
Implicit nonlinear complementarity: A new approach to contact dynamics

Emanuel Todorov
Departments of Applied Mathematics and Computer Science & Engineering

University of Washington

Abstract—Contact dynamics are commonly formulated as a
linear complementarity problem. While this approach is supe-
rior to earlier spring-damper models, it can be inaccurate due to
pyramid approximations to the friction cone, and inefficient due
to lack of convexity coupled with a large number of auxiliary
variables. Here we propose a new approach: implicit com-
plementarity. Instead of treating contact velocities and forces
as independent variables subject to explicit complementarity
constraints, we express them as functions of a minimal set
of unconstrained variables, and design these functions so that
the complementarity constraints are automatically satisfied.
We then solve the equations of motion via a non-smooth
Gauss-Newton method augmented with an original linesearch
procedure which exploits the problem structure. This enables
us to represent the friction cone exactly and to reduce the
number of unknowns by about a factor of 3. Numerical tests
suggest that, in usage scenarios typical for robotics, the solver
takes only about 5 iterations even without warm starts. More
extensive tests and side-by-side comparisons remain to be done,
but nevertheless the potential of the new approach is clear.

I. INTRODUCTION

Modeling and simulation of contact phenomena is es-
sential in a number of fields including robotics, mechanics
and graphics. Earlier approaches were based on spring-
damper models which often lacked stability and accuracy
even after considerable manual tuning. More recently the
physics of contact were cast as a linear complementarity
problem (LCP). The latter approach has now become stan-
dard, not only in academia [1-6] but also in widely used
simulation engines such as ODE, PhysX and Havok. Yet we
are still far from having a solution which is both physically
accurate and computationally efficient. This is because, even
though the LCP formulation is sound, it is hard to handle
algorithmically: direct solvers can be slow while iterative
solvers can re-introduce many of the issues associated with
earlier spring-damper models [2]. The goal of this paper is
to develop a substantial modification to the LCP approach,
improving both accuracy and efficiency.
Before delving into details we summarize the key idea.

The contact impulse f and contact velocity v satisfy

f + v0 = v (1)

where the inverse inertia and the bias velocity v0 are
given. In the LCP approach, (1) is augmented with a set of
complementarity constraints on f and v. In our approach, we
define functions f (x) and v (x) such that the complementar-
ity constraints are satisfied for any x, and then solve (1) with
respect to x using non-smooth unconstrained optimization.

A. Review of the LCP approach

We begin by reviewing the basics of the LCP approach
and introducing notation used later. Let q̇ q̈ ∈ R be the
generalized velocity and acceleration of a rigid-body system
with degrees of freedom1, (q) be the configuration-
dependent inertia matrix, and τ (q q̇) be all non-contact
forces acting on the system including Coriolis, centripetal,
gravitational and external forces. Suppose there are con-
tacts – found by a collision detection engine which is outside
the scope of this paper. Let n ∈ R3 be the unit vector
normal to the two surfaces touching each other at contact
, and t1 t

2
 ∈ R3 be two orthogonal unit vectors spanning

the tangent plane. Then Φ =
£
n t

1
 t

2

¤
is an orthonor-

mal matrix defining the -th contact coordinate frame. Let
vλ ∈ R3 be the contact velocities and interaction forces
expressed in frame Φ, and vλ ∈ R3 be the stacked
vectors of all contact velocities and forces. Let (q) be
the Jacobian of the mapping from generalized coordinates to
contact coordinates. Then the velocities v and q̇ are related
as

 (q) q̇ = v (2)

The contact forces expressed in generalized coordinates are
 (q)

T
λ, and so the equations of motion are

 (q) q̈ = τ (q q̇) + (q)
T
λ (3)

In the presence of Coulomb friction the above differential
equations may not have a solution. This issue however is
resolved if the dynamics are expressed in discrete time [1].
Let be the time step and be the time index. Replacing
q̈ with (q̇+ − q̇) , equations (2, 3) become

 (q) q̇+ = v+ (4)

 (q) q̇+ = (q) q̇ + τ (q q̇) +

 (q)
T
λ+

This can be written more compactly as

q̇ = v (5)

 q̇ = c+Tf

where c =q̇ + τ collects all the known terms in the
second equation, and f+ = λ+ is the contact impulse.
Now the problem comes down to computing q̇v f given

 c. Even though (5) contains more unknowns than

1The development is very similar if we use redundant (Cartesian) coor-
dinates and represent joints with equality constraints.

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 2322

equations, the indeterminacy is resolved because v and f are
further coupled through the laws of contact and friction. The
latter can be formalized as follows. Suppressing the index
 for clarity, let f be partitioned as

£
N ; fF

¤
where N is

the normal component and fF ∈ R2 is the tangential/friction
component, and similarly for v. Along the normal we have

N ≥ 0 N ≥ 0 N N = 0 (6)

These three conditions correspond to the fact that the contact
impulse cannot pull the bodies towards each other, the bodies
cannot penetrate, and if the contact is breaking then there can
be no contact impulse. In the tangent plane we have

vF parallel to fF

vF fF

® ≤ 0 (7)°°fF°° ≤ N

The first line means that if there is slip then the friction force
must act in the direction opposite to the slip velocity2. The
second line means that the interaction force must lie inside
the friction cone; is the coefficient of friction.
Condition (6) is called a complementarity condition. To-

gether with a linear equation such as (5) it can form an LCP.
Condition (7) on the other hand does not fit in the LCP
framework because it involves nonlinearities. The standard
approach is to approximate (7) by replacing the friction cone
with a pyramid and allowing the slip velocity and friction
force to be misaligned. This is done by choosing a redundant
basis {d} for the tangent plane, where d are unit vectors
that form a regular polygon. Assembling these vectors into
the columns of the matrix we can represent the friction
impulse as fF = β. After a few additional transformations
which can be found in [1], the problem is approximated
with an LCP. If the approximating friction pyramid is -
sided then the LCP involves +2 pairs of complementary
variables per contact. In practice = 8 is often used,
resulting in 10 complementarity pairs.

B. Reasons to look for a new approach

We now discuss the algorithmic difficulties in solving
the above LCP and explain the motivation behind our new
approach. LCPs can be solved with direct pivoting methods
such as Lemke’s algorithm. Even though certain improve-
ments to Lemke’s algorithm have been developed specifically
for the purpose of simulating contact dynamics [5][4], the
algorithm remains slow. Indeed a recent analysis suggests
that solving this LCP may be an NP-hard problem [2]. More
precisely, it was shown in [2] that solving for the friction
impulse given the normal impulse, or vice versa, corresponds
to a convex quadratic program (QP). However solving for
both simultaneously corresponds to a non-convex problem.
The method proposed in [2] is to iterate between the two
convex QPs. This is not guaranteed to converge, but in
practice works quite well, especially with warm starts. A
somewhat related simplification was proposed in [3] where
the LCP was approximated with a convex problem – resulting
in further inaccuracies in dealing with friction. Thus we

2We consider the zero vector to be parallel to any other vector.

already have algorithms which appear to be faster than
Lemke’s algorithm and more accurate than iterative solvers
such as the Gauss-Seidel method included in most simulation
engines. Yet the algorithmic difficulties and the proliferation
of approximation schemes for a problem which is itself an
approximation suggest that we should be able to find a better
approach.
The more specific motivation behind our work is based

on the following observations. The best general-purpose
algorithm for solving LCPs is not Lemke’s algorithm but the
PATH algorithm [7]. Although the latter has rarely been used
to simulate contact dynamics, our own experience has shown
that it is indeed faster in this context. The original PATH
algorithm was based on the path-search non-smooth Newton
method [9]. The authors later found [8] that a simpler scheme
works as well or better. This scheme is based on the Fischer-
Burmeister function

 () =
p
2 + 2 − − (8)

which has the property that () = 0 if and only if
and satisfy the complementarity condition (6). Thus, by
replacing the complementarity condition with = 0, one
can convert a (linear or nonlinear) complementarity problem
into a nonlinear system of equations. The resulting system is
semi-smooth and can be solved with simpler generalizations
of Newton’s method [8][10].
In summary, the best algorithms for solving general LCPs

are based on converting the LCP into a nonlinear system
and applying some form of Newton’s method. This raises
two related questions. First, if the equation is going to be
nonlinear anyway, why did we bother linearizing the friction
cone? Second, could it be that we can arrive at a nonlinear
equation more directly and intuitively, without going through
an LCP and without introducing all the auxiliary variables β
needed to approximate the friction cone? The latter point is
particularly important because the computational bottleneck
of all relevant algorithms is an inner loop solving linear
equations repeatedly. A direct linear solver for a system
with equations takes

¡
3
¢
time. Thus, if we were to

reduce the number of unknowns per contact from 10 to 3,
this change alone could speed things up by a factor of 30.
Below we develop a method which does just that.

II. IMPLICIT NONLINEAR COMPLEMENTARITY

The present results could be developed in either gen-
eralized or contact coordinates. The latter development is
simpler, thus we focus on it throughout the paper. Since
is always invertible we can eliminate q̇ from (5) and obtain
(1), where = −1 is the inverse inertia matrix
in contact coordinates while v0 = −1c is the contact
velocity which would result if f = 0. Given and v0, we
seek f and v satisfying (1) along with (6, 7).
As stated in Introduction, our approach is to express both

f and v as functions of some vector x with the same
dimensionality, design these functions so that (6, 7) hold
for any x, and then solve (1) for x. In other words we seek

2323

to convert problem (1, 6, 7) into a nonlinear equation of the
form

f (x) + v0 = v (x) (9)

The remainder of this section will be devoted to constructing
the functions f (x) and v (x) which accomplish the above
conversion. Algorithms for solving (9) will then be presented
in the next section, followed by simulation results.
First we consider the normal direction. Focusing again on

the case of a single contact, the functions in question are

N (x) = max
¡
0 − N

¢
(10)

N (x) = max
¡
 N

¢
where is a known constant. See Fig 1A. It is easiest
to understand this construction in the case = 0. When
the scalar N is positive it encodes the normal velocity,
otherwise it encodes the (opposite of the) normal impulse.
The reason we can encode both N and N with one scalar is
because they are complementary, thus only one of them can
be non-zero. The variable N is "hybrid" in the sense that
it has different units depending on its value, but this does
not affect the math. The reason we need to allow 6= 0

is because the complementarity condition (6) is actually
somewhat restrictive. The more general condition is

N ≥ 0 N ≥ N
¡
N −

¢
= 0 (11)

This generalization is useful when two bodies have already
penetrated and we want to push them apart – which can be
achieved by using a positive . Alternatively, if two bodies
are not yet in contact but are moving towards each other, we
may want to avoid penetration on the next time step – which
can be achieved by using a negative .
Next consider the tangent plane. Here things are more

complicated because both vF and fF can be non-zero at
the same time. However a compact representation is still
possible because these two vectors are always parallel, thus
their common direction can be encoded with the direction of
the vector xF . Then all we have to do is get the magnitudes
right – which is similar to the complementarity encountered
above. Define the scalar

 (x) = min

µ
1

N (x)
kxFk

¶
(12)

The functions we need can now be defined as

fF (x) = − (x)xF (13)

vF (x) = xF − (x)xF

See Fig 1B. To understand this construction, first consider
the case = 1 which occurs when

°°xF°° ≤ N . In this
case equation (13) yields fF = −xF and vF = 0; in other
words the interaction force is inside the friction cone and the
contact is sticking. When

°°xF°° N we have 1. In
this case the scalar has the effect of scaling xF so that fF =
−xF lies exactly on the friction cone. The "remainder" of
the vector xF is then interpreted as the slip velocity. Note
that the functions defined in (10) and (13) have the property

v (x) = f (x) + x (14)

xF

fF

vF = 0 xFvF = fF + xF

(B) tangent forces and velocities

stick slip

(A) normal forces and velocities

xN

fN

b

vN

(C) 3D forces and velocitiies

x1

x2

x3
break:
f(x) = 0
v(x) = x

stick:
f(x) = b - x
v(x) = b

slip:
f(x) = b - S(x) x
v(x) = b + x - S(x) x

b

fF

Fig. 1. Schematic illustration of the functions f (x) and v (x).

This is useful because we only need to compute f (x).
Recalling that f =

£
N ; fF

¤
and similarly for v and x, we

can now combine the normal and tangent spaces in the 3D
representation illustrated in Fig 1C. The equations shown in
the figure involve the vector b = [; 0; 0] and the diagonal
matrix (x) = diag (1 (x) (x)). These equations are
identical to (10) and (13), except we now see explicitly how
they depend on the contact state (break, stick, slip) which is
determined by the value of x. The functions f (x) and v (x)
are linear in the break and stick regions and nonlinear in the
slip region. The nonlinearity is further illustrated in Fig 2,
which shows how the first component of the tangent/friction
impulse depends on x in two different planar sections of the
3D contact space.

2324

x2

x3 x2

x1

f2

f2

(A)

(B)

Fig. 2. Illustration of the nonlinearity in the function f (x) in two different
planar sections of the 3D contact space.

III. NON-SMOOTH GAUSS-NEWTON METHOD ADAPTED
TO OUR PROBLEM

Having defined the functions f (x) and v (x) we now
proceed with algorithms for solving (9). Moving all terms
to the left hand side and using (14), the residual is

r (x) = (−) f (x)− x+ v0 (15)

The problem then reduces to solving the nonlinear equation

r (x) = 0 (16)

where x ∈ R3 is unconstrained. Such problems are usually
solved using Newton’s method:

x(+1) = x() −
³
x()

´−1
r
³
x()

´
(17)

where is the iteration number and is the Jacobian:

 (x) =
r (x)

x
(18)

The same general idea will be applied here. It will turn
out however that a number of important issues need to
be addressed before the algorithm works efficiently. These
issues include obvious ones such as instability and lack of
smoothness, as well as less obvious ones having to do with
chattering and loss of second-order convergence.

x

xCauchy

xNewton

Fig. 3. Illustration of first and second-order optimization.

A. Review of second-order optimization

Here we explain the standard components of our algorithm
while at the same time providing a brief review of relevant
topics. It is well known that solving a nonlinear equation
using Newton’s method is equivalent to defining a sum-of-
squares objective function

 (x) =
1

2
r (x)

T
r (x) (19)

and minimizing it with the Gauss-Newton method. The ad-
vantage of casting the problem in the optimization framework
is that the function gives us a well-defined notion of
progress, which is essential in designing procedures that
enforce robustness. The gradient of is

g (x) = (x)
T
r (x) (20)

Define the matrix function

 (x) = (x)
T
 (x) + (21)

as well as the shortcut (x) = (x 0). This matrix is
the Gauss-Newton approximation to the Hessian of ; the
exact Hessian includes an additional term dependent on the
derivative of . When is invertible we have −1r =
−1g, and so Newton’s root-finding method is equivalent to
the Gauss-Newton optimization method. However, when is
singular or close to singular, using 0 makes the iteration
more stable. This is the essence of the Levenberg-Marquardt
algorithm which adapts online. Our implementation also
uses such an adaptive .
Given the current setting of , define the "Newton point"

xN = x−−1g (22)

which is the minimum of the local quadratic (in ²) model

 (x+ ²) = (x) + ²Tg (x) +
1

2
²T (x) ² (23)

When (xN) is sufficiently smaller than (x) we accept xN
as the next iterate. In our implementation xN is accepted if
the actual improvement is at least 50% of the improvement
predicted by the quadratic model. If this test fails, which
happens when is a poor approximation to , we need
to backtrack in some way. The simplest approach is a

2325

linesearch from xN to x. This however may be problematic
because, when is a very poor model of and only small
improvements are possible, the optimal search direction is
given by the gradient. Backtracking along the curve p () =
x − (x)

−1
g (x) would be ideal because this curve

departs from x in the direction of the gradient and then turns
towards the Newton point3. However such "curvesearch"
would be computationally expensive. A common alternative,
also used in our implementation, is the dogleg method. It
relies on the "Cauchy point" defined as the minimum of (23)
in the direction of the gradient g:

xC = x− g gTg

gTg
(24)

The dogleg method consists of two linesearches: from xN
to xC, and from xC to x. The typical configuration of these
points is shown in Fig 3. The blue ellipses are the contours
of the quadratic . The curve p () is shown in black. The
green lines show the progress of a first-order steepest descent
method (see below).

B. Extension to semi-smooth functions

In our case the function r (x) is continuous but non-
smooth. One can verify that r (x) is semi-smooth, which is
equivalent to having uniform convergence of all directional
derivatives [11]. Dealing with semi-smooth functions is in
principle straightforward. If the function is differentiable at
the current x we proceed as in smooth optimization. If not,
we form the set { (x)} of all possible Jacobians obtained
by approaching x from different directions. The convex hull
of this set is called the sub-differential. We can then pick any
 inside this convex hull and use it in the above algorithm.
The usual convergence properties are preserved [11][10][8].
Let us now be more specific about how we pick when

r (x) is non-differentiable. Recall that x ∈ R3 and that
x ∈ R3 is the part of x corresponding to the -th contact.
If any x lies on the plane or on the cone shown in Fig 1C,
the residual r (x) is non-differentiable. We define an edge to
be a 3 − 1 dimensional manifold (plane or cone) where
one of the contacts is in such a critical state. There are a total
of 2 edges. Their intersections correspond to points where
multiple contacts are in a critical state. We will ignore these
intersections for simplicity of the exposition, although they
are handled in a similar way. Suppose x lies on an edge, the
Jacobians on the two sides of the edge are 1 and 2, and the
normal vector to the edge is d ∈ R3 pointing towards the
smooth region which corresponds to 1. Then the directional
derivatives of orthogonal to the edge are

1 = rT1d (25)

2 = −rT2d
If 1 0 or 2 0 then the objective function can
be reduced in a direction which does not lie within the
(tangent space to the) edge. In this case we pick the Jacobian

3Another interesting property of this curve is that the solution given by
trust-region methods lies on it.

corresponding to the smooth region which allows the steeper
descent. Otherwise can only be reduced along the edge. We
will call such an edge active. In this case we pick

 =
21 + 12

1 + 2
(26)

It can be verified that this is the unique element of the
sub-differential for which g = Tr lies within the edge.
Given the convergence guarantees of the generalized

Gauss-Newton method for semi-smooth functions, and the
fact that edges are a set of measure zero so we are unlikely
to ever land on them anyway, we had expected the algorithm
described above to always work well. Instead we found that it
sometimes works well, but sometimes has slow convergence.
Analysis of the problem revealed a chattering phenomenon,
which led us to the improvements described in the next
section.

C. Avoiding chattering through edge-aware linesearch

In the context of smooth optimization chattering is asso-
ciated with plain (i.e. first-order) gradient descent methods.
This is illustrated with the green curve in Fig 3. An exact
line-search in the direction of the gradient yields a point
where the gradient is orthogonal to the current search direc-
tion, causing a 90deg turn in each iteration. This chattering
is the primary reason for using second-order methods such
as Newton’s method and its many variants.
However we are already using Newton’s method here. So

why do we get chattering? The reason is illustrated in Fig 4A,
which shows the contours of two smooth functions joining
at an edge. Suppose that each function is a perfect quadratic
which can be minimized with a single Newton iteration. The
problem is that the minimum of each quadratic lies in the
domain of the other quadratic, and so a direct application of
Newton’s method will cause an infinite oscillation between
the two virtual minima. When Newton’s method is aug-
mented with a linesearch it will backtrack somewhat, causing
a decreasing sequence of oscillations which will eventually
converge, but a lot of time will be wasted.
The above analysis makes it clear what the remedy is:

if the line segment along which we are searching crosses
an edge, check to see if the crossing is a local minimum,
and if so accept it as the next x. The algorithm will then
automatically search along the edge on the next iteration,
thanks to (26). We call this edge-aware linesearch. Of course
this procedure is computationally efficient only if we can
compute the line-edge intersections analytically. Fortunately
this is the case here. For planar edges the computation is
obvious. For cone edges we parametrize the line segment as
t () = x+ u and then look for such that t () lies on
the friction cone:

2 (1 ()−)
2
= 2 ()

2
+ 3 ()

2 (27)

This is a quadratic equation in and can be solved ana-
lytically. We seek a real solution 0 ≤ ≤ 1 for which
1 () ≤ . The same procedure is repeated for all contacts.
Once all edge-crossings have been found and sorted, we have

2326

(A) (B)

Fig. 4. Illustration of chattering phenomena caused by edges.

a set of sub-segments within which the objective function is
smooth. We then apply a cubic linesearch within each sub-
segment, and choose the best point we find as the next iterate.

D. Projection on straight and curved edges

We found that the edge-aware linesearch eliminated a
substantial number of problematic cases, however another
problem was now uncovered. Once x landed on an edge,
the second-order convergence was often lost and instead the
algorithm started to behave more like a first-order method,
choosing the next iterate from the segment x : xC instead
of xC: xN. In retrospect the reason for this is obvious. The
modified Jacobian (26) guarantees that xC lies within the
tangent to the edge, but there is no such guarantee for xN.
As a result the segment xC: xN deviates from the edge, the
objective function increases along that segment, and so the
algorithm effectively uses only the segment x : xC.
The solution to this problem is to make sure that both xC

and xN lie in the tangent to the edge. This is done by forming
the (3)-by-(3 − 1) matrix (x) whose columns span
the 3−1 dimensional tangent space. Then we parameterize
the deviations from x within the tangent space as ² = ξ and
write the local quadratic model (23) in terms of ξ. Finding
the Cauchy and Newton points with respect to this restricted
model and mapping back to the original space, we have

xC = x−Tg
gTTg

gTTTg
(28)

xN = x−
¡
T

¢−1
Tg

This looks complicated but is in fact very efficient compu-
tationally. Indeed is a block-diagonal matrix having one
block per contact. For contacts which are not on an edge
or where the objective function is decreasing away from the
edge (i.e. the edge is inactive), the block is 3x3. For contacts
on active edges, the blocks are given by

plane =

⎡⎣ 0 0

1 0

0 1

⎤⎦ cone =
⎡⎣ (1 −) 0

2 −3
3 2

⎤⎦
(29)

Note that if we replace with in (28), where is
any orthonormal matrix, the resulting xC and xN remain
unchanged. Thus the algorithm does not depend on the
parameterization of the tangent space but only on the space
itself.
This extension to the algorithm fixed all problems with

planar edges. However we still observed chattering at conic
edges, illustrated in Fig 4B. Our edge-aware linesearch lands
on a conic edge, then the projection due to causes a move
in the tangent space as expected. Since the edge manifold
is curved, this immediately takes us a (short) distance away
from it. Then the edge-aware linesearch sends us back to the
edge, and so on. The inherent problem is that the descent
"direction" should actually be a curved surface, while we
are using methods designed to work with linear subspaces.
The obvious fix is to project the points xC and xN on the
edge surface. This would be hard to do for a general surface,
but since we are working with cones, the projection here can
be done analytically. Focusing again on a single contact, we
seek the point t on the friction cone which is closest to a
given point x. This constrained optimization problem can
be handled using Lagrange multipliers. After some tedious
algebra which we omit, the problem reduces to finding the
roots of a certain quadratic polynomial. Thus xC and xN
are projected on the friction cone analytically.

E. Pseudocode of the algorithm

repeat times
if kr (x)k is sufficiently small
return "success"

find active edges and construct (x)
compute xN, project on active cone edges
if xN is sufficiently better than x
accept xN
decrease
continue with next iteration

increase
compute xC, project on active cone edges
find edge crossings in x : xC and xC : xN
form list of sub-segments
do cubic linesearch in each sub-segment
if a better point is found
accept best point found
continue with next iteration

else
return "local minimum"

return "max iterations exceeded"

F. Initialization

The obvious way to initialize the algorithm in the context
of a dynamic simulation is to use the solution from the
previous time step (warm start). An alternative is to assume
that all contacts are in the sticking state – which is true most
of the time. Under this assumption the velocity v is known.
Then we find f = † (v − v0) where † is the Moore-
Penrose pseudoinverse, and set x = v− f .

2327

Fig. 5. One frame from our simulator.

IV. SIMULATION RESULTS

The different versions of the algorithm were tested on
randomly generated problems as well as on problems arising
within a dynamic simulation. Here we focus on the latter
results. The simulator was written in Matlab specifically for
testing the algorithm. Therefore we decided to keep every-
thing other than the contact problem as simple as possible.
To simplify collision detection, the simulation included
balls of different radii moving inside a cube. The balls were
initialized at random positions and velocities and then their
motion was simulated in the presence of contacts and gravity.
We set = 0. All results reported here were obtained with
the initialization procedure which assumes sticking contacts
(the results with warm starts were even better). When the
algorithm terminated we accepted the result from the last
iteration and proceeded with the next time step.
Fig 5 shows the first frame of one simulation with =

10. A typical simulation run is shown in the movie which
accompanies the paper. Each frame in the movie shows
the number of contacts and the number of iterations of the
algorithm. The time step in the movie is = 001 sec. In
other simulations we have used = 0005 sec.
Fig 6 shows the results of a simulation where 5 balls were

initialized at vertically stacked positions (Fig 6A) and zero
velocities. The balls then dropped together due to gravity,
and the bottom ball eventually hit the f1oor. At this point
the shock was propagated through the system within a single
time step, and the vertical velocities of all balls became zero.
The ball positions over time are shown in Fig 6B. Somewhat
surprisingly this turned out to be a very easy problem – the
algorithm only took one iteration to solve it.
In order to explore the behavior of the algorithm more

systematically, we tested it 10 times in each of 12 con-

time steps (5 ms)1 100

ba
ll

el
ev

at
io

n

(A) (B)

Fig. 6. Ball-drop test for shock propagation.

ditions which differed by the friction coefficient =

{01 02 10 20} and by the number of balls =

{5 10 15}. Each test run continued for 200 time steps with
 = 0005 sec. The results are summarized below.

 = 5 = 10 = 15

 = 7 = 16 = 27

 = 01
38

99 %

48

98 %

65

90 %

 = 05
26

95 %

53

85 %

75

73 %

 = 10
28

90 %

49

71 %

102

60 %

 = 20
29

88 %

46

71 %

162

55 %

(Table 1)

Each column is labeled with the number of balls as
well as the corresponding average number of contacts
measured in the simulation. The top row in each cell is the
number of iterations per timestep. This is computed by taking
the median in each simulation run, and then averaging over
the 10 simulation runs within each condition. The bottom
row is the percent iterations on which the Newton point
xN was accepted. Recall that on those iterations the edge-
aware linesearch is not used. On the remaining iterations the
solution was almost always in the segment xC : xN. About
half of these solutions were on edges, and the other half in
smooth sub-segments between edges.
We find these results encouraging for several reasons.

First, unlike some algorithms which have difficulties with
large friction coefficients, we can handle very large friction.
Indeed = 1 is about as high as one would ever need
in a physical simulation, while our algorithm works well
with = 2. Table 1 shows that, for medium numbers of
contacts, increasing does not actually make the problem
harder for our algorithm. Second, the algorithm accepts xN
on the large majority of iterations, which means that most
of the time we are in the second-order convergence regime.

2328

The small iteration count is particularly impressive in light
of the fact that we are not using warm starts. Also, recall
that one iteration of our algorithm involves the solution
of a linear system which is about 3 times smaller than
the corresponding system obtained with the LCP approach.
Thus the algorithm not only uses few iterations, but each
iteration is substantially faster compared to other methods.
The additional mechanisms we introduced are tedious to
derive and implement, however they are based on analytical
formulas and overall require less computation than finding
the Newton point.

V. DISCUSSION AND FUTURE WORK

In this paper we formulated contacts dynamics as an
implicit nonlinear complementarity problem, and reduced it
to unconstrained optimization of a semi-smooth objective
function. After overcoming a number of obstacles due to the
lack of smoothness, we obtained a very efficient algorithm.
In robotics applications such as legged locomotion or hand
manipulation, the cell corresponding to = 1 and = 16
in Table 1 is likely to be typical. If our algorithm can indeed
simulate robotic systems in 5 iterations and spend 70% of
its time in the second-order convergence regime, it will be
more efficient than any other known algorithm.
The simulation results presented here are based on a

specific dynamical system. We do not think that the contact
resolution problem for this system is substantially simpler
than any other system with the same and , but never-
theless more extensive simulations are needed. We are in
the process of developing a general simulator for multi-
joint dynamics with friction, which will allow us to study a
wide range of mechanical systems. We plan to include both
the present algorithm and the best LCP-based algorithms in
the new simulator, and perform side-by-side comparisons.
While this future work is important, a lot has already
been accomplished: we developed an original approach to
an important problem and presented encouraging numerical
results suggesting that the new approach may be better than
the state-of-the-art.

A. Possible extensions to the algorithm

Apart from testing the algorithm in the context of a
general-purpose simulator, we are considering several ex-
tensions. The first is a mechanism for recovery from local
minima. In the context of root-finding via minimization,
a local minimum is a point x where r (x) 6= 0 while
 (x)

T
r (x) = 0. This can only occur when (x) is singular

– which is very rare. If a local minimum is encountered
we could either restart the minimization at a different point,
or perturb the equation as r (x) = 0 where is some
diagonal matrix with positive elements on the diagonal. Such
rescaling of the residual may also be useful for the purposes
of preconditioning. For example, we can compute a suitable
scaling matrix based on the row-sums of the inverse inertia
matrix .
The handling of cone edges could also be improved.

Currently we project xN and xC on the cone and proceed

with linesearch. Instead of this Cartesian projection we could
represent the local model (23) as a quadratic over a cone,
correct for the curvature by including a term dependent on
the derivative of (x), and move along the geodesics of the
cone. These geodesics can be constructed analytically.
Finally, we are yet to analyze the energy of the simulated

system and do careful stability tests. Our observations so
far indicate that the simulation is surprisingly stable. This
was the case even with earlier versions of the algorithm
which resulted in chattering and often reached the maximum
number of iterations before finding the global minimum.
Yet we did not observe instability or other non-physical
behavior. Unlike Lemke’s algorithm which is designed to
avoid cycling instead of reduce a sensible cost function, our
algorithm improves the solution on every iteration. This may
be the reason why it yields sensible results even when it is
interrupted before the global minimum is found.

Acknowledgements

This work was supported by the National Science Foun-
dation and the National Institutes of Health.

REFERENCES

[1] D. Stewart and J. Trinkle. An implicit time-stepping scheme for
rigid-body dynamics with inelastic collisions and Coulomb friction.
International Journal Numerical Methods Engineering 39: 2673–2691
(1996).

[2] D. Kaufman, S. Sueda, D. James and D. Pai. Staggered projections
for frictional contact in multibody systems. ACM Transactions on
Graphics (SIGGRAPH ASIA), 164: 1–11 (2008).

[3] M. Anitescu and G. Hart. A fixed-point iteration approach for
multibody dynamics with contact and small friction. Mathematical
Programming 101: 3–32 (2004).

[4] K. Yamane and Y. Nakamura. A numerically robust LCP solver
for simulating articulated rigid bodies in contact. Proceedings of
Robotics: Science and Systems 4 (2008).

[5] J. Lloyd. Fast implementation of Lemke’s algorithm for rigid body
contact simulation. Proceedings of the IEEE International Conference
on Robotics and Automation, 4538–4543 (2005).

[6] F. Pfeiffer and C. Glocker. Multibody dynamics with unilateral
constraints. Wiley Series in Nonlinear Science (2006).

[7] S. Dirkse and M. Ferris. The PATH solver: A non-monotone stabi-
lization scheme for mixed complementarity problems. Optimization
Methods Software 5: 123–156 (1995).

[8] M. Ferris, C. Kanzow and T. Munson. Feasible descent algorithms
for mixed complementarity problems. Mathematical Programming
86: 475–497 (1999).

[9] D. Ralph. Global convergence of damped Newton’s method for
nonsmooth equations, via the path search. Mathematics of Operations
Research 19: 352–389 (1994).

[10] H. Jiang. Global convergence analysis of the generalized Newton
and Gauss-Newton methods of the Fischer-Burmeister function for
the complementarity problem. Mathematics of Operations Research
24: 529–543 (1999).

[11] L. Qi and J. Sun. A nonsmooth version of Newton’s method.
Mathematical Programming 58: 353–367 (1993).

2329

