
 1 of 4

 Abstract—The search for motor primitives has captured the
attention of researches in both biological and computational
motor control. Yet a theory of how to construct such primitives
from first principles is lacking. Here we propose to do that by
building a compact forward model of the sensory-motor
periphery via unsupervised learning. We also propose a
method for probabilistic inversion of the forward model, which
yields low-level feedback loops that can simplify control. The
idea is applied to simulated biomechanical systems of varying
levels of detail.

Keywords—Unsupervised learning, motor primitives

I. INTRODUCTION

Investigators of motor behavior have long been looking

for motor primitives, or building blocks of movement.
Candidates for such primitives include muscle synergies,
spinal force fields, basis functions for representing internal
models, small pieces of endpoint trajectories. So far the
search has been predominantly data-driven: experimenters
collect data (muscle activity, finger position, hand posture),
apply some variant of principal components analysis, and
declare anything that comes out to be a “motor primitive”.
Unfortunately little independent evidence exists that the
principal components correspond to anything real. Even if
movements were generated by combining some low-level
primitives, this bottom-up approach will not necessarily
identify them unless they were sampled independently
during the data collection period. But independent sampling
is very unlikely: since the high-level control system is trying
to achieve an overall behavioral goal, the primitives are
most likely being recruited in a coordinated manner. Thus,
decomposition algorithms in the absence of any prior
knowledge are likely to confuse two sources of structure:
one originating form the primitives themselves, and the
other originating from the controller that coordinates them.

From a computational perspective building blocks of
movement may seem less important, since in principle an
optimal controller can be found using reinforcement
learning, without any prior knowledge or control structure.
In practice however such controllers cannot be found for
high-dimensional continuous-state systems. Therefore a
number of investigators have focused on building various
low-level control structures before applying reinforcement
learning. The problem is how to build such a structure in the
first place. It cannot come from considerations of optimal
control, since it has to exist before optimal control can even
be attempted in a high-dimensional state space. Presently it

comes from intuition about the specific problem. But what
we really need is a way to automate that intuition and make
it a part of the learning algorithm.

So in both biological and computational motor control,
a theory is needed that explains how good motor primitives
can be constructed from first principles. The presumed
function of motor primitives is to simplify a complex control
problem, by reducing the dimensionality of the space where
control solutions are sought. This is only useful if we ensure
that the reduction does not accidentally eliminate all the
solutions to the control problem of interest. But how can
such accidents be avoided, if the primitives are chosen
before the control problem itself has been solved? In other
words, what simplifying assumptions are safe to make for
all tasks that may need to be performed in the future? The
only thing that is perfectly safe to assume is that all tasks
will be performed using the same musculo-skeletal system.
Therefore we propose that the low-level primitives must
reflect the regularities of that system.

We present an unsupervised learning algorithm
designed to extract such regularities from sensory-motor
interactions, and automatically transform them into higher-
level control knobs. The unsupervised learning objective is
to find a compact context-dependent representation of the
correlations among motor commands and sensory feedback.
We find that the resulting representations capture the
agonist-antagonist organization of muscles and
corresponding sensors, the distinction between muscle
groups spanning separate joints, temporal filtering at
appropriate time scales, etc. Once the primitives have been
constructed, we apply reinforcement learning to obtain a
high-level feedback controller. For the control problems
investigated here, this form of learning is indeed faster than
learning a feedback controller which does not utilize
primitives.

II. FEEDBACK TRANSFORMATIONS

 The pioneering works of Sherrington and Bernstein
have emphasized that biological control hierarchies are
composed of parallel feedback loops, whose processing
delays increase with their level of sophistication. The low-
level loops (e.g. the spinal cord) do not passively map high-
level commands into control signals. Instead they receive
sensory feedback and actively generate control signals even
before the higher levels have had time to respond.
 This can be formalized with the notion of a feedback
transformation. Consider a dynamical system with state x,

Unsupervised Learning of Sensory-Motor Primitives

E. Todorov1, Z. Ghahramani2
1Department of Cognitive Science, University of California San Diego, USA
2Gatsby Computational Neuroscience Unit, University College London, UK

In Proceedings of the 25th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, IEEE (2003)

 2 of 4

control u, dynamics ∆x = f(u,x), sensory observation s(u,x),
and state estimator x(u...,s...). Define a state transformation
h=T(x) and a control transformation u=G(v, x). This
produces a new dynamical system with (observable) state h
and control v, coupled to the original system via the
functions T and G. Rather than learning a direct control
policy u=P(x;w) parameterized by w, we could instead try to
learn a high-level policy v=Q(h;w) for the transformed
system.
 The best known example of this approach is the
technique of feedback linearization: assuming for simplicity
that f(u,x) is invertible w.r.t. u, the transformation h=x, u =
f–1(v, x) produces a linear system with equivalent dynamics.
Other successful application can be found in robotics where
the feedback transformation is handcrafted using insight into
the controlled system.
 The question is, how can appropriate functions T and G
be constructed by a learning algorithm instead of a human
engineer. Before we address that we need to clarify the
criterion for appropriateness of the feedback transformation.
Generally speaking, it should make learning simpler.
Simplicity however is not an objective property of the
system to be controlled, but depends on what is "simple"
from the learner's point of view. If for example we intend
to build the high-level controller as an LQG regulator, the
transformation should attempt to make the system linear and
the cost quadratic. If instead we intend to apply
reinforcement learning, sensible criteria include
dimensionality reduction, state descriptions that predict the
future (particularly the rewards in the future), and
prepackaged control sequences providing temporal
abstraction. The method proposed below appears to satisfy
these criteria.

A. Unsupervised sensory-motor learning

 Building a feedback transformation is an instance of the
more general problem of building internal representations,
which is naturally addressed via unsupervised learning. The
idea is best illustrated by comparison with the perceptual
system, where the importance of unsupervised learning has
been appreciated for a long time. The perceptual analog to a
motor primitive is a receptive field: a basic element used to
decompose and represent the sensory input. As in the motor
system, the receptive fields needed for perception cannot be
easily derived from considerations of how an optimal
perceptual system works. Instead receptive fields can be
modeled by collecting sensory data and fitting a "generative
model". The generative model as such is rather useless,
since the job of the perceptual system is to perform exactly
the opposite operation. It therefore needs to be "inverted" by
a recognition model, mapping sensory input to internal
states (Fig 1 Left).
 We propose that motor primitives can be learned using
the same principle – building an internal mirror image of the
physical world (Fig 1 Right). The difference from perceptual

Fig. 1. Schematic illustration of forward and inverse models

learning is that we now have an input-output forward model,
where the inputs (motor output) are under the control of the
nervous system, and time cannot be neglected. The goal of
learning is to find an internal state representation that
explains the observed data (sensory input). As in perception,
the forward model is exactly the opposite to what the motor
system needs, but "inverting" it provides the feedback
transformation we are looking for.

B. Constructing primitives

Suppose a sequence of control signals u… is somehow
generated, the plant dynamics is observed or simulated, and
the corresponding sequence of sensory signals s… obtained.
Define the vectors pastt = [ut-p, st-p, … ut-1, st-1], controlt = ut
and futuret = [st,ut+1, st+1, … ut+f, st+f] where the past and
future time horizons p and f can be inferred from temporal
correlations in the data. The key step is fitting (see below) a
conditional probability density model of the form:

 p(future, control | past) =

∑h p(future, control | h) p(h | past).

The “hidden” variable h is an internal state variable created
by the unsupervised learning algorithm, and is used to
communicate between the high and low level controllers. In
particular, the low level controller computes at each time
step the conditional expectation hpast = E(h | past), using the
conditional distribution p(h | past). Then hpast is sent to the
high level controller, which applies a (task-specific)
feedback law Q and returns v = Q(hpast). The high level
control signal v is treated as a desired change in h. The
actual control signal u is computed as the conditional
expectation u = E(control | hpast + v), using the conditional
distribution p(future, control | h) and marginalizing over
future. The resulting low level controllers can be expected
to have several appealing properties:

Sensory Input

Internal State

Generative
model

Sensory Input

Internal State

Generative
model

Motor Output

Causal
modelRecognition

model
Feedback

transformation

High-level recognizer High-level controller

 3 of 4

• The internal state variable h captures the information
about the past that is most useful in predicting the
future. This reduces the control space accessible to the
high level controller to the space of signals that have
predictable consequences.

• The transformation E(u | hpast + v) can be thought of as
a set of control synergies, which are driven by the high
level control signal v as well as past sensory-motor
activity. These synergies form a compact representation
of the statistics of measured sensory-motor interactions,
i.e. they capture the “modes” of the system.

• The control signals u… used to generate the training
data can be random, or alternatively they can be
collected while an existing control scheme is being
applied. In the latter case, the low level controller learns
to mimic the control scheme used in the training phase,
i.e. if the high level output is v = 0 the resulting control
signal will be E(u | past). This provides a natural model
of motor automation.

C. Fitting the model

 While the general probabilistic model described above
could be fit with a variety of methods, for the time being we
have focused on the simplest method – which is a
generalization of factor analysis to include inputs i as well
as outputs o. Define i = past, o = [future, control], and
the hidden variable is h as before. The generative model is

h = B i + w; o = C h + v

where w and v are zero-mean Gaussian noise vectors with
covariance Q and R respectively. The matrices B and C
correspond to the (unknown) mappings from inputs to
hidden states, and from hidden states to outputs. As in
ordinary factor analysis, R is assumed to be diagonal. It is
not difficult to derive an expectation-maximization (EM)
algorithm for learning B, C, Q and R.
 E-step: Define K = Q CT (R + C Q CT)–1. Then the mean
of h conditional on i and o is h = B i + K (o – C B i). The
covariance of h is S = Q – K C Q.
 M-step: The model parameters are updated according to
C = < o hT > S–1 and B = < h iT > < i iT >–1. The < > notation
denotes an average over the training data. Similar updates
can be obtained for Q and R.

D. Dynamical models

 We applied this approach to simulated systems that
capture many properties of musculo-skeletal dynamics (an
example is shown in Fig 2 A). The physical simulator was
built with the MathEngine Toolkit. The bodies of our
creatures are made of cylinders with spherical ends,
connected with hinge joints. For now they are restricted to a
2D plane. The physical simulation is actually in 3D, and we
are producing extra forces to avoid deviations from the

plane. The 2D constraint is used for easier visualization, and
also because we have not yet incorporated a detailed model
of 3D muscle wrapping.
 Some of the spheres can be fixed in the world. The
world can include gravity, ground, and external objects, i.e.
spheres attached to spring-dampers whose other end is fixed.
At the beginning of each (10 msec) time step the joint
torques resulting from muscle activation are computed. All
colliding pairs of objects are found, and the corresponding
forces added. We used soft collisions (allowing some
penetration) and friction in the directions orthogonal to the
normal. The simulation is evolved using a semi-implicit
integrator. An agonist-antagonist pair of muscles was
present around each joint. The muscle model included a
second-order linear filter (τ1=τ2=50 msec), constant
moment arms, constant stiffness, and damping present only
for shortening. Each simulated muscle was equipped with
one static spindle (measuring length), one dynamic spindle
(measuring velocity), one Golgi tendon organ (measuring
force). The spindle sensitivity was adjusted by a (gamma)
motor unit. Each joint had 2 limit sensors. Each sphere and
cylinder (Fig 2) had one tactile sensor on each side, which
responded whenever a contact occurred on the
corresponding surface. Since contacts involved some
penetration, the sensor had graded response. We simulated
different systems driven by random control signals (2 per
muscle), sampled at each time step from a uniform
distribution. The low-pass filtering properties of muscles
and the system impedance (inertia of the skeleton and
muscle viscoelasticity) transformed the noise activation
sequence into relatively smooth movements. The simulation
continued for about 20000 simulated seconds.

III. RESULTS

A. Features of extracted primitives

The unsupervised learning algorithm implicitly
discovered some of the basic properties of the dynamical
systems being simulated. Examples are shown in Fig 2
where we have plotted the motor and sensory components of
one primitive (by extracting the corresponding row and
column of the B and C matrices, and reshaping them
appropriately). The smooth progression of grayscale values
in the vertical dimension corresponds to the fact that muscle
forces change gradually (due to the low-pass filtering of
muscles), and consequently the spindle inputs also change
gradually. The fact that columns 1E and 2E are almost the
opposites of columns 1F and 2F corresponds to the agonist-
antagonist organization of the muscles around the two joints.
Note also that 1E-1F are treated differently from 2E-2F
(especially on the motor side). This particular primitive is
thus more interested in the muscles acting around joint 1, i.e.
the algorithm implicitly discovers the concept of a “joint”.

 4 of 4

Fig. 2. Illustration of preliminary results. A) One of the dynamical systems
we studied, with 2 joints and 4 muscles (1E, 1F, 2E, 2F). B) The learned
motor weights (loadings) for one of the primitives. C) The sensory weights
for the same primitive. D) Learning curves of different reinforcement
learning algorithms (see text).

B. Using primitives to speed up learning

We also tested the hypothesis that using primitives as low-
level controllers will speed up learning. This was done in
100 partially observable Linear-Quadratic-Gaussian (LQG)
systems, where the dynamics and cost matrices were
generated randomly. The task encoded by the cost matrices
did not vary over time, so that the appropriate feedback
control law was time invariant (and therefore easier to
parameterize and learn). The reason for using LQG systems
is that we can compute the optimal control law exactly, and
therefore the minimum cost that can be achieved is known.
Log costs for each system/task were scaled (see Fig 2D) so
that the minimum achievable cost is always 1. We applied a
policy gradient reinforcement learning method, to 3 different
parameterized control laws. Control laws “Direct 1” and
“Direct 2” acted directly on the dynamical system. “Direct
1” was driven by raw sensory inputs, while “Direct 2” was
driven by the optimal estimate of the system state (and
therefore it performed better than “Direct 1”). Note however
that the “Assistive” controller, acting on the automatically
extracted primitives, outperforms both of the direct methods.
We should stress that the advantage of using primitives is
likely to be much larger on a more difficult control problem.

0s 10s 20s 30s

Jo
in

t A
ng

le
s

Primitive 1

0s 10s 20s 30s

Jo
in

t A
ng

le
s

0s 10s 20s 30s

Jo
in

t A
ng

le
s

0s 10s 20s 30s

Jo
in

t A
ng

le
s

Primitive 2

Primitive 3 Primitive 4

Fig. 3. Examples of rhythmic patterns of movement generated by a
constant control signal to one primitive at a time. The magnitude of the
control signal changes at the 10 sec time marks. These examples are from a
dynamical system with 3 joint angles.

C. Autonomous pattern generation

An interesting feature of our primitives is that they have
both a sensory and a motor component. In other words they
act as tunable feedback controllers, and therefore can give
rise to rich time-varying movement patterns even when the
descending control is kept constant. This phenomenon is
illustrated in Fig 3, where we send a constant control signal
to a single primitive at a time. Of course these emergent
patterns will not in themselves accomplish any useful task.
But hopefully they will allow a high-level task controller to
rapidly explore a large portion of space, and not waste its
time trying to generate patterns that are “incompatible” with
the natural dynamics of the controlled system.

IV. FUTURE WORK

 While we are still exploring the properties of the
proposed method, the preliminary results are encouraging.
One future direction is to better understand what exactly the
method extracts, i.e. what are the basic movement patterns
that emerge from activating the primitives one at a time.
This should perhaps be done in simpler dynamical systems.
Another direction is to explore more advanced nonlinear
methods for fitting the general probabilistic model. The
speed-up in reinforcement learning we observed should also
be investigated further, in more realistic biomechanical
models performing specific motor tasks. The features of the
extracted primitives should be compared to physiological
responses in the spinal cord and other lower level motor
areas. Finally, we hope that biomechanical models
augmented with such automatically extracted primitives will
prove more amenable to neuroprosthetic control.

