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Optimal Control Theory

Emanuel Todorov

University of California San Diego

Optimal control theory is a mature mathematical discipline with numerous applications
in both science and engineering. It is emerging as the computational framework of choice
for studying the neural control of movement, in much the same way that probabilistic infer-
ence is emerging as the computational framework of choice for studying sensory information
processing. Despite the growing popularity of optimal control models, however, the elab-
orate mathematical machinery behind them is rarely exposed and the big picture is hard
to grasp without reading a few technical books on the subject. While this chapter cannot
replace such books, it aims to provide a self-contained mathematical introduction to opti-
mal control theory that is su¢ ciently broad and yet su¢ ciently detailed when it comes to
key concepts. The text is not tailored to the �eld of motor control (apart from the last
section, and the overall emphasis on systems with continuous state) so it will hopefully
be of interest to a wider audience. Of special interest in the context of this book is the
material on the duality of optimal control and probabilistic inference; such duality suggests
that neural information processing in sensory and motor areas may be more similar than
currently thought. The chapter is organized in the following sections:

1. Dynamic programming, Bellman equations, optimal value functions, value and policy
iteration, shortest paths, Markov decision processes.

2. Hamilton-Jacobi-Bellman equations, approximation methods, �nite and in�nite hori-
zon formulations, basics of stochastic calculus.

3. Pontryagin�s maximum principle, ODE and gradient descent methods, relationship to
classical mechanics.

4. Linear-quadratic-Gaussian control, Riccati equations, iterative linear approximations
to nonlinear problems.

5. Optimal recursive estimation, Kalman �lter, Zakai equation.

6. Duality of optimal control and optimal estimation (including new results).

7. Optimality models in motor control, promising research directions.
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1 Discrete control: Bellman equations

Let x 2 X denote the state of an agent�s environment, and u 2 U (x) the action (or
control) which the agent chooses while at state x. For now both X and U (x) are �nite
sets. Let next (x; u) 2 X denote the state which results from applying action u in state
x, and cost (x; u) � 0 the cost of applying action u in state x. As an example, x may be
the city where we are now, u the �ight we choose to take, next (x; u) the city where that
�ight lands, and cost (x; u) the price of the ticket. We can now pose a simple yet practical
optimal control problem: �nd the cheapest way to �y to your destination. This problem
can be formalized as follows: �nd an action sequence (u0; u1; � � �un�1) and corresponding
state sequence (x0; x1; � � �xn) minimizing the total cost

J (x�; u�) =
Xn�1

k=0
cost (xk; uk)

where xk+1 = next (xk; uk) and uk 2 U (xk). The initial state x0 = xinit and destination
state xn = xdest are given. We can visualize this setting with a directed graph where the
states are nodes and the actions are arrows connecting the nodes. If cost (x; u) = 1 for all
(x; u) the problem reduces to �nding the shortest path from xinit to xdest in the graph.

1.1 Dynamic programming

Optimization problems such as the one stated above are e¢ ciently solved via dynamic
programming (DP). DP relies on the following obvious fact: if a given state-action sequence
is optimal, and we were to remove the �rst state and action, the remaining sequence is also
optimal (with the second state of the original sequence now acting as initial state). This
is the Bellman optimality principle. Note the close resemblance to the Markov property of
stochastic processes (a process is Markov if its future is conditionally independent of the
past given the present state). The optimality principle can be reworded in similar language:
the choice of optimal actions in the future is independent of the past actions which led to
the present state. Thus optimal state-action sequences can be constructed by starting at
the �nal state and extending backwards. Key to this procedure is the optimal value function
(or optimal cost-to-go function)

v (x) = "minimal total cost for completing the task starting from state x"

This function captures the long-term cost for starting from a given state, and makes it
possible to �nd optimal actions through the following algorithm:

Consider every action available at the current state,
add its immediate cost to the optimal value of the resulting next state,
and choose an action for which the sum is minimal.

The above algorithm is "greedy" in the sense that actions are chosen based on local infor-
mation, without explicit consideration of all future scenarios. And yet the resulting actions
are optimal. This is possible because the optimal value function contains all information
about future scenarios that is relevant to the present choice of action. Thus the optimal
value function is an extremely useful quantity, and indeed its calculation is at the heart of
many methods for optimal control.
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The above algorithm yields an optimal action u = � (x) 2 U (x) for every state x. A
mapping from states to actions is called control law or control policy. Once we have a control
law � : X ! U (X ) we can start at any state x0, generate action u0 = � (x0), transition to
state x1 = next (x0; u0), generate action u1 = � (x1), and keep going until we reach xdest.

Formally, an optimal control law � satis�es

� (x) = arg min
u2U(x)

fcost (x; u) + v (next (x; u))g (1)

The minimum in (1) may be achieved for multiple actions in the set U (x), which is why �
may not be unique. However the optimal value function v is always uniquely de�ned, and
satis�es

v (x) = min
u2U(x)

fcost (x; u) + v (next (x; u))g (2)

Equations (1) and (2) are the Bellman equations.
If for some x we already know v (next (x; u)) for all u 2 U (x), then we can apply the

Bellman equations directly and compute � (x) and v (x). Thus dynamic programming is
particularly simple in acyclic graphs where we can start from xdest with v

�
xdest

�
= 0, and

perform a backward pass in which every state is visited after all its successor states have
been visited. It is straightforward to extend the algorithm to the case where we are given
non-zero �nal costs for a number of destination states (or absorbing states).

1.2 Value iteration and policy iteration

The situation is more complex in graphs with cycles. Here the Bellman equations are
still valid, but we cannot apply them in a single pass. This is because the presence of
cycles makes it impossible to visit each state only after all its successors have been visited.
Instead the Bellman equations are treated as consistency conditions and used to design
iterative relaxation schemes �much like partial di¤erential equations (PDEs) are treated as
consistency conditions and solved with corresponding relaxation schemes. By "relaxation
scheme" we mean guessing the solution, and iteratively improving the guess so as to make
it more compatible with the consistency condition.

The two main relaxation schemes are value iteration and policy iteration. Value iteration
uses only (2). We start with a guess v(0) of the optimal value function, and construct a
sequence of improved guesses:

v(i+1) (x) = min
u2U(x)

n
cost (x; u) + v(i) (next (x; u))

o
(3)

This process is guaranteed to converge to the optimal value function v in a �nite number
of iterations. The proof relies on the important idea of contraction mappings: one de�nes
the approximation error e

�
v(i)
�
= maxx

��v(i) (x)� v (x)��, and shows that the iteration (3)
causes e

�
v(i)
�
to decrease as i increases. In other words, the mapping v(i) ! v(i+1) given

by (3) contracts the "size" of v(i) as measured by the error norm e
�
v(i)
�
.

Policy iteration uses both (1) and (2). It starts with a guess �(0) of the optimal control
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law, and constructs a sequence of improved guesses:

v�
(i)
(x) = cost

�
x; �(i) (x)

�
+ v�

(i)
�
next

�
x; �(i) (x)

��
(4)

�(i+1) (x) = arg min
u2U(x)

n
cost (x; u) + v�

(i)
(next (x; u))

o
The �rst line of (4) requires a separate relaxation to compute the value function v�

(i)
for

the control law �(i). This function is de�ned as the total cost for starting at state x and
acting according to �(i) thereafter. Policy iteration can also be proven to converge in a
�nite number of iterations. It is not obvious which algorithm is better, because each of
the two nested relaxations in policy iteration converges faster than the single relaxation in
value iteration. In practice both algorithms are used depending on the problem at hand.

1.3 Markov decision processes

The problems considered thus far are deterministic, in the sense that applying action u
at state x always yields the same next state next (x; u). Dynamic programming easily
generalizes to the stochastic case where we have a probability distribution over possible
next states:

p (yjx; u) = "probability that next (x; u) = y"

In order to qualify as a probability distribution the function p must satisfyX
y2X

p (yjx; u) = 1

p (yjx; u) � 0

In the stochastic case the value function equation (2) becomes

v (x) = min
u2U(x)

fcost (x; u) + E [v (next (x; u))]g (5)

where E denotes expectation over next (x; u), and is computed as

E [v (next (x; u))] =
X

y2X
p (yjx; u) v (y)

Equations (1, 3, 4) generalize to the stochastic case in the same way as equation (2) does.
An optimal control problem with discrete states and actions and probabilistic state

transitions is called a Markov decision process (MDP). MDPs are extensively studied in
reinforcement learning �which is a sub-�eld of machine learning focusing on optimal control
problems with discrete state. In contrast, optimal control theory focuses on problems with
continuous state and exploits their rich di¤erential structure.

2 Continuous control: Hamilton-Jacobi-Bellman equations

We now turn to optimal control problems where the state x 2 Rnx and control u 2 U (x) �
Rnu are real-valued vectors. To simplify notation we will use the shortcut minu instead of
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minu2U(x), although the latter is implied unless noted otherwise. Consider the stochastic
di¤erential equation

dx = f (x;u) dt+ F (x;u) dw (6)

where dw is nw-dimensional Brownian motion. This is sometimes called a controlled Ito
di¤usion, with f (x;u) being the drift and F (x;u) the di¤usion coe¢ cient. In the absence
of noise, i.e. when F (x;u) = 0, we can simply write _x = f (x;u). However in the stochastic
case this would be meaningless because the sample paths of Brownian motion are not
di¤erentiable (the term dw=dt is in�nite). What equation (6) really means is that the
integral of the left hand side is equal to the integral of the right hand side:

x (t) = x (0) +

Z t

0
f (x (s) ;u (s)) ds+

Z t

0
F (x (s) ;u (s)) dw (s)

The last term is an Ito integral, de�ned for square-integrable functions g (t) asZ t

0
g (s) dw (s) = lim

n!1

Xn�1

k=0
g (sk) (w (sk+1)� w (sk))

where 0 = s0 < s2 < � � � < sn = t

We will stay away from the complexities of stochastic calculus to the extent possible. Instead
we will discretize the time axis and obtain results for the continuous-time case in the limit
of in�nitely small time step.

The appropriate Euler discretization of (6) is

xk+1 = xk +�f (xk;uk) +
p
�F (xk;uk) "k

where � is the time step, "k � N (0; Inw) and xk = x (k�). The
p
� term appears because

the variance of Brownian motion grows linearly with time, and thus the standard deviation
of the discrete-time noise should scale as

p
�.

To de�ne an optimal control problem we also need a cost function. In �nite-horizon
problems, i.e. when a �nal time tf is speci�ed, it is natural to separate the total cost
into a time-integral of a cost rate ` (x;u; t) � 0, and a �nal cost h (x) � 0 which is only
evaluated at the �nal state x (tf ). Thus the total cost for a given state-control trajectory
fx (t) ;u (t) : 0 � t � tfg is de�ned as

J (x (�) ;u (�)) = h (x (tf )) +
Z tf

0
` (x (t) ;u (t) ; t) dt

Keep in mind that we are dealing with a stochastic system. Our objective is to �nd a control
law u = � (x; t) which minimizes the expected total cost for starting at a given (x; t) and
acting according � thereafter.

In discrete time the total cost becomes

J (x�;u�) = h (xn) + �
Xn�1

k=0
` (xk;uk; k�)

where n = tf=� is the number of time steps (assume that tf=� is integer).
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2.1 Derivation of the HJB equations

We are now ready to apply dynamic programming to the time-discretized stochastic prob-
lem. The development is similar to the MDP case except that the state space is now in�nite:
it consists of n+1 copies of Rnx . The reason we need multiple copies of Rnx is that we have
a �nite-horizon problem, and therefore the time when a given x 2 Rnx is reached makes a
di¤erence.

The state transitions are now stochastic: the probability distribution of xk+1 given
xk;uk is the multivariate Gaussian

xk+1 � N (xk +�f (xk;uk) ; �S (xk;uk))
where S (x;u) = F (x;u)F (x;u)T

The Bellman equation for the optimal value function v is similar to (5), except that v is
now a function of space and time. We have

v (x; k) = min
u
f�` (x;u; k�) + E [v (x+�f (x;u) + �; k + 1)]g (7)

where � � N (0; �S (x;u)) and v (x; n) = h (x)

Consider the second-order Taylor-series expansion of v, with the time index k+1 suppressed
for clarity:

v (x+ �) = v (x) + �Tvx (x) +
1
2�
Tvxx (x) � + o

�
�3
�

where � = �f (x;u) + �, vx = @
@xv, vxx =

@2

@x@xv

Now compute the expectation of the optimal value function at the next state, using the
above Taylor-series expansion and only keeping terms up to �rst-order in �. The result is:

E [v] = v (x) + �f (x;u)T vx (x) +
1
2 tr (�S (x;u) vxx (x)) + o

�
�2
�

The trace term appears because

E
h
�Tvxx�

i
= E

h
tr
�
��Tvxx

�i
= tr (Cov [�] vxx) = tr (�Svxx)

Note the second-order derivative vxx in the �rst-order approximation to E [v]. This is a
recurrent theme in stochastic calculus. It is directly related to Ito�s lemma, which states
that if x (t) is an Ito di¤usion with coe¢ cient �, then

dg (x (t)) = gx (x (t)) dx (t) +
1
2�

2gxx (x (t)) dt

Coming back to the derivation, we substitute the expression for E [v] in (7), move the
term v (x) outside the minimization operator (since it does not depend on u), and divide
by �. Suppressing x;u; k on the right hand side, we have

v (x; k)� v (x; k + 1)
�

= min
u

n
`+ fTvx +

1
2 tr (Svxx) + o (�)

o
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Recall that t = k�, and consider the optimal value function v (x; t) de�ned in continuous
time. The left hand side in the above equation is then

v (x; t)� v (x; t+�)
�

In the limit � ! 0 the latter expression becomes � @
@tv, which we denote �vt. Thus for

0 � t � tf and v (x; tf ) = h (x), the following holds:

�vt (x; t) = min
u2U(x)

n
` (x;u; t) + f (x;u)T vx (x; t) +

1
2 tr (S (x;u) vxx (x; t))

o
(8)

Similarly to the discrete case, an optimal control � (x; t) is a value of u which achieves the
minimum in (8):

� (x; t) = arg min
u2U(x)

n
` (x;u; t) + f (x;u)T vx (x; t) +

1
2 tr (S (x;u) vxx (x; t))

o
(9)

Equations (8) and (9) are the Hamilton-Jacobi-Bellman (HJB) equations.

2.2 Numerical solutions of the HJB equations

The HJB equation (8) is a non-linear (due to the min operator) second-order PDE with
respect to the unknown function v. If a di¤erentiable function v satisfying (8) for all
(x; t) exists, then it is the unique optimal value function. However, non-linear di¤erential
equations do not always have classic solutions which satisfy them everywhere. For example,
consider the equation j _g (t)j = 1 with boundary conditions g (0) = g (1) = 0. The slope of g
is either +1 or �1, and so g has to change slope (discontinuously) somewhere in the interval
0 � t � 1 in order to satisfy the boundary conditions. At the points where that occurs the
derivative _g (t) is unde�ned. If we decide to admit such "weak" solutions, we are faced with
in�nitely many solutions to the same di¤erential equation. In particular when (8) does not
have a classic solution, the optimal value function is a weak solution but there are many
other weak solutions. How can we then solve the optimal control problem? The recent
development of non-smooth analysis and the idea of viscosity solutions provide a reassuring
answer. It can be summarized as follows: (i) "viscosity" provides a speci�c criterion for
selecting a single weak solution; (ii) the optimal value function is a viscosity solution to
the HJB equation (and thus it is the only viscosity solution); (iii) numerical approximation
schemes which take the limit of solutions to discretized problems converge to a viscosity
solution (and therefore to the optimal value function). The bottom line is that in practice
one need not worry about the absence of classic solutions.

Unfortunately there are other practical issues to worry about. The only numerical
methods guaranteed to converge to the optimal value function rely on discretizations of
the state space, and the required number of discrete states is exponential in the state-
space dimensionality nx. Bellman called this the curse of dimensionality. It is a problem
which most likely does not have a general solution. Nevertheless, the HJB equations have
motivated a number of methods for approximate solution. Such methods rely on parametric
models of the optimal value function, or the optimal control law, or both. Below we outline
one such method.
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Consider an approximation ev (x; t; �) to the optimal value function, where � is some
vector of parameters. Particularly convenient are models of the form

ev (x; t; �) =X
i
�i (x; t) �i

where �i (x; t) are some prede�ned basis functions, and the unknown parameters � appear
linearly. Linearity in � simpli�es the calculation of derivatives:

evx (x; t; �) =X
i
�ix (x; t) �i

and similarly for evxx and evt. Now choose a large enough set of states (x; t) and evaluate
the right hand side of (8) at those states (using the approximation to v and minimizing
over u). This procedure yields target values for the left hand side of (8). Then adjust the
parameters � so that �evt (x; t; �) gets closer to these target values. The discrepancy being
minimized by the parameter adjustment procedure is the Bellman error.

2.3 In�nite-horizon formulations

Thus far we focused on �nite-horizon problems. There are two in�nite-horizon formulations
used in practice, both of which yield time-invariant forms of the HJB equations. One is
the discounted-cost formulation, where the total cost for an (in�nitely long) state-control
trajectory is de�ned as

J (x (�) ;u (�)) =
Z 1

0
exp (��t) ` (x (t) ;u (t)) dt

with � > 0 being the discount factor. Intuitively this says that future costs are less costly
(whatever that means). Here we do not have a �nal cost h (x), and the cost rate ` (x;u)
no-longer depends on time explicitly. The HJB equation for the optimal value function
becomes

�v (x) = min
u2U(x)

n
` (x;u) + f (x;u)T vx (x) +

1
2 tr (S (x;u) vxx (x))

o
(10)

Another alternative is the average-cost-per-stage formulation, with total cost

J (x (�) ;u (�)) = lim
tf!1

1

tf

Z tf

0
` (x (t) ;u (t)) dt

In this case the HJB equation for the optimal value function is

� = min
u2U(x)

n
` (x;u) + f (x;u)T vx (x) +

1
2 tr (S (x;u) vxx (x))

o
(11)

where � � 0 is the average cost per stage, and v now has the meaning of a di¤erential value
function.

Equations (10) and (11) do not depend on time, which makes them more amenable to
numerical approximations in the sense that we do not need to store a copy of the optimal
value function at each point in time. Form another point of view, however, (8) may be easier

8



to solve numerically. This is because dynamic programming can be performed in a single
backward pass through time: initialize v (x; tf ) = h (x) and simply integrate (8) backward
in time, computing the spatial derivatives numerically along the way. In contrast, (10) and
(11) call for relaxation methods (such as value iteration or policy iteration) which in the
continuous-state case may take an arbitrary number of iterations to converge. Relaxation
methods are of course guaranteed to converge in a �nite number of iterations for any �nite
state approximation, but that number may increase rapidly as the discretization of the
continuous state space is re�ned.

3 Deterministic control: Pontryagin�s maximum principle

Optimal control theory is based on two fundamental ideas. One is dynamic programming
and the associated optimality principle, introduced by Bellman in the United States. The
other is the maximum principle, introduced by Pontryagin in the Soviet Union. The max-
imum principle applies only to deterministic problems, and yields the same solutions as
dynamic programming. Unlike dynamic programming, however, the maximum principle
avoids the curse of dimensionality. Here we derive the maximum principle indirectly via
the HJB equation, and directly via Lagrange multipliers. We also clarify its relationship to
classical mechanics.

3.1 Derivation via the HJB equations

For deterministic dynamics _x = f (x;u) the �nite-horizon HJB equation (8) becomes

�vt (x; t) = min
u

n
` (x;u; t) + f (x;u)T vx (x; t)

o
(12)

Suppose a solution to the minimization problem in (12) is given by an optimal control law
� (x; t) which is di¤erentiable in x. Setting u = � (x; t) we can drop the min operator in
(12) and write

0 = vt (x; t) + ` (x; � (x; t) ; t) + f (x; � (x; t))
T vx (x; t)

This equation is valid for all x, and therefore can be di¤erentiated w.r.t. x to obtain (in
shortcut notation)

0 = vtx + `x + �
T
x `u +

�
fTx + �

T
x f
T
u

�
vx + vxxf

Regrouping terms, and using the identity _vx = vxx _x+ vtx = vxxf + vtx, yields

0 = _vx + `x + f
T
x vx + �

T
x

�
`u + f

T
u vx

�
We now make a key observation: the term in the brackets is the gradient w.r.t. u of the
quantity being minimized w.r.t. u in (12). That gradient is zero (assuming unconstrained
minimization), which leaves us with

� _vx (x; t) = `x (x; � (x; t) ; t) + fTx (x; � (x; t)) vx (x; t) (13)
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This may look like a PDE for v, but if we think of vx as a vector p instead of a gradient of
a function which depends on x, then (13) is an ordinary di¤erential equation (ODE) for p.
That equation holds along any trajectory generated by � (x; t). The vector p is called the
costate vector.

We are now ready to formulate the maximum principle. If fx (t) ;u (t) : 0 � t � tfg is
an optimal state-control trajectory (obtained by initializing x (0) and controlling the system
optimally until tf ), then there exists a costate trajectory p (t) such that (13) holds with p
in place of vx and u in place of �. The conditions on fx (t) ;u (t) ;p (t)g are

_x (t) = f (x (t) ;u (t)) (14)

� _p (t) = `x (x (t) ;u (t) ; t) + fTx (x (t) ;u (t))p (t)

u (t) = argmin
u

n
` (x (t) ;u; t) + f (x (t) ;u)T p (t)

o
The boundary condition is p (tf ) = hx (x (tf )), and x (0) ; tf are given. Clearly the costate
is equal to the gradient of the optimal value function evaluated along the optimal trajectory.

The maximum principle can be written in more compact and symmetric form with the
help of the Hamiltonian function

H (x;u;p; t) = ` (x;u; t) + f (x;u)T p (15)

which is the quantity we have been minimizing w.r.t. u all along (it was about time we
gave it a name). With this de�nition, (14) becomes

_x (t) = @
@pH (x (t) ;u (t) ;p (t) ; t) (16)

� _p (t) = @
@xH (x (t) ;u (t) ;p (t) ; t)

u (t) = argmin
u
H (x (t) ;u;p (t) ; t)

The remarkable property of the maximum principle is that it is an ODE, even though we
derived it starting from a PDE. An ODE is a consistency condition which singles out speci�c
trajectories without reference to neighboring trajectories (as would be the case in a PDE).
This is possible because the extremal trajectories which solve (14) make Hu = `u + f

T
up

vanish, which in turn removes the dependence on neighboring trajectories. The ODE (14)
is a system of 2nx scalar equations subject to 2nx scalar boundary conditions. Therefore
we can solve this system with standard boundary-value solvers (such as Matlab�s bvp4c).
The only complication is that we would have to minimize the Hamiltonian repeatedly. This
complication is avoided for a class of problems where the control appears linearly in the
dynamics and quadratically in the cost rate:

dynamics: _x = a (x) +B (x)u

cost rate: ` (x;u; t) = 1
2u

TR (x)u+ q (x; t)

In such problems the Hamiltonian is quadratic and can be minimized explicitly:

H (x;u;p; t) = 1
2u

TR (x)u+ q (x; t) + (a (x) +B (x)u)T p

argmin
u
H = �R (x)�1B (x)T p
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The computational complexity (or at least the storage requirement) for ODE solutions
based on the maximum principle grows linearly with the state dimensionality nx, and so the
curse of dimensionality is avoided. One drawback is that (14) could have multiple solutions
(one of which is the optimal solution) but in practice that does not appear to be a serious
problem. Another drawback of course is that the solution to (14) is valid for a single initial
state, and if the initial state were to change we would have to solve the problem again. If
the state change is small, however, the solution change should also be small, and so we can
speed-up the search by initializing the ODE solver with the previous solution.

The maximum principle can be generalized in a number of ways including: terminal
state constraints instead of "soft" �nal costs; state constraints at intermediate points along
the trajectory; free (i.e. optimized) �nal time; �rst exit time; control constraints. It can
also be applied in model-predictive control settings where one seeks an optimal state-control
trajectory up to a �xed time horizon (and approximates the optimal value function at the
horizon). The initial portion of this trajectory is used to control the system, and then a
new optimal trajectory is computed. This is closely related to the idea of a rollout policy �
which is essential in computer chess programs for example.

3.2 Derivation via Lagrange multipliers

The maximum principle can also be derived for discrete-time systems, as we show next.
Note that the following derivation is actually the more standard one (in continuous time it
relies on the calculus of variations). Consider the discrete-time optimal control problem

dynamics: xk+1 = f (xk;uk)

cost rate: ` (xk;uk; k)

�nal cost: h (xn)

with given initial state x0 and �nal time n. We can approach this as a regular constrained
optimization problem: �nd sequences (u0;u1; � � �un�1) and (x0;x1; � � �xn) minimizing J
subject to constraints xk+1 = f (xk;uk). Constrained optimization problems can be solved
with the method of Lagrange multipliers. As a reminder, in order to minimize a scalar
function g (x) subject to c (x) = 0, we form the Lagrangian L (x; �) = g (x) + �c (x) and
look for a pair (x; �) such that @

@xL = 0 and
@
@�L = 0.

In our case there are n constraints, so we need a sequence of n Lagrange multipliers
(�1; �2; � � ��n). The Lagrangian is

L (x�;u�; ��) = h (xn) +
Xn�1

k=0

�
` (xk;uk; k) + (f (xk;uk)� xk+1)T �k+1

�
De�ne the discrete-time Hamiltonian

H(k) (x;u; �) = ` (x;u; k) + f (x;u)T �

and rearrange the terms in the Lagrangian to obtain

L = h (xn)� xTn�n + xT0 �0 +
Xn�1

k=0

�
H(k) (xk;uk; �k+1)� xTk�k

�
11



Now consider di¤erential changes in L due to changes in u which in turn lead to changes
in x. We have

dL = (hx (xn)� �n)T dxn + �T0 dx0+

+
Xn�1

k=0

��
@
@xH

(k) � �k
�T
dxk +

�
@
@uH

(k)
�T
duk

�
In order to satisfy @

@xk
L = 0 we choose the Lagrange multipliers � to be

�k =
@
@xH

(k) = `x (xk;uk; k) + f
T
x (xk;uk)�k+1; 0 � k < n

�n = hx (xn)

For this choice of � the di¤erential dL becomes

dL = �T0 dx0 +
Xn�1

k=0

�
@
@uH

(k)
�T
duk (17)

The �rst term in (17) is 0 because x0 is �xed. The second term becomes 0 when uk is the
(unconstrained) minimum of H(k). Summarizing the conditions for an optimal solution, we
arrive at the discrete-time maximum principle:

xk+1 = f (xk;uk) (18)

�k = `x (xk;uk; k) + f
T
x (xk;uk)�k+1

uk = argmin
u
H(k) (xk;u; �k+1)

with �n = hx (xn), and x0; n given.
The similarity between the discrete-time (18) and the continuous-time (14) versions of

the maximum principle is obvious. The costate p, which before was equal to the gradient vx
of the optimal value function, is now a Lagrange multiplier �. Thus we have three di¤erent
names for the same quantity. It actually has yet another name: in�uence function. This is
because �0 is the gradient of the minimal total cost w.r.t. the initial condition x0 (as can
be seen from 17) and so �0 tells us how changes in the initial condition in�uence the total
cost. The minimal total cost is of course equal to the optimal value function, thus � is the
gradient of the optimal value function.

3.3 Numerical optimization via gradient descent

From (17) it is clear that the quantity

@
@uH

(k) = `u (xk;uk; k) + f
T
u (xk;uk)�k+1 (19)

is the gradient of the total cost with respect to the control signal. This also holds in the
continuous-time case. Once we have a gradient, we can optimize the (open-loop) control
sequence for given initial state via gradient descent. Here is the algorithm:

1. Given a control sequence, iterate the dynamics forward in time to �nd the correspond-
ing state sequence. Then iterate (18) backward in time to �nd the Lagrange multiplier
sequence. In the backward pass use the given control sequence instead of optimizing
the Hamiltonian.

12



2. Evaluate the gradient using (19), and improve the control sequence with any gradient
descent algorithm. Go back to step 1, or exit if converged.

As always, gradient descent in high-dimensional spaces is much more e¢ cient if one uses
a second-order method (conjugate gradient descent, Levenberg-Marquardt, Gauss-Newton,
etc). Care should be taken to ensure stability. Stability of second-order optimization can be
ensured via line-search or trust-region methods. To avoid local minima �which correspond
to extremal trajectories that are not optimal �one could use multiple restarts with random
initialization of the control sequence. Note that extremal trajectories satisfy the maximum
principle, and so an ODE solver can get trapped in the same suboptimal solutions as a
gradient descent method.

3.4 Relation to classical mechanics

We now return to the continuous-time maximum principle, and note that (16) resembles
the Hamiltonian formulation of mechanics, with p being the generalized momentum (a �fth
name for the same quantity). To see where the resemblance comes from, recall the Lagrange
problem: given x (0) and x (tf ), �nd curves fx (t) : 0 � t � tfg which optimize

J (x (�)) =
Z tf

0
L (x (t) ; _x (t)) dt (20)

Applying the calculus of variations, one �nds that extremal curves (either maxima or minima
of J) satisfy the Euler-Lagrange equation

d
dt

@
@ _xL (x; _x)�

@
@xL (x; _x) = 0

Its solutions are known to be equivalent to the solutions of Hamilton�s equation

_x = @
@pH (x;p) (21)

� _p = @
@xH (x;p)

where the Hamiltonian is de�ned as

H (x;p) = pT _x� L (x; _x) (22)

The change of coordinates p = @
@ _xL (x; _x) is called a Legendre transformation. It may seem

strange that H (x;p) depends on _x when _x is not explicitly an argument of H. This is
because the Legendre transformation is invertible, i.e. _x can be recovered from (x;p) as
long as the matrix @2

@ _x@ _xL is non-singular.
Thus the trajectories satisfying Hamilton�s equation (21) are solutions to the Lagrange

optimization problem (20). In order to explicitly transform (20) into an optimal control
problem, de�ne a control signal u and deterministic dynamics _x = f (x;u). Then the cost
rate ` (x;u) = �L (x; f (x;u)) = �L (x; _x) yields an optimal control problem equivalent to
(20). The Hamiltonian (22) becomes H (x;p) = pTf (x;u) + ` (x;u), which is the optimal-
control Hamiltonian (15). Note that we can choose any dynamics f (x;u), and then de�ne
the corresponding cost rate ` (x;u) so as to make the optimal control problem equivalent
to the Lagrange problem (20). The simplest choice is f (x;u) = u.

13



The function L is interpreted as an energy function. In mechanics it is

L (x; _x) = 1
2 _x

TM (x) _x� g (x)

The �rst term is kinetic energy (with M (x) being the inertia matrix), and the second
term is potential energy due to gravity or some other force �eld. When the inertia is con-
stant, applying the Euler-Lagrange equation to the above L yields Newton�s second law
M�x = �gx (x), where the force �gx (x) is the gradient of the potential �eld. If the in-
ertia is not constant (joint-space inertia for a multi-joint arm for example) application of
the Euler-Lagrange equation yields extra terms which capture nonlinear interaction forces.
Geometrically, they contain Christo¤el symbols of the Levi-Civita connection for the Rie-
mannian metric given by hy; zix = yTM (x) z. We will not discuss di¤erential geometry in
any detail here, but it is worth noting that it a¤ords a coordinate-free treatment, revealing
intrinsic properties of the dynamical system that are invariant with respect to arbitrary
smooth changes of coordinates. Such invariant quantities are called tensors. For example,
the metric (inertia in our case) is a tensor.

4 Linear-quadratic-Gaussian control: Riccati equations

Optimal control laws can rarely be obtained in closed form. One notable exception is
the LQG case where the dynamics are linear, the costs are quadratic, and the noise (if
present) is additive Gaussian. This makes the optimal value function quadratic, and allows
minimization of the Hamiltonian in closed form. Here we derive the LQG optimal controller
in continuous and discrete time.

4.1 Derivation via the HJB equations

Consider the following stochastic optimal control problem:

dynamics: dx = (Ax+Bu) dt+ Fdw

cost rate: ` (x;u) = 1
2u

TRu+ 1
2x

TQx

�nal cost: h (x) = 1
2x

TQfx

where R is symmetric positive-de�nite, Q and Qf are symmetric, and u is now uncon-
strained. We set S = FFT as before. The matrices A;B; F;R;Q can be made time-varying
without complicating the derivation below.

In order to solve for the optimal value function we will guess its parametric form, show
that it satis�es the HJB equation (8), and obtain ODEs for its parameters. Our guess is

v (x; t) = 1
2x

TV (t)x+ a (t) (23)

where V (t) is symmetric. The boundary condition v (x; tf ) = h (x) implies V (tf ) = Qf and
a (tf ) = 0. From (23) we can compute the derivatives which enter into the HJB equation:

vt (x; t) =
1
2x

T _V (t)x+ _a (t)

vx (x; t) = V (t)x

vxx (x; t) = V (t)

14



Substituting these expressions in (8) yields

�12x
T _V (t)x� _a (t) =

= minu

n
1
2u

TRu+ 1
2x

TQx+ (Ax+Bu)T V (t)x+ 1
2 tr (SV (t))

o
The Hamiltonian (i.e. the term inside the min operator) is quadratic in u, and its Hessian
R is positive-de�nite, so the optimal control can be found analytically:

u = �R�1BTV (t)x (24)

With this u, the control-dependent part of the Hamiltonian becomes

1
2u

TRu+ (Bu)T V (t)x = �12x
TV (t)BR�1BTV (t)x

After grouping terms, the HJB equation reduces to

�12x
T _V (t)x� _a (t) =

= �12x
T
�
Q+ATV (t) + V (t)A� V (t)BR�1BTV (t)

�
x+ 1

2 tr (SV (t))

where we replaced the term 2ATV with ATV + V A to make the equation symmetric. This
is justi�ed because xTATV x = xTV TAx = xTV Ax.

Our guess of the optimal value function is correct if and only if the above equation holds
for all x, which is the case when the x-dependent terms are matched:

� _V (t) = Q+ATV (t) + V (t)A� V (t)BR�1BTV (t) (25)

� _a (t) = 1
2 trace (SV (t))

Functions V; a satisfying (25) can obviously be found by initializing V (tf ) = Qf ; a (tf ) = 0
and integrating the ODEs (25) backward in time. Thus (23) is the optimal value function
with V; a given by (25), and (24) is the optimal control law (which in this case is unique).

The �rst line of (25) is called a continuous-time Riccati equation. Note that it does
not depend on the noise covariance S. Consequently the optimal control law (24) is also
independent of S. The only e¤ect of S is on the total cost. As a corollary, the optimal
control law remains the same in the deterministic case �called the linear-quadratic regulator
(LQR).

4.2 Derivation via the Bellman equations

In practice one usually works with discrete-time systems. To obtain an optimal control law
for the discrete-time case one could use an Euler approximation to (25), but the resulting
equation is missing terms quadratic in the time step �, as we will see below. Instead we
apply dynamic programming directly, and obtain an exact solution to the discrete-time
LQR problem. Dropping the (irrelevant) noise and discretizing the problem, we obtain

dynamics: xk+1 = Axk +Buk

cost rate: 1
2u

T
kRuk +

1
2x

T
kQxk

�nal cost: 1
2x

T
nQ

fxn
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where n = tf=� and the correspondence to the continuous-time problem is

xk  x (k�) ; A (I + �A) ; B  �B; R �R; Q �Q (26)

The guess for the optimal value function is again quadratic

v (x; k) = 1
2x

TVkx

with boundary condition Vn = Qf . The Bellman equation (2) is

1
2x

TVkx = min
u

n
1
2u

TRu+ 1
2x

TQx+ 1
2 (Ax+Bu)

T Vk+1 (Ax+Bu)
o

As in the continuous-time case the Hamiltonian can be minimized analytically. The resulting
optimal control law is

u = �
�
R+BTVk+1B

��1
BTVk+1Ax

Substituting this u in the Bellman equation, we obtain

Vk = Q+A
TVk+1A�ATVk+1B

�
R+BTVk+1B

��1
BTVk+1A (27)

This completes the proof that the optimal value function is in the assumed quadratic form.
To compute Vk for all k we initialize Vn = Qf and iterate (27) backward in time.

The optimal control law is linear in x, and is usually written as

uk = �Lkxk (28)

where Lk =
�
R+BTVk+1B

��1
BTVk+1A

The time-varying matrix Lk is called the control gain. It does not depend on the sequence
of states, and therefore can be computed o ine. Equation (27) is called a discrete-time
Riccati equation. Clearly the discrete-time Riccati equation contains more terms that the
continuous-time Riccati equation (25), and so the two are not identical. However one can
verify that they become identical in the limit � ! 0. To this end replace the matrices in
(27) with their continuous-time analogues (26), and after rearrangement obtain

Vk � Vk+1
�

= Q+ATVk+1 + Vk+1A� Vk+1B
�
R+�BTVk+1B

��1
BTVk+1 +

o
�
�2
�

�

where o
�
�2
�
absorbs terms that are second-order in �. Taking the limit �! 0 yields the

continuous-time Riccati equation (25).

4.3 Applications to nonlinear problems

Apart from solving LQG problems, the methodology described here can be adapted to yield
approximate solutions to non-LQG optimal control problems. This is done iteratively, as
follows:

1. Given a control sequence, apply it to the (nonlinear) dynamics and obtain a corre-
sponding state sequence.
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2. Construct a time-varying linear approximation to the dynamics and a time-varying
quadratic approximation to the cost; both approximations are centered at the state-
control sequence obtained in step 1. This yields an LQG optimal control problem
with respect to the state and control deviations.

3. Solve the resulting LQG problem, obtain the control deviation sequence, and add it to
the given control sequence. Go to step 1, or exit if converged. Note that multiplying
the deviation sequence by a number smaller than 1 can be used to implement line-
search.

Another possibility is to use di¤erential dynamic programming (DDP), which is based
on the same idea but involves a second-order rather than a �rst-order approximation to
the dynamics. In that case the approximate problem is not LQG, however one can assume
a quadratic approximation to the optimal value function and derive Riccati-like equations
for its parameters. DDP and iterative LQG (iLQG) have second-order convergence in the
neighborhood of an optimal solution. They can be thought of as the analog of Newton�s
method in the domain of optimal control. Unlike general-purpose second order methods
which construct Hessian approximations using gradient information, DDP and iLQG obtain
the Hessian directly by exploiting the problem structure. For deterministic problems they
converge to state-control trajectories which satisfy the maximum principle, but in addition
yield local feedback control laws. In our experience they are more e¢ cient that either ODE
or gradient descent methods. iLQG has been generalized to stochastic systems (including
multiplicative noise) and to systems subject to control constraints.

5 Optimal estimation: Kalman �lter

Optimal control is closely related to optimal estimation, for two reasons: (i) the only way
to achieve optimal performance in the presence of sensor noise and delays is to incorporate
an optimal estimator in the control system; (ii) the two problems are dual, as explained
below. The most widely used optimal estimator is the Kalman �lter. It is the dual of the
linear-quadratic regulator �which in turn is the most widely used optimal controller.

5.1 The Kalman �lter

Consider the partially-observable linear dynamical system

dynamics: xk+1 = Axk +wk

observation: yk = Hxk + vk
(29)

where wk � N (0; S) and vk � N (0; P ) are independent Gaussian random variables, the
initial state has a Gaussian prior distribution x0 � N (bx0;�0), and A;H; S; P; bx0;�0 are
known. The states are hidden and all we have access to are the observations. The objective
is to compute the posterior probability distribution bpk of xk given observations yk�1 � � �y0:

bpk = p (xkjyk�1 � � �y0)bp0 = N (bx0;�0)
17



Note that our formulation is somewhat unusual: we are estimating xk before yk has been
observed. This formulation is adopted here because it simpli�es the results and also because
most real-world sensors provide delayed measurements.

We will show by induction (moving forward in time) that bpk is Gaussian for all k, and
therefore can be represented by its mean bxk and covariance matrix �k. This holds for k = 0
by de�nition. The Markov property of (29) implies that the posterior bpk can be treated as
prior over xk for the purposes of estimation after time k. Since bpk is Gaussian and (29)
is linear-Gaussian, the joint distribution of xk+1 and yk is also Gaussian. Its mean and
covariance given the prior bpk are easily computed:

E

"
xk+1

yk

#
=

"
Abxk
Hbxk

#
; Cov

"
xk+1

yk

#
=

"
S +A�kA

T A�kH
T

H�kA
T P +H�kH

T

#

Now we need to compute the probability of xk+1 conditional on the new observation yk.
This is done using an important property of multivariate Gaussians summarized in the
following lemma:

Let p and q be jointly Gaussian, with means p and q and covariances
�pp, �qq and �pq = �Tqp. Then the conditional distribution of p given q
is Gaussian, with mean and covariance

E [pjq] = p+�pq��1qq (q� q)
Cov [pjq] = �pp � �pq��1qq�qp

Applying the lemma to our problem, we see that bpk+1 is Gaussian with mean
bxk+1 = Abxk +A�kHT

�
P +H�kH

T
��1

(yk �Hbxk) (30)

and covariance matrix

�k+1 = S +A�kA
T �A�kHT

�
P +H�kH

T
��1

H�kA
T (31)

This completes the induction proof. Equation (31) is a Riccati equation. Equation (30) is
usually written as

bxk+1 = Abxk +Kk (yk �Hbxk)
where Kk = A�kH

T
�
P +H�kH

T
��1

The time-varying matrix Kk is called the �lter gain. It does not depend on the observation
sequence and therefore can be computed o ine. The quantity yk � Hbxk is called the
innovation. It is the mismatch between the observed and the expected measurement. The
covariance �k of the posterior probability distribution p (xkjyk�1 � � �y0) is the estimation
error covariance. The estimation error is xk � bxk.

The above derivation corresponds to the discrete-time Kalman �lter. A similar result
holds in continuous time, and is called the Kalman-Bucy �lter. It is possible to write down
the Kalman �lter in equivalent forms which have numerical advantages. One such approach
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is to propagate the matrix square root of �. This is called a square-root �lter, and involves
Riccati-like equations which are more stable because the dynamic range of the elements of
� is reduced. Another approach is to propagate the inverse covariance ��1. This is called
an information �lter, and again involves Riccati-like equations. The information �lter can
represent numerically very large covariances (and even in�nite covariances �which are useful
for specifying "non-informative" priors).

Instead of �ltering one can do smoothing, i.e. obtain state estimates using observations
from the past and from the future. In that case the posterior probability of each state given
all observations is still Gaussian, and its parameters can be found by an additional backward
pass known as Rauch recursion. The resulting Kalman smoother is closely related to the
forward-backward algorithm for probabilistic inference in hidden Markov models (HMMs).

The Kalman �lter is optimal in many ways. First of all it is a Bayesian �lter, in the sense
that it computes the posterior probability distribution over the hidden state. In addition,
the mean bx is the optimal point estimator with respect to multiple loss functions. Recall that
optimality of point estimators is de�ned through a loss function ` (x; bx) which quanti�es how
bad it is to estimate bx when the true state is x. Some possible loss functions are kx� bxk2,
kx� bxk, � (x� bx), and the corresponding optimal estimators are the mean, median, and
mode of the posterior probability distribution. If the posterior is Gaussian then the mean,
median and mode coincide. If we choose an unusual loss function for which the optimal
point estimator is not bx, even though the posterior is Gaussian, the information contained
in bx and � is still su¢ cient to compute the optimal point estimator. This is because bx and �
are su¢ cient statistics which fully describe the posterior probability distribution, which in
turn captures all information about the state that is available in the observation sequence.
The set of su¢ cient statistics can be thought of as an augmented state, with respect to
which the partially-observed process has a Markov property. It is called the belief state or
alternatively the information state.

5.2 Beyond the Kalman �lter

When the estimation problem involves non-linear dynamics or non-Gaussian noise the pos-
terior probability distribution rarely has a �nite set of su¢ cient statistics (although there
are exceptions such as the Benes system). In that case one has to rely on numerical ap-
proximations. The most widely used approximation is the extended Kalman �lter (EKF). It
relies on local linearization centered at the current state estimate and closely resembles the
LQG approximation to non-LQG optimal control problems. The EKF is not guaranteed
to be optimal in any sense, but in practice if often yields good results � especially when
the posterior is single-peaked. There is a recent improvement, called the unscented �lter,
which propagates the covariance using deterministic sampling instead of linearization of the
system dynamics. The unscented �lter tends to be superior to the EKF and requires a com-
parable amount of computation. An even more accurate, although computationally more
expensive approach, is particle �ltering. Instead of propagating a Gaussian approximation
it propagates a cloud of points sampled from the posterior (without actually computing the
posterior). Key to its success is the idea of importance sampling.

Even when the posterior does not have a �nite set of su¢ cient statistics, it is still a
well-de�ned scalar function over the state space, and as such must obey some equation. In
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discrete time this equation is simply a recursive version of Bayes�rule �which is not too
revealing. In continuous time, however, the posterior satis�es a PDE which resembles the
HJB equation. Before we present this result we need some notation. Consider the stochastic
di¤erential equations

dx = f (x) dt+ F (x) dw (32)

dy = h (x) dt+ dv

where w (t) and v (t) are Brownian motion processes, x (t) is the hidden state, and y (t) is
the observation sequence. De�ne S (x) = F (x)F (x)T as before. One would normally think
of the increments of y (t) as being the observations, but in continuous time these increments
are in�nite and so we work with their time-integral.

Let p (x; t) be the probability distribution of x (t) in the absence of any observations.
At t = 0 it is initialized with a given prior p (x; 0). For t > 0 it is governed by the �rst line
of (32), and can be shown to satisfy

pt = �fTpx + 1
2 tr (Spxx) +

�
�
X

i

@
@xi
fi +

1
2

X
ij

@2

@xi@xj
Sij

�
p

This is called the forward Kolmogorov equation, or alternatively the Fokker-Planck equation.
We have written it in expanded form to emphasize the resemblance to the HJB equation.
The more usual form is

@
@tp = �

X
i

@
@xi
(fip) +

1
2

X
ij

@2

@xi@xj
(Sijp)

Let ep (x; t) be an unnormalized posterior over x (t) given the observations fy (s) : 0 � s � tg;
"unnormalized" means that the actual posterior bp (x; t) can be recovered by normalizing:bp (x; t) = ep (x; t) = R ep (z; t) dz. It can be shown that some unnormalized posterior ep satis�es
Zakai�s equation

dep = ��X
i

@
@xi
(fiep) + 1

2

X
ij

@2

@xi@xj
(Sijep)� dt+ hTepdy

The �rst term on the right re�ects the prior and is the same as in the Kolmogorov equation
(except that we have multiplied both sides by dt). The second term incorporates the
observation and makes Zakai�s equation a stochastic PDE. After certain manipulations
(conversion to Stratonovich form and a gauge transformation) the second term can be
integrated by parts, leading to a regular PDE. One can then approximate the solution to
that PDE numerically via discretization methods. As in the HJB equation, however, such
methods are only applicable in low-dimensional spaces due to the curse of dimensionality.

6 Duality of optimal control and optimal estimation

Optimal control and optimal estimation are closely related mathematical problems. The
best-known example is the duality of the linear-quadratic regulator and the Kalman �lter.
To see that duality more clearly, we repeat the corresponding Riccati equations (27) and
(31) side by side:

control: Vk = Q+A
TVk+1A�ATVk+1B

�
R+BTVk+1B

��1
BTVk+1A

�ltering: �k+1 = S +A�kA
T �A�kHT

�
P +H�kH

T
��1

H�kA
T
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These equations are identical up to a time reversal and some matrix transposes. The
correspondence is given in the following table:

control: V Q A B R k
m

�ltering: � S AT HT P n� k
(33)

The above duality was �rst described by Kalman in his famous 1960 paper introducing the
discrete-time Kalman �lter, and is now mentioned in most books on estimation and control.
However its origin and meaning are not apparent. This is because the Kalman �lter is
optimal from multiple points of view and can be written in multiple forms, making it hard
to tell which of its properties have a dual in the control domain.

Attempts to generalize the duality to non-LQG settings have revealed that the funda-
mental relationship is between the optimal value function and the negative log-posterior.
This is actually inconsistent with (33), although the inconsistency has not been made ex-
plicit before. Recall that V is the Hessian of the optimal value function. The posterior is
Gaussian with covariance matrix �, and thus the Hessian of the negative log-posterior is
��1. However in (33) we have V corresponding to � and not to ��1. Another problem is
that while AT in (33) makes sense for linear dynamics _x = Ax, the meaning of "transpose"
for general non-linear dynamics _x = f (x) in unclear. Thus the duality described by Kalman
is speci�c to linear-quadratic-Gaussian systems and does not generalize.

6.1 General duality of optimal control and MAP smoothing

We now discuss an alternative approach which does generalize. In fact we start with the
general case and later specialize it to the LQG setting to obtain something known as a
minimum-energy estimator. As far as we know, the general treatment presented here is a
novel result. The duality we establish is between maximum a posteriori (MAP) smoothing
and deterministic optimal control for systems with continuous state. For systems with
discrete state (i.e. HMMs) an instance of such duality is the Viterbi algorithm �which
�nds the most likely state sequence using dynamic programming.

Consider the discrete-time partially-observable system

p (xk+1jxk) = exp (�a (xk+1;xk)) (34)

p (ykjxk) = exp (�b (yk;xk))
p (x0) = exp (�c (x0))

where a; b; c are the negative log-probabilities of the state transitions, observation emis-
sions, and initial state respectively. The states are hidden and we only have access to the
observations (y1;y2; � � �yn). Our objective is to �nd the most probable sequence of states
(x0;x1; � � �xn), that is, the sequence which maximizes the posterior probability

p (x�jy�) =
p (y�jx�) p (x�)

p (y�)

The term p (y�) does not a¤ect the maximization and so it can be dropped. Using the
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Markov property of (34) we have

p (y�jx�) p (x�) = p (x0)
Yn

k=1
p (xkjxk�1) p (ykjxk)

= exp (�c (x0))
Yn

k=1
exp (�a (xk;xk�1)) exp (�b (yk;xk))

= exp
�
�c (x0)�

Xn

k=1
(a (xk;xk�1) + b (yk;xk))

�
Maximizing exp (�J) is equivalent to minimizing J . Therefore the most probable state
sequence is the one which minimizes

J (x�) = c (x0) +
Xn

k=1
(a (xk;xk�1) + b (yk;xk)) (35)

This is beginning to look like a total cost for a deterministic optimal control problem.
However we are still missing a control signal. To remedy that we will de�ne the passive
dynamics as the expected state transition:

f (xk) = E [xk+1jxk] =
Z
z exp (�a (z;xk)) dz

and then de�ne the control signal as the deviation from the expected state transition:

xk+1 = f (xk) + uk (36)

The control cost is now de�ned as

r (uk;xk) = a (f (xk) + uk;xk) ; 0 � k < n

and the state cost is de�ned as

q (x0; 0) = c (x0)

q (xk; k) = b (yk;xk) ; 0 < k � n

The observation sequence is �xed, and so q is well-de�ned as long as it depends explicitly
on the time index k. Note that we could have chosen any f , however the present choice will
make intuitive sense later.

With these de�nitions, the control system with dynamics (36), cost rate

` (xk;uk; k) = r (uk;xk) + q (xk; k) ; 0 � k < n

and �nal cost q (xn; n) achieves total cost (35). Thus the MAP smoothing problem has been
transformed into a deterministic optimal control problem. We can now bring any method
for optimal control to bear on MAP smoothing. Of particular interest is the maximum
principle � which can avoid the curse of dimensionality even when the posterior of the
partially-observable system (34) does not have a �nite set of su¢ cient statistics.
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6.2 Duality of LQG control and Kalman smoothing

Let us now specialize these results to the LQG setting. Consider again the partially-
observable system (29) discussed earlier. The posterior is Gaussian, therefore the MAP
smoother and the Kalman smoother yield identical state estimates. The negative log-
probabilities from (34) now become

a (xk;xk�1) =
1
2 (xk �Axk�1)

T S�1 (xk �Axk�1) + a0
b (yk;xk) =

1
2 (yk �Hxk)

T P�1 (yk �Hxk) + b0
c (x0) =

1
2 (x0 � bx0)T��10 (x0 � bx0) + c0

where a0; b0; c0 are normalization constants. Dropping all terms that do not depend on x,
and using the fact that xk � Axk�1 = uk�1 from (36), the quantity (35) being minimized
by the MAP smoother becomes

J (x�;u�) =
Xn�1

k=0

1
2u

T
kRuk +

Xn

k=0

�
1
2x

T
kQkxk + x

T
kqk

�
where

R = S�1

Q0 = �
�1
0 ; q0 = �bx0

Qk = H
TP�1H; qk = �HTP�1yk; 0 < k � n

Thus the linear-Gaussian MAP smoothing problem is equivalent to a linear-quadratic op-
timal control problem. The linear cost term xTkqk was not previously included in the LQG
derivation, but it is straightforward to do so.

Let us now compare this result to the Kalman duality (33). Here the estimation system
has dynamics xk+1 = Axk + wk and the control system has dynamics xk+1 = Axk + uk.
Thus the time-reversal and the matrix transpose of A are no longer needed. Furthermore
the covariance matrices now appear inverted, and so we can directly relate costs to negative
log-probabilities. Another di¤erence is that in (33) we had R () P and Q () S, while
these two correspondences are now reversed.

A minimum-energy interpretation can help better understand the duality. From (29) we
have xk � Axk�1 = wk�1 and yk �Hxk = vk . Thus the cost rate for the optimal control
problem is of the form

wTS�1w + vTP�1v

This can be though of as the energy of the noise signals w and v. Note that an estimate
for the states implies estimates for the two noise terms, and the likelihood of the estimated
noise is a natural quantity to optimize. The �rst term above measures how far the estimated
state is from the prior; it represents a control cost because the control signal pushes the
estimate away from the prior. The second term measures how far the predicted observation
(and thus the estimated state) is from the actual observation. One can think of this as a
minimum-energy tracking problem with reference trajectory speci�ed by the observations.
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7 Optimal control as a theory of biological movement

To say that the brain generates the best behavior in can, subject to the constraints imposed
by the body and environment, is almost trivial. After all, the brain has evolved for the sole
purpose of generating behavior advantageous to the organism. It is then reasonable to
expect that, at least in natural and well-practiced tasks, the observed behavior will be close
to optimal. This makes optimal control theory an appealing computational framework
for studying the neural control of movement. Optimal control is also a very successful
framework in terms of explaining the details of observed movement. However we have
recently reviewed this literature [12] and will not repeat the review here. Instead we will
brie�y summarize existing optimal control models from a methodological perspective, and
then list some research directions which we consider promising.

Most optimality models of biological movement assume deterministic dynamics and
impose state constraints at di¤erent points in time. These constraints can for example
specify the initial and �nal posture of the body in one step of locomotion, or the positions
of a sequence of targets which the hand has to pass through. Since the constraints guarantee
accurate execution of the task, there is no need for accuracy-related costs which specify what
the task is. The only cost is a cost rate which speci�es the "style" of the movement. It
has been de�ned as (an approximation to) metabolic energy, or the squared derivative of
acceleration (i.e. jerk), or the squared derivative of joint torque. The solution method is
usually based on the maximum principle. Minimum-energy models are explicitly formulated
as optimal control problems, while minimum-jerk and minimum-torque-change models are
formulated in terms of trajectory optimization. However they can be easily transformed
into optimal control problems by relating the derivative being minimized to a control signal.

Here is an example. Let q (t) be the vector of generalized coordinates (e.g. joint angles)
for an articulated body such as the human arm. Let � (t) be the vector of generalized forces
(e.g. joint torques). The equations of motion are

� =M (q) �q+ n (q; _q)

whereM (q) is the con�guration-dependent inertia matrix, and n (q; _q) captures non-linear
interaction forces, gravity, and any external force �elds that depend on position or velocity.
Unlike mechanical devices, the musculo-skeletal system has order higher than two because
the muscle actuators have their own states. For simplicity assume that the torques �
correspond to the set of muscle activations, and have dynamics

_� = 1
c (u� �)

where u (t) is the control signal sent by the nervous system, and c is the muscle time constant
(around 40 msec). The state vector of this system is

x = [q; _q; � ]

We will use the subscript notation x[1] = q, x[2] = _q, x[3] = � . The general �rst-order
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dynamics x = f (x;u) are given by

_x[1] = x[2]

_x[2] =M
�
x[1]
��1 �

x[3] � n
�
x[1];x[2]

��
_x[3] =

1
c

�
u� x[3]

�
Note that these dynamics are a¢ ne in the control signal and can be written as

_x = a (x) +Bu

Now we can specify a desired movement time tf , an initial state x0, and a �nal state
xf . We can also specify a cost rate, such as

control energy: ` (x;u) = 1
2 kuk

2

torque-change: ` (x;u) = 1
2 k _�k

2 = 1
2c2

u� x[3]2
In both cases the cost is quadratic in u and the dynamics are a¢ ne in u. Therefore the
Hamiltonian can be minimized explicitly. Focusing on the minimum-energy model, we have

H (x;u;p) = 1
2 kuk

2 + (a (x) +Bu)T p

� (x;p) = argmin
u
H (x;u;p) = �BTp

We can now apply the maximum principle, and obtain the ODE

_x = a (x)�BBTp
� _p = ax (x)T p

with boundary conditions x (0) = x0 and x (tf ) = xf . If instead of a terminal constraint we
wish to specify a �nal cost h (x), then the boundary condition x (tf ) = xf is replaced with
p (tf ) = hx (x (tf )). Either way we have as many scalar variables as boundary conditions,
and the problem can be solved numerically using an ODE two-point boundary value solver.
When a �nal cost is used the problem can also be solved using iterative LQG approximations.

Some optimal control models have considered stochastic dynamics, and used accuracy
costs rather than state constraints to specify the task (state constraints cannot be enforced
in a stochastic system). Such models have almost exclusively been formulated within the
LQG setting. Control under sensory noise and delays has also been considered; in that
case the model involves a sensory-motor loop composed of a Kalman �lter and a linear-
quadratic regulator. Of particular interest in stochastic models is control-multiplicative
noise (also called signal-dependent noise). It is a well-established property of the motor
system, and appears to be the reason for speed-accuracy trade-o¤s such as Fitts� law.
Control-multiplicative noise can be formalized as

dx = (a (x) +Bu) dt+ �BD (u) dw

where D (u) is a diagonal matrix with the components of u on its main diagonal. In this
system, each component of the control signal is polluted with Gaussian noise whose standard
deviation is proportional to that component. The noise covariance is then

S = �2BD (u)D (u)TBT
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With these de�nitions, one can verify that

tr (SX) = �2 tr
�
D (u)TBTXBD (u)

�
= �2uTBTXBu

for any matrix X. Now suppose the cost rate is

` (x;u) = 1
2u

TRu+ q (x; t)

Then the Hamiltonian for this stochastic optimal control problem is

1
2u

T
�
R+ �2BTvxx (x; t)B

�
u+ q (x; t) + (a (x) +Bu)T vx (x; t)

If we think of the matrix vxx (x; t) as a given, the above expression is the Hamiltonian
for a deterministic optimal control problem with cost rate in the same form as above, and
modi�ed control-energy weighting matrix:eR (x; t) = R+ �2BTvxx (x; t)B
Thus, incorporating control-multiplicative noise in an optimal control problem is equivalent
to increasing the control energy cost. The cost increase required to make the two problems
equivalent is of course impossible to compute without �rst solving the stochastic problem
(since it depends on the unknown optimal value function). Nevertheless this analysis a¤ords
some insight into the e¤ects of such noise. Note that in the LQG case v is quadratic, its
Hessian vxx is constant, and so the optimal control law under control-multiplicative noise
can be found in closed form.

7.1 Promising research directions

There are plenty of examples where motor behavior is found to be optimal under a reasonable
cost function. Similarly, there are plenty of examples where perceptual judgements are found
to be optimal under a reasonable prior. There is little doubt that many additional examples
will accumulate over time, and reinforce the principle of optimal sensory-motor processing.
But can we expect future developments that are conceptually novel? Here we summarize
four under-explored research directions which may lead to such developments.

Motor learning and adaptation. Optimal control has been used to model behavior
in well-practiced tasks where performance is already stable. But the processes of motor
learning and adaptation �which are responsible for reaching stable performance � have
rarely been modeled from the viewpoint of optimality. Such modeling should be straight-
forward given the numerous iterative algorithms for optimal controller design that exist.

Neural implementation of optimal control laws. Optimal control modeling has
been restricted to the behavioral level of analysis; the control laws used to predict behavior
are mathematical functions without an obvious neural implementation. In order to bridge
the gap between behavior and single neurons, we will need realistic neural networks trained
to mimic the input-output behavior of optimal control laws. Such networks will have to
operate in closed loop with a simulated body.

Distributed and hierarchical control. Most existing models of movement control
are monolithic. In contrast, the motor system is distributed and includes a number of
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anatomically distinct areas which presumably have distinct computational roles. To address
this discrepancy, we have recently developed a hierarchical framework for approximately
optimal control. In this framework, a low-level feedback controller transforms the musculo-
skeletal system into an augmented system for which high-level optimal control laws can be
designed more e¢ ciently [13].

Inverse optimal control. Optimal control models are presently constructed by guess-
ing the cost function, obtaining the corresponding optimal control law, and comparing its
predictions to experimental data. Ideally we would be able to do the opposite: record data,
and automatically infer a cost function for which the observed behavior is optimal. There
are reasons to believe that most sensible behaviors are optimal with respect to some cost
function.

Recommended further reading

The mathematical ideas introduced in this chapter are developed in more depth in a number
of well-written books. The standard reference on dynamic programming is Bertsekas [3].
Numerical approximations to dynamic programming, with emphasis on discrete state-action
spaces, are introduced in Sutton and Barto [10] and formally described in Bertsekas and
Tsitsiklis [2]. Discretization schemes for continuous stochastic optimal control problems
are developed in Kushner and Dupuis [6]. The classic Bryson and Ho [5] remains one of
the best treatments of the maximum principle and its applications (including applications
to minimum-energy �lters). A classic treatment of optimal estimation is Anderson and
Moore [1]. A comprehensive text covering most aspects of continuous optimal control and
estimation is Stengel [11]. The advanced subjects of non-smooth analysis and viscosity
solutions are covered in Vinter [14]. The di¤erential-geometric approach to mechanics and
control (including optimal control) is developed in Bloch [4]. An intuitive yet rigorous
introduction to stochastic calculus can be found in Oksendal [7]. The applications of optimal
control theory to biological movement are reviewed in Todorov [12] and also in Pandy [8].
The links to motor neurophysiology are explored in Scott [9]. A hierarchical framework for
optimal control is presented in Todorov et al [13].
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