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Abstract— This paper presents a unified view of stochastic
optimal control theory as developed within the machine learning
and control theory communities. In particular we show the
mathematical connection between recent work on Path Integral
(PI) and Kullback Leibler (KL) divergence stochastic optimal
control theory with earlier work on risk sensitivity and the
fundamental dualities between free energy and relative entropy.
We discuss the applications of the relationship between free
energy and relative entropy to nonlinear stochastic dynamical
systems affine in noise and nonlinear stochastic dynamics affine
in control and noise. For this last class of systems, we provide
the PI optimal control and its iterative formulation. In addition,
we present the connection of PI control derived based on
Dynamic Programming with the information theoretic dualities.
Finally, we provide links to KL stochastic optimal control and
discuss generalizations and future work.

I. INTRODUCTION

Optimal control for nonlinear Markov diffusions processes
based on path integrals demonstrated remarkable applicabil-
ity to robotic control and planning problems. For continuous
state actions spaces and continuous time, work in [14], [15]
provided the Path Integral (PI) representation of stochastic
optimal control for a special class of dynamics and presented
new insights regarding symmetry breaking phenomena and
their connection to optimal control. In [35], PI control frame-
work was extended to stochastic optimal control problems
for multi-agents systems. In [26], [27] the PI control was
derived for the case of Markov diffusions processes with
state dependent control and diffusions matrices. Additionally,
an iterative algorithm was provided for the cases in which
desired trajectories and/or control gains are parameterized
with the use of Dynamic Movement Primitives (DMPs). The
resulting algorithm Policy Improvement with Path Integrals
(PI2) has been applied to a variety of robotic systems for
tasks such as planning, gain scheduling and variable stiffness
control [2], [3], [21], [24].

Parallel to the work in continuous time, in [31], [34]
the Bellman principle of optimality was applied for discrete
time optimal control problems in which the control cost is
formulated as the Kullback Leibler (KL) divergence between
the controlled and uncontrolled dynamics. The resulting
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framework is applicable to a large class of control prob-
lems which include finite, infinite horizon, exponentially
discounted and first exit.

In this work we derive a unified view of PI and KL
control as presented in machine learning [14], [15], [31],
[34] and control theory [4], [6]–[9] communities. This unified
view relies on the relationship between free energy and
relative entropy which is derived in Section II. In Section III
we apply this relationship to nonlinear stochastic dynamics
affine in noise. In Section IV, we apply this relationship
to nonlinear stochastic dynamics affine in noise and control.
Furthermore we derive the iterative PI control without policy
parameterization. In section V we show how the PI control
framework is derived based on the Bellman principle of
optimality and contrast this approach with the one in Section
IV. In Section VI we provide links to KL-control. Finally
in Section VII we conclude and discuss the connections
between different approaches.

II. BASIC DUALITY RELATIONSHIPS OF FREE ENERGY
AND RELATIVE ENTROPY

In this section we derive the fundamental duality rela-
tionships between free energy and relative entropy [4]. This
relationship is important for the derivation of stochastic
optimal control. Let (Z,Z) measurable space and P(Z) the
corresponding probability measure defined on the measurable
space. For our analysis we consider the following definitions.

Definition 1: Let P ∈ P(Z) and the function J (x) :
Z → < be a measurable function. Then the term:

E
(
J (x)

)
= log

∫
exp (ρJ (x))dP (1)

is call free energy of J (x) with respect to P.
Definition 2: Let P ∈ P(Z) and Q ∈ P(Z), the relative

entropy of P with respect to Q is defined as:

I (Q||P) =

{ ∫
log dQ

dP dQ if Q << P and log dQ
dP ∈ L

1

+∞ otherwise

We will also consider the objective function:

ξ(x) =
1

ρ
E
(
J (x)

)
=

1

ρ
logEP

[
exp (ρJ (x))

]
(2)

with J (x) = φ(xtN ) +
∫ tN
ti

q(x)dt is the state depended
cost. The objective function above takes the form ξ(x) =
EP (J ) + ρ

2V ar (J ) as ρ → 0. This form allows us to get
the basic intuition for constructing such objective functions.
Essentially for small ρ the cost is a function of the mean



the variance. When ρ > 0 the cost function is risk sensitive
while for ρ < 0 is risk seeking.

To derive the basic relationship between free energy and
relative entropy we express the expectation EP taken under
the measure P as a function of the expectation EQ taken
under the probability measure Q. More precisely will have:

EP

[
exp (ρJ (x))

]
=

∫
exp (ρJ (x))dP

=

∫
exp (ρJ (x))

dP
dQ

dQ

By taking the logarithm of both sides of the equations
above and making use of the Jensen’s inequality we will
have:

logEP

[
exp (ρJ (x))

]
= log

∫
exp (ρJ (x))

dP
dQ

dQ

≥
∫

log

(
exp (ρJ (x))

dP
dQ

)
dQ

=

∫ (
ρJ (x) + log

dP
dQ

)
dQ

=

∫
ρJ (x)dQ− I (Q||P)

We multiply the inequality above with 1
ρ for case of ρ < 0

or ρ = −|ρ| and thus we have:

ξ(x) = − 1

|ρ|
E (J (x)) ≤ EQ (J (x)) +

1

|ρ|
I (Q||P) (3)

where E(1) (J (x)) =
∫
J (x)dQ. The inequality above

gives us the duality relationship between relative entropy
and free energy. Essentially one could define the following
minimization problem:

− 1

|ρ|
E (J (x)) = inf

[
EQ (J (x)) +

1

|ρ|
I (Q||P)

]
(4)

The infimum in (4) is attained at Q∗ given by:

dQ∗ =
exp (−|ρ|J (x))dP∫
exp (−|ρ|J (x))dP

(5)

When ρ > 0 the inequality in (3) becomes from ≤ to
≥ and the inf in (4) becomes sup. In the next section we
show how inequality 4is transformed to a stochastic optimal
control problem for the case of Markov diffusion processes.

A rather intuitive way of writing (4) is to express it in the
form that follows:

−|ρ|−1E (J (x))︸ ︷︷ ︸
Helmholtz Free Energy

≤ State Cost + |ρ|−1Information Cost︸ ︷︷ ︸
Non-Equilibrium Free Energy

(6)

The terms State Cost and Information Cost are defined
as:

State Cost = EQ (J (x)) , Information Cost = I (Q||P)

We can think about steering a dynamical system from an
initial to a terminal state by minimizing a cost function at
the expense of the information cost. The summation of the
state and information cost corresponds to the free energy far
from the thermodynamic equilibrium. At the thermodynamic
equilibrium in which the minimum is attained for Q = Q∗,
equation (4) takes the form:

−|ρ|−1E (J (x))︸ ︷︷ ︸
Helmholtz Free Energy

= EQ∗ (J (x))︸ ︷︷ ︸
Energy

−|ρ|−1 · H (Q∗)︸ ︷︷ ︸
Generalized Entropy

(7)
The entropy functional H (Q∗) above is knonw as Baroh-

Jaunch entropy or generalized Boltzmann-Gibbs-Shannon
entropy [36] defined as H (Q) = −I (Q||P). Equation (7)
takes has form F = U − TS where F is the free energy,
T = |ρ|−1 is the temperature and S is entropy.

Next we apply (7) on nonlinear stochastic dynamics affine
in noise, nonlinear stochastic dynamics affine in control and
noise, and nonlinear dynamics with diffusion and poisson
noise.

III. NONLINEAR STOCHASTIC DYNAMICS AFFINE IN
NOISE

We consider the stochastic dynamics affine in noise:

dx = F(x,u)dt+ C(x)dw(t) (8)

with x ∈ <n×1 denoting the state of the system and
ut ∈ <p×1 the control vector , C(x) ∈ <n×p is the
diffusion matrix, F(x,u) ∈ <n×1 the drift dynamics, ΣC =
C(x)C(x)T ∈ <p×p and dw ∈ <p×1 brownian noise. We
also define the stochastic differential equation:

dx = A(x)dt+ C(x)dw(t) (9)

where the drift term A(x) ∈ <n×1 is defined as A(x) =
F(x, 0) and therefore it corresponds to the uncontrolled
dynamics in (8). Expectations evaluated on trajectories gen-
erated by the controlled dynamics and uncontrolled dynamics
are represented as EP and EQ respectively. We also define
the following quantity:

δF(x,u) = F(x,u)−A(x) = F(x,u)− F(x, 0), ∀x,u

We continue our analysis with the result in (3) and the
definition of the Radon- Nicodyn derivative for the stochastic
differential equations (8) and (9). More precisely we will
have:

dQ
dP

= exp

[ ∫ tN

t0

(
δFTC(x)−1dw(t) +

1

2
δFTΣ−1C δFδt

)]
By substituting the equation above back into (3) we have

that:



− 1

|ρ|
E (J (x)) ≤ EQ

(
J (x) +

1

2|ρ|

∫ tN

t0

δFTΣ−1C δFδt

)
The equation above can be written in the form (6) with

the state cost term defined as:

State Cost = EQ (J (x)) (10)

And the information cost is expressed as:

Information Cost = EQ

(
1

2

∫ tN

t0

δFTΣ−1C δFδt

)
(11)

At the thermodynamic equilibrium in which the minimum
of non-equilibrium free energy is attained for Q∗ given by
(5), we have that:

− 1

|ρ|
E (J (x)) = EQ∗

(
J (x) +

1

2|ρ|

∫ tN

t0

δFT∗Σ−1C δF∗δt

)
where the term δF∗ is expressed as δF∗(x,u) =

F(x,u∗)−A(x) and u∗ and it corresponds to the different
between optimally controlled under u = u∗ and uncontrolled
dynamics u = 0.

IV. NONLINEAR STOCHASTIC DYNAMICS AFFINE IN
CONTROL AND NOISE

For our analysis in this section [4], [7] we consider the
uncontrolled and controlled stochastic dynamics of the form:

dx = f(x)dt+
1√
|ρ|

B(x)dw(0)(t) (12)

dx = f(x)dt+ B(x)

(
udt+

1√
|ρ|
dw(1)(t)

)
(13)

with xt ∈ <n×1 denoting the state of the system, B(x) ∈
<n×p is the control and diffusions matrix, f(x, t) ∈ <n×1 the
passive dynamics, ut ∈ <p×1 the control vector and dw ∈
<p×1 brownian noise. Notice that the difference between
the two diffusions above is on the controls that appear
in 13. These controls together with the passive dynamics
define a new drift term. Expectations evaluated on trajecto-
ries generated by the controlled dynamics and uncontrolled
dynamics are represented as EP and EQ respectively. The
corresponding probability measures of the aforementioned
expectations are P and Q. We continue our analysis with the
main result in (3) and the definition of the Radon- - Nicodyn
derivative.

dQ
dP

= exp (ζ(u)) and
dP
dQ

= exp (−ζ(u)) (14)

where according to Girsanov’s theorem [17] adapted to
the Markov diffusion processes (12) and (13) the term ζ(u)
is defined as follows:

ζ(u) =
1

2
|ρ|
∫ tN

ti

uTudt+
√
|ρ|
∫ tN

ti

uT dw(1)(t) (15)

An informal explanation for the applicability of Girsanov’s
theorem is that it provides the link between expectations eval-
uated on trajectories generated from diffusions with different
drift terms. Substitution of (14) and (25) into inequality (3)
gives the following result:

ξ(x) = − 1

|ρ|
logEP

[
exp (−|ρ|J (x))

]
≤ EQ

[
J (x) +

1

|ρ|
ζ(u)

]
(16)

The expectation on the right side of the inequality in (16)
is further simplified as follows:

ξ(x) = − 1

|ρ|
logEP

[
exp (−|ρ|J (x))

]
≤ EQ

[
J (x) +

1

2

∫ tN

ti

uTudt

]
(17)

The right term of the inequality above corresponds to the
cost function of a stochastic optimal control problem that is
bounded from below by the free energy. Besides providing
a lower bound on the objective function of the stochastic
optimal control problem inequality (17) expresses also how
this lower bound should be computed. This computation
involves forward sampling of the uncontrolled dynamics,
evaluation of the expectation of the exponentiated state
depended part φ(xtN ) and q(xt) and the logarithmic trans-
formation of this expectation. Surprisingly, inequality (17)
was derived without relying on any principle of optimality.
It only takes the application of Girsanov theorem between
controlled and uncontrolled stochastic dynamics and the use
of dual relationship between free energy and relative entropy
to find the lower bound in (17). Essentially inequality (17)
defines a minimization process in which the right part of the
inequality is minimized with respect ζ(u) and therefore with
respect to control u. At the minimum, when u = u∗ then
the right part of the inequality in (17) reaches its optimal
ξ(x). Under the optimal control u∗ and according to (18)
the optimal distribution takes the from:

dQ∗(x) =

exp

(
− |ρ|

∫
q(x)dt

)
dP(x)

∫
exp

(
− |ρ|

∫
q(x)dt

)
dP(x)

(18)

An important question to ask is what is the link between
(17) and the dynamic programming principle. To find this
link the next step is to show that ξ(x) satisfies the HJB equa-
tions and therefore it is the corresponding value function.
More precisely, we introduce a new variable Φ(x, t) defined
as Φ(x, t) = EP(exp (ρJ (x))). The Feynman-Kac lemma



[10] tells us that this function satisfies the backwad Chapman
Kolmogorov PDE. Therefore the following equation is true.

−∂tΦ = ρq0Φ + fT (∇xΦ) +
1

2|ρ|
tr
(

(∇xxΦ)BBT
)

(19)

For ρ = −|ρ| < 0 and since ξ(x) = 1
ρ log Φ(x, t) =

− 1
|ρ| log Φ(x, t) we will have that ∂tΦ = −|ρ|Φ∂tξ, ∇xΦ =

−|ρ|Φ∇xξ and ∇xxΦ = |ρ|Φ∇xxξ−|ρ|2Φ∇xξ∇xξ
T it can

be trivially shown that ξ(x) satisfies the nonlinear PDE:

−∂tξ = q0 + (∇xξ)
T f − 1

2
(∇xξ)

TBBT (∇xξ)

+
1

2|ρ|
tr
(

(∇xxξ)BBT
)

(20)

Similarly, for the case of ρ = |ρ| > 0 the resulting PDE
will have the form:

−∂tξ = q0 + (∇xξ)
T f +

1

2
(∇xξ)

TBBT (∇xξ)

+
1

2|ρ|
tr
(

(∇xxξ)BBT
)

(21)

The nonlinear PDEs above corresponds to the HJB equa-
tion [23] for the case of the minimizing and maximizing opti-
mal control problem and therefore, ξ(x) is the corresponding
minimizing or maximizing value function. Note that in oder
to derive the PDEs above we did not use any principle of
optimality.

A. Iterative Path Integral Control
Here we briefly discuss the derivation of the iterative PI

control [30] based on successive application of Girsanov’s
theorem. The analysis starts with the following lemma.

Lemma 1: Consider the stochastic dynamics dx =

f(x)dt + B(x)

(
ukdt+ 1√

|ρ|
dw(1)(t)

)
with the control

policy uk(x, t) at iteration k. When sampling from these
dynamics, the risk seeking function ξ(x, t) in (17) takes the
form:

ξ(x, t) = − 1

|ρ|
log

∫
exp

[
− |ρ|S(x,uk(x, t))

]
dx

with the path cost S(x,uk) defined as:

S(x,uk) = J (x) +
1

2

(
η(u) +

∫ tN

ti

||µ(x)||2Σ−1δt

)
(22)

The term η(u) in the path cost above is defined as η(u) =∫ tN
ti

uTk ukdt +
∫ tN
ti

2uTkB
−Tµ(x)dt and terms µ(x) =(

δx
δt − f(x)−Buk

)
, Σ = BBT .

Proof: The proof relies on the change of measure and
use of the Radon Nikodym derivative for Markov diffusion
processes. More precisely we will have that:

ξ(x)= − 1

|ρ|
log

∫
exp (−|ρ|J (x))dP

= − 1

|ρ|
log

∫
exp (−|ρ|J (x))

dP
dQ

dQ

= − 1

|ρ|
log

∫
exp (−|ρ|J (x)− ζ(u))dQ (23)

The measure dQ is expressed as:

dQ
(

xN , tN |xi, ti
)

=
exp

(
− |ρ|

2

(∫ tN
ti

µ(x)TΣ−1µ(x)dt
))

(2πdt)n/2|Σ|1/2
dx

(24)
where we use the fact that Bdwk =

√
ρµ(x)δt and

µ(x) =
(
δx
δt − f(x)−Buk

)
. Based on the aforementioned

inequalities the term ζ(u) in the Girsanov’s theorem [11],
[20] will become equal to:

ζ(u) =
1

2
|ρ|
∫ tN

ti

uTudt+
√
|ρ|
∫ tN

ti

uT dw(1)(t)

=
1

2
|ρ|
∫ tN

ti

uTk ukdt+ |ρ|
∫ tN

ti

uTkB−Tµ(x)dt

=
1

2
|ρ| η(u) (25)

with η(u) defined as:

η(u) =

∫ tN

ti

uTk ukdt+

∫ tN

ti

2uTkB−Tµ(x)dt

=

∫ tN

ti

uTudt+
1√
|ρ|

∫ tN

ti

2uT dw(1)(t) (26)

Substitution of the function above ζ(u) and the path
integral into (23) results in the expression:

ξ(x) = − 1

|ρ|
log

∫
exp (−|ρ|J (x)− ζ(uk))dQ =

− 1

|ρ| log
∫

exp

[
− |ρ|

(
J (x) +

η(u) +
∫ tN
ti
||µ(x)||2

Σ−1dt

2

]]
dx

with dx defined as dx = dxti+1
, ..., dxtN . Thus in a more

compact form we will have that:

ξ(x) = − 1

|ρ|
log

∫
exp

[
− |ρ|S(x,uk)

]
dx

with the term S(x,uk) defined as S(x,uk) = J (x) +
1
2

(
η(u) +

∫ tN
ti
||µ(x)||2

Σ−1dt
)

.
�

The next step is to compute the gradient of ξ(x) with
respect to the state x . The final result is given by the theorem
that follows:

Theorem 1: Consider the stochastic optimal control
problem:

ξ(x) = min
u
E(1)

[ ∫ tN

to

(
q(x) +

1

2
uTu

)
dt

]
subject to the stochastic constraints:

dx = f(x)dt+B(x)

(
udt+

1√
|ρ|
dw(1)(t)

)
The iterative optimal control solution has the form:

uk+1(x, t)dt = uk(x, t)dt+
1
√
ρ
Epk
(
dwk(t)

)
(27)



with Pk having the form of a path integral expressed
as: Pk = e−|ρ|S(x,uk(x,t))∫

e−|ρ|S(x,uk(x,t)dx
and the path cost term

S(x,uk(x, t) defined as in (22).
Proof: The gradient of ξ(x) with respect to xti is

formulated as:

∇xti
ξ(xti) = − 1

|ρ|
∇xti

∫
e−|ρ|S(x,uk(x,t))dx∫

e−|ρ|S(x,uk(x,t)dx
(28)

The support space of the integral is dx with dx =
dxti+1

, ..., dxtN . Under the assumption that the quantities
e−|ρ|S(x,uk(x,t)) and ∇xe

−|ρ|S(x,uk(x,t)) are jointly continu-
ous we have that:

∇xti
ξ(x) = EPk

(
∇xti

S(x,uk(x, t))

)
= EPk

(
∇xti

q(x)δt+∇xti
µ(x)TΣ−1(µ(x) + Buk(x, t))dt

)
The probability Pk is defined as follows: Pk =
e−|ρ|S(x,uk(x,t))∫
e−|ρ|S(x,uk(x,t)dx

. The quantity ∇xti
µ(x) is equal to

∇xti
µ(x) = 1

δtI+∇xti
f(x)+B∇xti

u(x) after substituting
back the optimal controls takes the form:

uk+1(x, t)dt = −R−1BT∇xti
ξ(x)dt

= EPk
(

uk(x, t)dt+
1
√
ρ
dwk(t)

)
The policy uk(x, t) is evaluated with trajec-

tories starting from xti and so we have (27).
�

There are stochastic dynamical systems in which the
control and diffusion matrices are partitioned such that B =
[0T , BTc ]T with Bc invertible, while the drift term can
also be partitioned accordingly f = [fTm, fTc ]T . In [26]
it has been shown that the path integral formulation is
expressed as in (24) with Bcdwk =

√
ρµ(x)dt, µ(x) =(

δxc
δt − fc(x)−Bcuk

)
and Σ = BcBTc . Our analysis in

theorem 1 holds for the aforementioned types of systems
as well.

V. DERIVATION BASED ON BELLMAN PRINCIPLE

We consider stochastic optimal control in the classical
sense, as a constrained optimization problem, with the cost
function under minimization given by the mathematical
expression:

V (x) = min
u
EQ

[
J(x,u)

]
= min

u
EQ

[ ∫ tN

to

L(x,u, t)dt

]
The expectation EQ above, is evaluated on trajectories

generated with forward sampling of the controlled diffusion:

dx = F(x,u)dt+ B(x)dw (29)

with x ∈ <n×1 denoting the state of the system, u ∈ <p×1
the control vector and dw ∈ <p×1 brownian noise. The
function F(x,u) is a nonlinear function of the state x and
affine in controls u and therefore is defined as F(x,u) =

f(x) + G(x)u . The matrix G(x) ∈ <n×p is the control
matrix, B(x) ∈ <n×p is the diffusion matrix and f(x) ∈
<n×1 are the passive dynamics. The cost function J(x,u) is
a function of states and controls. Under the optimal controls
u∗ the cost function is equal to the value function V (x). The
term L(x,u,t) is the running cost and it is expressed as:

L(x,u, t) = q0(x, t) + q1(x, t)u +
1

2
uTRu (30)

Essentially, the running cost has three terms, the first
q0(xt, t) is a state-dependent cost, the second term depends
on states and controls and the third is the control cost with
the term R > 0 the corresponding weight. The stochastic
HJB equation [8], [23] associated with this stochastic optimal
control problem is expressed as follows:

−∂tV = min
u

(
L + (∇xV )TF +

1

2
tr
(
(∇xxV )BBT

))
(31)

To find the minimum, the cost function (30) is inserted into
(31) and the gradient of the expression inside the parenthesis
is taken with respect to controls u and set to zero. The
corresponding optimal control is given by the equation:

u(xt) = −R−1
(
q1(x, t) + G(x)T∇xV (x, t)

)
(32)

These optimal controls will push the system dynamics
in the direction opposite that of the gradient of the value
function ∇xV (x, t). The value function satisfies nonlinear,
second-order PDE:

−∂tV = q̃ + (∇xV )T f̃ − 1

2
(∇xV )TGR−1GT (∇xV )

+
1

2
tr
(
(∇xxV )BBT

)
(33)

with q̃(x, t) and f̃(x, t) defined as q̃(x, t) =
q0(x, t) − 1

2q1(x, t)TR−1q1(x, t) and f̃(x, t) =
f(x, t) − G(x, t)R−1q1(x, t) and the boundary condition
V (xtN ) = φ(xtN ). Given the exponential transformation
V (x, t) = −λ log Ψ(x, t) and the assumption
λG(x)R−1G(x)T = B(x)B(x)T = Σ(xt) = Σ the
resulting PDE is formulated as follows:

−∂tΨ = − 1

λ
q̃Ψ + f̃T (∇xΨ) +

1

2
tr ((∇xxΨ)Σ) (34)

with boundary condition: Ψ(x(tN )) =
exp

(
− 1
λφ(x(tN ))

)
. By applying the Feynman-Kac

lemma to the Chapman-Kolmogorov PDE (34) yields its
solution in form of an expectation over system trajectories.
This solution is mathematically expressed as:

Ψ (xti) = EP

[
exp

(
−
∫ tN

ti

1

λ
q̃(x)dt

)
Ψ(xtN )

]
(35)

The expectation EP is taken on sample paths generated with
the forward sampling of the uncontrolled diffusion equation
dx = f̃(xt)δt+B(x)dw. The optimal controls are specified
as:



uPI(x) = −R−1
(
q1(x, t)− λG(x)T

∇xΨ(x, t)

Ψ(x, t)

)
Since, the initial value function V (x, t) is the minimum

of the expectation of the objective function J(x,u) subject
to controlled stochastic dynamics in (29), it can be trivially
shown that:

V (x, ti) = −λ logEP

[
exp

(
−
∫ tN

ti

1

λ
q̃(x)dt

)
Ψ(xtN )

]
≤ EQ

(
J(x,u)

)
(36)

Note that the inequality above in similar
to (17) when the following equations hold:
q1(x) = 0, R = I, λ = 1

|ρ| ,G = B,B = 1√
|ρ|

B

VI. DISCRETE-TIME RESULTS

In this section, we show that the general framework of
section II applies to control problems in discrete time as
well. In particular, we will derive the framework of linearly
solvable MDPs or KL Control [34] as a special case of the
general framework.

To make things concrete, consider a state space X (= Z
in section II) and a finite-horizon discrete time dynamical
system:

xt+1 ∼ P (·|xt)

where Π is the probability transition density. To simplify
the exposition, we will assume that X is a finite state
space. Consider trajectories of length T from this system
X = [x0,x1, . . . ,xT ]. The probability density function over
trajectories is simply

P (X) = [x0; x1; . . . ; xT ] =

T−1∏
t=0

P (xt+1|xt) . (37)

Now consider applying control to this dynamical system to
change the trasition density to U (·|xt) and the corresponding
trajectory density to U (X).

In the framework of KL-control or Linearly Solvable
MDPs [34] [33] [31], the control designer is allowed to
pick U (·|xt) however he wishes, as long as it has the same
support as P (·|xt), but he needs to pay a price equal to the
KL divergence (or relative entropy) I (U (·|xt) ‖ P (·|xt))
(akin to a control cost) in addition to a state cost ρJ (xt)
(where ρ is a scaling factor). The expectation of the total
cost under U (X) then becomes

E
X∼U(·)

[∑
t

ρJ (xt) + I (U (·|xt) ‖ P (·|xt))

]
.

By exploiting the Markovian structure of U (X) (37), the
second term can be rewritten as

∑
X

T−1∏
τ=0

U (xτ+1|xτ )

(
T−1∑
t=0

∑
x′

U (x′|xt) log

(
U (x′|xt)
P (x′|xt)

))

=

T−1∑
t=0

∑
X,x′

T−1∏
τ=0

U (xτ+1|xτ )U (x′|xt) log

(
U (x′|xt)
P (x′|xt)

)

=

T−1∑
t=0

∑
x0,...,xt,x′

t−1∏
τ=0

U (xτ+1|xτ )U (x′|xt) log

(
U (x′|xt)
P (x′|xt)

)

=

T−1∑
t=0

∑
x0,...,xt+1

t−1∏
τ=0

U (xτ+1|xτ ) log

(
U (xt+1|xt)
P (xt+1|xt)

)

=

T−1∑
t=0

∑
x0,...,xT

T−1∏
τ=0

U (xτ+1|xτ ) log

(
U (xt+1|xt)
P (xt+1|xt)

)

=
∑

x0,...,xT

T−1∏
τ=0

U (xτ+1|xτ )

(
T−1∑
t=0

log

(
U (xt+1|xt)
P (xt+1|xt)

))

=
∑
X

U (X) log

(
U (X)

P (X)

)
= I (U (·) ‖ P (·))

Denoting J (X) =
∑
t J (xt), the overall control objec-

tive becomes

ρ E
X∼U(·)

[J (X)]︸ ︷︷ ︸
Expected state cost

+ I (U (·) ‖ P (·))︸ ︷︷ ︸
KL Control Cost

.

Thus, the control problem amounts to

min
U(·)

E
X∼U(·)

[J (X)] +
1

ρ
I (U (·) ‖ P (·))

Replacing the densities U (X) and P (X) with the corre-
sponding measures Q and P from section II, this matches
the RHS of equation (4). The inequality still holds valid:

E
X∼P(·)

[J (X)] ≤ min
U(·)

E
X∼U(·)

[J (X)] +
1

ρ
I (U (·) ‖ P (·)) .

Thus, the framework of KL-control can be derived as a
special case of the general measure-theoretic formulation of
relative-entropy control presented in section II.

A. Derivation from the Bellman Optimality Principle

As with the continuous time case, we can derive things
based on the Bellman optimality principle in the discrete-
time setting as well. We formalize the problem as a Markov
Decision Process (MDP) with a stagewise cost described as
above:

J (x) + I (U (·|x) ‖ P (·|x))

= J (x) + E
x′∼U(·|x)

[
log

(
U (x′|x)

P (x′|x)

)]
Application of the Bellman principle of optimality in the
finite horizon case gives us :



Vt (x) = min
U(·|x)

(
J (x)+ E

U(·|x)

[
log

(
U (x′|x)

P (x′|x)

)
+ Vt+1 (x′)

])
where Vt (x) is the time-varying cost-to-go function.

The U (·|x) dependent terms in the functional above are
minimized and thus we will have that:

E
x′∼U(·|x)

[
log

(
U (x′|x)

P (x′|x)

)
+ Vt+1 (x′)

]
=

E
x′∼U(·|x)

[
log

(
U (x′|x)

P (x′|x)

)
+ log

(
1

exp (−Vt+1 (x′))

)]
=

E
x′∼U(·|x)

[
log

(
U (x′|x)

P (x′|x) exp (−Vt+1 (x′))

)]
For the purposes the normalization term Gt[Φ] (x) is in-

troduced with Φt (x) = exp (−Vt (x)) being the desirability
function. More precisely we will have:

Gt[Φ] (x) =
∑
x′

P (x′|x) Φt+1 (x′) = E
x′∼P(·|x)

[Φt+1 (x′)]

Therefore we have

E
x′∼U(·|x)

[
log

(
U (x′|x)

P (x′|x)

)
+ Vt+1 (x′)

]
=

− log (Gt[Φ] (x)) + I
(
U (·|x) ‖ P (x′|x) Φt+1 (x′)

Gt[Φ] (x)

)
Substitution of the expression above into the Bellman

minimization equation results in:

min
u∈U
J (x)−log (Gt[Φ] (x))+I

(
U (·|x) ‖ P (x′|x) Φt+1 (x′)

Gt[Φ] (x)

)
The minimum of the Bellman equation is attained by:

U∗ (x′|x) =
P (x′|x) Φt+1 (x′)

Gt[Φ] (x)
(38)

Substitution of the optimal distribution above will result
in the linear Bellman equation:

Φt (x) = exp (−J (x))Gt[Φ] (x) (39)

This can be used to prove the path-integral representation
of the desirability function

Φt (x) = E
xτ+1∼P(·|xτ )

[
exp

(
−

T∑
τ=t

J (xτ )

)]
.

Thus, the desirability function is just the expectation under
the uncontrolled dynamics of the exponentiated path cost
starting at state x at time t. This gives an expression for the
optimally controlled trajectory distribution U (X):

U (X) =
P (X) exp (−J (X))

EX′∼P(·) [exp (−J (X′))]

which is identical to equation (5).

VII. DISCUSSION

The PI and KL control frameworks presented here consti-
tute a rich mathematical framework that has recently received
a lot of attention, following Kappen’s work on control-affine
diffusions in continuous time [16], and Todorov’s work on
Markov decision processes in discrete time [32]. The initial
studies [16], [32] were done independently, yet they both
built upon the same earlier results which we discuss here.
For over 30 years these earlier results had remained a curious
mathematical fact, that was never actually used to solve
control problems.

In continuous time, the trick that makes the HJB equation
linear is Applying this exponential (or logarithmic) transfor-
mation to 2nd-order PDEs has a long history in Physics [12],
[13]. Its first application to control was due to Fleming and
Mitter, who showed that non-linear filtering corresponds to
a stochastic optimal control problem whose HJB equation
can be made linear [5]. Kappen generalized this idea, and
noted that the solution to the resulting linear PDE is also a
path integral – which yields sampling approximations to the
optimal value function [16].

Todorov’s work on the KL control framework [32] was
motivated by the same earlier results but in a more ab-
stract way: Todorov asked the question, are there classes
of linearly-solvable optimal control problems involving ar-
bitrary dynamics? This led to the KL control framework.
In discrete time, the trick that makes the Bellman equation
linear is

min
q
{I (q ‖ p) + E

q
[V ()]} = − logE

p
[exp (−V ())]

where the minimum is achieved at q∗ = exp (−V ()) × p.
Todorov introduced this trick in [32]. In an earlier paper,
Mitter had used very similar ideas to provide a variational
interpretation of Bayesian estimation [18]. Indeed if p is a
prior and V () is a negative log-likelihood, then the above
q∗ is a Bayesian posterior.

Theodorou built on Kappen’s work [16] in subsequent
works [27] and developed the PI2 algorithm, which has
since been successfully applied to many robotic control tasks
[2], [3], [28]. He also generalized this work to controlled
jump diffusion processes [30] and derived the free-energy
interpretation of this work [29] which we presented in this
paper. We showed here that this can be viewed as a unifying
framework from which all the above works, to the best of
our knowledge, can be derived as special cases.

We believe that the free energy interpretation brings to-
gether different points of view and allows us to understand
these works from an information theoretic perspective. Fur-
ther, it is mathematically convenient and applies directly to
both discrete time and continuous time problems (includ-
ing jump diffusion processes). There are several interesting
and important directions for further work: The probabilistic
representation (5) here allows us to explore the use of
more sophisticated Monte Carlo algorithms [1] to compute
the sampling-based control solution efficiently. Since the
control solution we’ve developed requires sampling-based



exploration, another important area of research is ensuring
that exploration is done safely and without damage to the
system [19]. Another area of work is to exploit model-based
trajectory optimization and control methods [25] (perhaps
based on partial/incorrect models) to perform efficient sam-
pling in the model-free methods we developed here.
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