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Abstract

We demonstrate a detailed visual cortical circuit which exhibits robust contrast adap-
tation properties, consistent with physiological observations in V1. The adaptation mech-
anism we employ is activity-dependent synaptic depression at thalamocortical and local
intra-cortical synapses. Model contrast response functions (CRF) shift so that cells remain
maximally responsive to changes around the recent average stimulus contrast level. Hys-
teresis e�ects for both stimulus contrast and orientation are achieved; orientation hysteresis
is weaker, and depends exclusively on intracortical adaptation. Following stimulation of the
receptive �eld (RF) surround, RFs dynamically expand to \�ll in" for the missing stimula-
tion in the RF center; in our model this expansion results from adaptation of local inhibitory
synapses, triggered by excitation from long range horizontal projections. All adaptation ef-
fects are achieved using the same synaptic depression mechanism at both thalamocortical
and intracortical synapses.

Introduction

Nearly all neurons in the primary visual cortex (V1) exhibit reduced responsiveness after
exposure to high contrast stimuli [1, 3, 8, 10, 13]. This contrast adaptation appears to have
functional utility as a cortical gain control mechanism: a neuron's contrast response function
rapidly shifts so that the neuron remains maximally responsive to both contrast increments
and decrements around the recent mean contrast level [13]. Adaptation e�ects occur rapidly
and can be observed after even a single, brief (50 msec) stimulus presentation [3]. Recovery
from adaptation occurs more slowly and hysteresis e�ects are readily observable in contrast
response functions [3, 11]. Adaptation e�ects also depend on stimulus properties other
than contrast, such as orientation. Given a �xed contrast level, hysteresis e�ects occur
in the orientation domain; however, orientation hysteresis e�ects are smaller than contrast
hysteresis e�ects for the same �ring levels, indicating that di�erent mechanisms may underlie
the two e�ects [3].

The mechanisms underlying contrast adaptation, despite intense study, remain unclear.
This phenomenon almost certainly arises within cortex since it exhibits inter-ocular trans-
fer [8, 15] and since lateral geniculate (LGN) neurons lack contrast adaptation [3, 10, 13].
The hypothesis that \fatigue" of cortical neurons leads to adaptation [2] can be excluded
since pharmacological induction of �ring by glutamate iontophoresis does not induce adap-
tation in a cell and similarly blockade of the cell's response with GABA does not abolish
adaptation e�ects [18]. Rather, adaptation may be a network e�ect since adaptation e�ects
depend primarily on the mean stimulus contrast level over a recent time window. Several
authors [3, 7, 13] have suggested that contrast adaptation e�ects may be accounted for by
an inhibitory process, possibly involving divisive normalization. However, inhibitory mech-
anisms have not found experimental support. Blockade of GABA-mediated inhibition does
not disrupt adaptation [3, 5] and the suggestion that divisive normalization is achieved via
shunting inhibition is inconsistent with intracellular recordings in visual cortex [6]. Here, we



explore a di�erent hypothesis, that short-term changes in synaptic transmission properties
at thalamocortical and intracortical synapses can account for cortical adaptation e�ects.
Speci�cally, we explore synaptic changes that depend on pre-synaptic activity only. These
explorations are carried out within a detailed cortical circuit structure which we have pre-
viously used to explain experimental data on orientation selectivity [16].

Short-term adaptation e�ects following stimulation of the RF surround have also been
observed [14, 4]. Prolonged exposure to an \arti�cial scotoma" stimulus that covers an
area outside a large central blank region causes increased responsiveness in cells whose
RFs lie well within the blank region. Testing with minimal bar stimulation also reveals a
substantial expansion of the classical RF [14]. Reverse correlation analysis of white noise
stimulation indicates that normally subthreshold RF regions become suprathreshold, but
suggests that the e�ects are better characterized as a uniform gain increase than as an RF
expansion [4]. It has been suggested that this phenomenon is due to changes in the input
from long-range horizontal projections [14]. Since most of the expansion is localized to the
scotoma region, we think that a more likely candidate mechanism is a change in the local
circuit gain, triggered by inputs from horizontal projections. We demonstrate that synaptic
depression mechanisms which achieve normal contrast adaptation can also produce local
circuit gain changes consistent with the arti�cial scotoma results.

Methods

Computer simulations were performed on model circuits composed of interacting excitatory
and inhibitory cortical neurons which received feedforward excitation from LGN neurons.
Peak conductances at thalamocortical excitatory, intracortical excitatory, and intracortical
inhibitory synapses varied approximately inversely with the recent average �ring rates of
the pre-synaptic neurons. Cortical neurons were implemented as \improved integrate-and-
�re" neurons [19] with membrane time constant and resistance values chosen to match
values found experimentally for fast-spiking (inhibitory) and regular{spiking (excitatory)
neurons [9]. Conductance changes (for a single spike event) were modeled as �-functions,
and parameter values were similar to those used in [16]. In all cases the probability of a
synaptic connection between two V1 neurons was 0:1. LGN responses increased linearly
with log contrast (up to 50Hz at max contrast) and individual responses were described
by Poisson processes. LGN neurons provided feedforward inputs to both excitatory and
inhibitory cortical neurons (10 LGN cells to a V1 cell).

Synaptic adaptation was modeled as a reduction of post-synaptic conductance (and thus
PSP size), dependent upon pre-synaptic �ring (as observed in [12]). Each synapse had a
synaptic e�cacy, w, and an adaptation level, AD(t), associated with it. If the pre-synaptic
cell generated an action potential at time t, the peak of the conductance change in the post-
synaptic cell was w(1�AD(t)). The adaptation level increased after each spike according
to AD(t) = AD(t) + (ADmax �AD(t))ADinc and passively decayed with time constant � :
AD(t+1) = AD(t)e�1=� . The constants ADmax and ADinc corresponded to the maximum
adaptation level (ADmax < 1) and to the percent increase for each spike, respectively.
This mechanism is consistent with two possible physiological phenomena: i) for each action
potential the synapse releases a unit volume of some substance, which acts to increase the
local concentration of that substance; ADmax is the maximum concentration level that can
be achieved before di�usion or uptake mechanisms balance the unitary increase completely;
ii) the adaptation level is increased by a constant amount for each vesicle release, but release
probability decreases with adaptation. Although we modeled adaptation as decreasing
PSP size, it is possible (and mathematically consistent with our model) that it actually



corresponds to a decrease in release probability for synapses with multiple release sites.
Note that for a �xed �ring rate M of the pre-synaptic cell over a su�ciently long period of
time, AD(t) will asymptote to A(M) satisfying the equation (ADmax � A(M))ADincM =
A(M)(1� e�1=�), or A(M) = ADmaxM=(ADincM +1� e�1=� ), which is an upward convex
function of M .

Due to the computational load of time-varying synapses, the size of the cortical circuits
was restricted to include only the cortical dimensions needed to explore the data set at hand.
As a result, three di�erent circuits were employed. The �rst model (CRFs, Gain Control)
was a homogeneous population of 200 excitatory and 50 inhibitory neurons, corresponding
to a small population in V1 cells with similar RF position and orientation tuning. The
second model (Hysteresis) consisted of 1000 excitatory and 250 inhibitory neurons, with
overlapping RFs, and orientation tuning ranging from 0 to 180 degrees. In the hysteresis
model, the total LGN input to each cortical neuron exhibited a modest orientation bias
that was sharpened by intracortical connections (see [16]). Cortical neurons were organized
into orientation columns and received substantial input from both cortical inhibitory and
cortical excitatory neurons. Both sets of inputs came most densely from the same or nearby
orientation columns with the inhibition from a somewhat broader set of orientations. The
third model (arti�cial scotoma) represented visual space rather than orientation. The only
change in connectivity was the addition of long-range horizontal excitatory projections, that
contacted equally both excitatory and inhibitory cells.

Stimuli were chosen to represent the average e�ects of moving, oriented sine-wave grat-
ings. In order to reduce computational times, LGN neuronal �ring rates were held at
constant contrast-dependent level for the course of a simulation. It is assumed that moving
gratings stimulate all LGN cells equally, resulting in a constant adaptation level for thala-
mocortical synapses when contrast is held �xed and only orientation is varied. Adaptation
and recovery e�ects occured at both thalamocortical and intracortical synapses. Stimuli
were presented 10 times each and spike totals were used to generate contrast response
functions. The CRFs for the excitatory population are presented. For contrast hysteresis
studies, optimally oriented stimuli were presented �rst in order of increasing contrast and
then in order of decreasing contrast, one presentation in each direction for 10 loops. Sim-
ilarly, in the orientation hysteresis studies, high contrast stimuli were presented, rotating
from non-preferred to preferred and then back.

Results

Before we can approach the phenomenon of contrast adaptation, we need a detailed model
that produces plausible (i.e. saturating) contrast response functions without adaptation.
(Note that the response of an isolated neuron to injected current saturates only at unphysi-
ologically high �ring rates). We have recently developed such a model [17] which we briey
describe here. LGN input is biased towards the excitatory (rather than inhibitory) corti-
cal cells, and as a result they (on the average) respond at lower contrast levels. Thus, the
steeply increasing portion of the response function is dominated by recurrent self-excitation.
Saturation results from a balance between excitation and inhibition, once the inhibitory
population enters the linear range of its response.

We now consider how the response of this recurrent system changes when di�erent
groups of synapses are modi�ed. Figure 1 summarizes the e�ects of separately modifying
thalamocortical (A), cortical excitatory (B), cortical inhibitory (C), and all cortical (D)
synapses, by +/- 10%. In each panel, the arrow marks the direction of decreasing synaptic



Figure 1: Synaptic depression shifts CRFs.

strength, and the curve in the middle is the same (non-adapted) CRF. Decreasing the
e�cacy of thalamocortical synapses (A) results in an almost pure rightward shift of the
CRF. This pure rightward shift is also achieved in a model of Heeger [7] by increasing
the size of a divisive inhibitory term. Our mechanism has the advantages that: i) it is
independent of cortical inhibitory signaling and thus is compatible with inhibitory blockade
studies; and ii) since LGN neurons themselves do not adapt to contrast, an invariant measure
of stimulus contrast is always available at the site of adaptation. Decreasing the strength
of intracortical excitation (B) has two e�ects: i) the slope of the steep part of the CRF
decreases, since it is determined by the strength of recurrent self-excitation; ii) saturation
occurs at a lower level, since it is the outcome of a balance between recurrent excitation
and inhibition. Decreasing intracortical inhibition (C) mostly a�ects the saturating part
of the CRF - there is less saturation, and it occurs at a higher level (the steep part of
the CRF may also be a�ected if extra inhibitory subpopulations are added). If we now
modify simultaneously both intracortical excitatory and inhibitory synapses (D), the e�ects
on the saturating part of the CRF from (B) and (C) essentially cancel each other, and
the only e�ect left is the change of slope in the steep part of the CRF. Thus, adaptation
at thalamocortical synapses shifts the CRF horizontally, while adaptation at intracortical
synapses modi�es the slope of the steep part of the CRF. For di�erent synaptic e�cacies
in the recurrent circuit, depression at intracortical synapses can also result in upward and
downward shifts of the CRF. Adaptation at intracortical excitatory synapses can also yield
rightward CRF shifts, provided that spontaneous cortical excitation contributes to \resting"
responses.

Combination of these adaptation mechanisms into a single model yields robust contrast
gain control. We use Model 1, with adaptation parameters (ADmax; ADinc; �) the same for
all synapses in the model, to simulate the experiment of [13]. For each of 5 contrast levels
(uniformly spaced along the log contrast axis), we present the corresponding contrast until
adaptation at all synapses asymptotes. The asymptotic cortical responses are shown by the
thick CRF in Figure 2. After presenting each of the 5 contrasts, we \freeze" all synapses,
and measure the responses to 7 contrast levels, centered around the adaptation contrast
level (thin CRFs). In agreement with the reports in [13], for a range of contrast adaptation
levels the CRF shifts so as to center the steepest part of the curve at or near that contrast
level. This permits the circuit to be very sensitive to contrast increments or decrements
around the recent median contrast level. Rightward (and leftward) shifts of the CRF due to
thalamocortical synaptic changes are most prominent in this contrast gain control. Upward
or downward shifts of the curves are also observed [1]. In our model these shifts result from
adaptation at intracortical synapses. We have found that the same adaptation mechanism
can produce either upward or downward shifts, depending on the set of synaptic strengths in
the cortical population. For higher contrasts, the adapted CRFs have lower slopes, which is
a result of the adaptation of cortical excitatory synapses (see Fig 1b). Note the high slopes
of the adapted CRFs, which are consistent with a self-excitation loop amplifying thalamic
inputs above some threshold.



Figure 2: Contrast Gain Control and Hysteresis.

Figure 3: \Arti�cial Scotoma" Results.

Stimulus presentation order has also been used to isolate adaptation mechanisms [3].
Presentation of optimal orientation stimuli in order from lowest contrast to highest contrast
and back yields hysteresis e�ects, provided that a full cycle can be performed rapidly [3].
This experiment is simulated using Model 2, which includes orientation tuning. Our model
2 achieves this e�ect (see �g 3) with higher responses exhibited for the march to higher
contrasts. This hysteresis results because the level of average recent contrast, as encoded
in synapses, is higher on the way down (and thus synaptic e�cacy is lower) than on the
way up. Another reason is that the \adapted" CRF is centered at the current contrast level
(as in �gure 2), and even a small step up or down in contrast has a big e�ect. Contrast
hysteresis e�ects reect e�cacy changes at all synapses. Orientation hysteresis e�ects have
also been observed [3]. Presentation of a high contrast stimulus that shifts from non-
preferred orientations to the optimal orientation and then back exhibits higher responses
on the way to the optimal response than on the return (see �g 3). This e�ect is weaker than
contrast hysteresis, even for identical levels of �ring [3]. In our model, this di�erence in
hysteresis e�ects reects a di�erence in a�ected mechanisms. With orientation hysteresis,
thalamocortical synapses adapt uniformly regardless of the stimulus orientation and thus all
hysteresis e�ects result from selective adaptation of cortical synapses. Because our model
cortical cells receive excitation most strongly from like tuned neurons and inhibition from
a broader distribution of orientation, when the recent stimulus history is biased toward
non-preferred orientations (on the way to preferred) a greater proportion of inhibitory than
intracortical excitatory synapses is adapted and thus responses are higher. The converse is
true on the way down.

Simulation results for the arti�cial scotoma stimulus are presented in �gures 4a and 4b
respectively - the receptive �eld measured by neuronal �ring expanded, and the response in
the center increased (4a), while the receptive �eld measured intra-cellularly (to reveal sub-
threshold responses) scaled up (4b). During presentation of the arti�cial scotoma stimulus,
excitation from long-range horizontal projections weakly activated cells in the RF center.
Since horizontal projections were not biased, and inhibitory cells are easier to activate, the
resulting �ring rates were 1 Hz for excitatory, and 5 Hz for inhibitory cells. (Results are
consistent with our long-range model [17] in this volume). This small di�erence was greatly



ampli�ed by the synaptic depression mechanism, which is very sensitive to di�erences at
low �ring rates - local excitatory synapses were depressed by about 5%, and local inhibitory
synapses by 25%. The di�erence in depression levels disrupted the balance between ex-
citation and inhibition in the central region of the model, resulting in more net synaptic
input (4b) which leads to wider classical receptive �elds (4a) due to the thresholding of
the neuronal �ring mechanism. Note that adaptation to a full �eld stimulus does not have
the same e�ect, since direct LGN stimulation activates both excitatory and inhibitory cells,
which results in balanced depression at intracortical excitatory and inhibitory synapses.

Conclusions

In summary, we proposed a model of the local neuronal circuitry in V1, that relies on a bias
of thalamocortical projections towards excitatory cortical neurons to achieve contrast sat-
uration. Our model achieves many fundamental e�ects of contrast adaptation by utilizing
pre-synaptic activity-dependent depression of synaptic e�cacy. Such depression e�ects have
been recently observed in V1, and have been implied in contrast adaptation. This explana-
tion has the advantage that it is \parsimonious" while also being consistent with data that
indicate multiple mechanisms of contrast adaptation (e.g., contrast and orientation hystere-
sis), operating at multiple sites. Indeed stimulus adaptation e�ects are ubiquitous within
sensory cortices; synaptic depression appears to be a well-suited candidate for addressing
these broader phenomena.
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