous state
space.

Φ(δt)(x) = exp (−q(x)δt)G[Φ(δt)](x
′)

Rearrangement of the terms results in:

(
exp (q(x)δt)−1

)
Φ(δt)(x) = E(0)

(
Φ(δt)(x

′)−Φ(δt)(x)

)
Under the limit δ → 0 the equation results the backward

Chaplman Kolmogorov PDE in (29) for ρ = 1.

A. The compositionally of optimal controls

In the KL optimal control framework the optimal con-
trol is constructed [25] as the convex combination of
the K optimally controlled distributions p∗k(x′|x,u). These
optimally controlled distributions correspond to K opti-
mal control problems which differ only at the terminal
cost. Thus the optimal control takes the form: u∗(x) =∑
kmk(x)p∗k(x′|x,u) with the mixing term mk(x) defined

as: mk(x) = wkG[Φ](x)∑
s wsG[Φ](x) . For continuous time optimal con-

trol problems the compositionally control law is expressed

as u∗(x) =
∑
kmk(x)

(
R−1GT ∇Φk(x)

Φk(x)

)
.

VIII. DISCUSSION

This work shows the connection of path integral control
framework as presented in the machine learning and robotic
communities [1], [2], [4], [5], [7], [10] with work in the con-
trol theoretic community on risk sensitivity [12], [13], [15],
[16]. Essentially there are two methodological approaches to
derive the path integral framework. In the first, stochastic
optimal control is specified as minimization of the objective
E

(1)
τ i (J(x,u)) subject to the controlled dynamics. The HJB

PDE is derived based on the Bellman principle of optimality.
The exponential transformation of the value function V (x)
and the connection between control cost and variance result
in the transformation of the HJB in to the backward Chapman
Kolmogorov. The Feynman-Kac lemma is applied and the
solution of the Chapman Kolmogorov PDE together with
the lower bound on the objective function are provided.
The second methodological approach starts with the duality
between free energy and relative entropy and the resulting
optimization problem as expressed in (4). For diffusion
processes affine in control and noise and under the use of
Girsanov’s theorem, the aforementioned optimization results
in formulating the bound ξ(x) of the objective function
E(1)
τ i (J(x,u)) which is typically found in stochastic optimal

control. The link to Bellman optimality is established by
showing that, this bound ξ(x) satisfies the HJB equation and
therefore it is a value function.

Inside the class of the stochastic dynamics of markov
diffusion processes affine in control and noise, Dynamic
Programming is more general since (see conditions (32)) it
incorporates general cost functions and stochastic dynamics.
This generalization however, is reduced by the assump-
tion regarding control cost and the variance of the noise
λG(x)R−1G(x)T = B(x)B(x)T .

In the second approach the lower bound ξ(x) of the
accumulated trajectory cost E(1)

τ i (J(x,u)) is derived without
relying on the Bellman Principle. In fact, this lower bound
defines a new form of optimality which, as it is shown
in [12], [13] as well as in this work, for the case of
diffusion processes is equivalent to the Bellman principle
of optimality. Here we derived the lower bound of the cost
of stochastic optimal control for nonlinear markov jump
diffusion processes. We show that the form of the lower
bound remains similar with the case of diffusion processes
for as long the change in the probability measure is only due
to the changes in the drift of the dynamics of the markov
jump diffusion process.

In the KL stochastic optimal control framework the deriva-
tion relies on the Bellman Principle of Optimality in discrete
time. The resulting distribution p∗k(x′|x,u) is optimal since
it is the distribution that results when actions are optimal. In
that sense the KL framework, in its initial formulation [10]
does not explicitly provide an optimal control law but instead
it provides the optimal distribution or optimal transition
probability under the use of optimal control law. For the
case of control affine diffusions, KL control framework
incorporates control-only and state-only depended terms in



contrast to PI derived based on the Bellman principle in
which cross terms between controls and states may be
considered. The compositionally of optimal controls includes
control laws and thus it can incorporate any analytically
derived optimal control as well as PI control. The strength
of KL control framework is in its generalizability. A shown
in [10] the KL control is applicable to different forms of
stochastic optimal control problems which include finite,
infinite horizon, discounted and first exit optimal control. It
remains an open question whether this level of generizability
is achieved in continuous time since one can derive the
optimal control law for infinite horizon by using risk sensitive
cost functions as in [15].

IX. APPENDIX

We will the nonlinear diffusions dx = f(x)dt +
B(x)Ldw(0)(t) and dx = f(x)dt + G(x)udt +
B(x)Ldw(1)(t). We also have that B(x)LLTB(x)T = Σw.
We consider the corresponding probability measures:

dP
(

xN , tN |xi, ti

)
=

exp
(
− 1

2

(∫ tN
ti
||µk(x)||2Σ−1

w

dt
))

(2πdt)m/2|Σw|1/2
dx

dQ
(

xN , tN |xi, ti;uk

)
=

exp
(
− 1

2

(∫ tN
ti
||λk(x)||2Σ−1

w

dt
))

(2πdt)m/2|Σw|1/2
dx

with µk(x) =
(
δx
δt − f(x, t)

)
thus µk(x)dt =

B(x)Ldw(0)(t) and λk(x) = δx
δt − f(x, t) −G(x)uk(t) =

µk(x) −G(x)uk(t) thus λk(x)dt = B(x)Ldw(1)(t). Also
we have that λk(x)dt = B(x)Ldw(1)(t) = µk(x)dt −
G(x)uk(t)dt and thus B(x)Ldw(1)(t) = B(x)Ldw(0)(t)−
G(x)uk(t)dt. Now we would like to find the expression:

dP
(

xN , tN |xi, ti

)
dQ
(

xN , tN |xi, ti;uk

) =
exp

(
− 1

2

(∫ tN
ti
||µk(x)||2Σ−1

w

dt
))

exp

(
− 1

2

(∫ tN
ti
||λk(x)||2Σ−1

w

dt

))
= exp

[
− 1

2

∫ tN

ti

(
||µk(x)||2Σ−1

w
− ||λk(x)||2Σ−1

w

)
dt

]
= exp

[
− 1

2

∫ tN

ti

(
− uk(t)

TG(x)TΣ−1
w G(x)uk(t)dt

]
× exp

[
−
∫ tN

ti

uk(t)
TG(x)TΣ−1

w B(x)Ldw(0)(t)

)]
Since B(x)Ldw(1)(t) = B(x)Ldw(0)(t) −G(x)uk(t)dt

then we will have that B(x)Ldw(0)(t) = B(x)Ldw(1)(t) +
G(x)uk(t)δt. We are going to substitute the expression
B(x)Ldw(0)(t) with B(x)Ldw(1)(t) + G(x)uk(t)dt and
thus the ratio of the probability measures is expressed as:

dP
dQ

= exp

[
− 1

2

∫ tN

ti

(
uk(t)

TG(x)TΣ−1
w G(x)uk(t)δt

]
× exp

[ ∫ tN

ti

uk(t)TG(x)TΣ−1
w B(x)Ldw(1)(t)

)]
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