
Convex and analytically-invertible dynamics with contacts and
constraints: Theory and implementation in MuJoCo

Emanuel Todorov

Abstract— We describe a full-featured simulation pipeline im-
plemented in the MuJoCo physics engine. It includes multi-joint
dynamics in generalized coordinates, holonomic constraints, dry
joint friction, joint and tendon limits, frictionless and frictional
contacts that can have sliding, torsional and rolling friction.
The forward dynamics of a 27-dof humanoid with 10 contacts
are evaluated in 0.1 msec. Since the simulation is stable at 10
msec timesteps, it can run 100 times faster than real-time on
a single core of a desktop processor. Furthermore the entire
simulation pipeline can be inverted analytically, an order-of-
magnitude faster than the corresponding forward dynamics.
We soften all constraints, in a way that avoids instabilities and
unrealistic penetrations associated with earlier spring-damper
methods and yet is sufficient to allow inversion. Constraints are
imposed via impulses, using an extended version of the velocity-
stepping approach. For holomonic constraints the extension
involves a soft version of the Gauss principle. For all other
constraints we extend our earlier work on complementarity-free
contact dynamics – which were already known to be invertible
via an iterative solver – and develop a new formulation allowing
analytical inversion.

I. INTRODUCTION

Contacts enable robots to interact with the environment
and get a job done. Yet their discontinuous nature compli-
cates simulation, planning and control. One way to sidestep
these complications is to focus on the smooth dynamics
in between contact events, and handle the transitions via
problem-specific and often adhoc methods that tend to limit
the capabilities of the robot. Another way is to smooth
the contacts using spring-dampers. Here we do not refer to
detailed models of material deformations (which are accurate
yet slow), but rather to phenomenological spring-damper
contact models in the context of rigid-body dynamics. That
approach has been superseded by the velocity-stepping com-
plementarity approach [1], [2], where the contact impulse
(i.e. the integral of the contact force over the simulation
timestep) is computed by solving a linear or nonlinear
complementarity problem. Apart from its mathematical el-
egance, this approach avoids instabilities and unrealistic
penetrations and handles interactions among simultaneous
contacts – allowing much larger timesteps. However it also
has shortcomings: it calls for a computation that is NP-
hard in its exact form [3], and furthermore it only solves
the simulation problem while planning and control remain
difficult due to contact discontinuities.

This work was supported by the NSF and DARPA. E. Todorov is with the
departments of Applied Mathematics and Computer Science & Engineering,
University of Washington. Thanks to Yuval Tassa for discussions and
comments on the manuscript.

A. Complementarity-free contact dynamics

The shortcomings of the now-standard complementarity
approach motivated complementarity-free methods, devel-
oped independently in [4] and [5]. The idea is to relax
the strict complementarity condition and instead enforce it
approximately. This relaxation transforms the NP-hard prob-
lem into a convex optimization problem: a conic program
when the friction cone is treated exactly, and a quadratic
program when the cone is approximated with a pyramid. A
systematic analysis of the effects of this approximation for
complex robots remains to be done. Nevertheless, synthetic
tests [6] as well as experience with model-based control [7]
indicate that the approximation is accurate. Note also that
the complementarity formulation is not necessarily a gold
standard [8]. All contact models presently used in rigid-
body simulations are phenomenological, and the only way to
validate them is to measure the contact interactions between
real robots and their environment – which is rarely done.
Contact softness in particular may be better modeled by the
complementarity-free approach. Such softness arises from
regularization terms that are also essential for inversion.

B. Inverse dynamics with contacts and constraints

The goal of inverse dynamics it to compute the control
forces and constraint impulses given the positions, velocities
and accelerations. This is complicated by the fact that rigid-
body contact dynamics are not actually invertible. Consider
pushing against a wall. The contact force cannot be recov-
ered from the kinematics, unless of course we measure the
material deformations – but such deformations are ignored
in the rigid-body approximation and in the complementarity
approach. Indeed one of the notable advantages of the
complementarity approach is that it considers the control
force (as well as all other non-contact forces) before deciding
what contact impulse to apply. This avoids penetration, but
also makes it impossible to invert the dynamics or smooth
the contacts. If on the other hand we were to use spring-
dampers, the contact dynamics would be smooth and trivially
invertible – but as mentioned above, spring-dampers have
their own limitations that tend to outweigh their advantages.

Our complementarity-free approach [4] combines the best
of both worlds: it allows smoothing and inversion, and at the
same time considers both the inertia and the control forces
in computing the contact impulses. The related approach
[5] is not amenable to inversion because it uses a two-step
optimization method, reminiscent of the staggered projection
method developed for complementarity problems [3].



II. FORWARD DYNAMICS

A. Notation

Throughout the paper we use the following notation:

q joint position
v joint velocity
u control force
h discrete timestep
D armature, implicit damping inertia
M (q) total joint-space inertia
c (q, v) gravity, Coriolis, centripetal forces
p (q, v) spring-dampers, other passive forces
JE (q) equality constraint Jacobian
fE (q, v, u) equality constraint impulse
J (q) contact Jacobian
f (q, v, u) contact impulse
v+, v−, v∗ impulse-space velocities defined later

Since the treatment of equality constraints and contacts is
related, we use the same symbols (f, J) and the subscript
E to distinguish between the two. In addition, the following
model parameters will be defined later:

ε impulse regularization scaling
κ error reduction time constant
η loss due to dry joint friction
d number of contact friction dimensions
µ1, · · · , µd coefficients of elliptical friction cone

Multiple friction coefficients are needed to handle tangential,
torsional and rolling friction; thus d can be up to 5.

B. Overall computation

We consider multi-joint systems subject to holonomic
constraints such as loop joints, and contact impulses arising
from dry joint friction, joint and tendon limits, frictionless
and frictional contacts. The continuous-time dynamics are

Mdv + c dt = (p+ u) dt+ JT f + JTE fE (1)

We have not divided by dt because fE, f are impulses.
The computation is carried out in two phases. Phase I

corresponds to smooth dynamics and preparation for impulse
dynamics, and relies on standard methods [9]. Phase II cor-
responds to impulse dynamics; it is the more the challenging
part and is also where the novelty of our approach lies.

In Phase I we compute M,D, c, p, JE, J . In our implemen-
tation in the MuJoCo physics engine, M (q)−D is computed
with the Composite Rigid Body (CRB) algorithm, then D
is added and the resulting M is LDL-factorized taking
advantage of branch-induced sparsity. c (q, v) is computed
with the Recursive Newton-Euler (RNE) algorithm – which
is actually an algorithm for inverse dynamics:

RNE (q, v, v̇) = (M (q)−D) v̇ + c (q, v) (2)

Here we use it to compute RNE (q, v, 0) = c (q, v). Note
that CRB and RNE do not take into account the extra inertia
D, which is why we have to add it to the output of these
algorithms to obtain the total inertia M . The contact Jacobian

J (q) is computed using collision detection. The quantities
p (q, v) , JE (q) are computed from analytical formulas or
user callbacks. The extra diagonal inertia D models the
armature inertia of motors as well as implicit damping.

We do not use Featherstone’s O(n) forward dynamics.
This is because the impulse phase needs the inertia matrix
to be computed and factorized, and once this is done,
using RNE is faster. Thus our method has O(n3) worst-
case performance. However, as Featherstone showed in [10],
branch-induced sparsity typical for robotic systems makes
the present method very similar to his O(n) method.

In Phase II we compute (fE, f) given (q, v, u) as explained
in the following subsections. This is done in two stages: we
first eliminate fE by expressing it as a function f , and then
project the dynamics in contact space and solve for f .

Before proceeding with the impulse computation, we need
to transition to discrete time. Let h > 0 be the timestep.
Replace dv (t) with v (t+ h)− v (t). All relevant quantities
except v (t+ h) are defined at time t, thus we omit t and
write v (t+ h) as v′. The discrete-time dynamics are

M (v′ − v) = (p+ u− c)h+ JT f + JTE fE (3)

Since M is symmetric positive-definite, v′ can be found as

v′ = v +M−1
(
(p+ u− c)h+ JT f + JTE fE

)
Now that we have transitioned to discrete time, we can

clarify how the implicit damping terms in D are computed.
Recall that “implicit” refers to evaluating quantities at the
next timestep rather than the current timestep, and makes
numerical integration more stable. In the case of a damped
2nd-order system Mv̇ = −Bv , implicit damping is imple-
mented in discrete time as

M (v′ − v) = −Bv′h

These dynamics can be written in the familiar (explicit) form

M (v′ − v) = −Bvh

by modifying the inertia as M =M +Bh. Thus we imple-
ment implicit damping by defining D ≡ armature+Bh, and
adding −Bv to the passive force p (q, v). We require D to
be diagonal and non-negative, so as to preserve the sparsity
and positive-definiteness of M .

C. Constraint dynamics

The dynamics of equality-constrained systems can be
obtained from the Gauss principle [11], which we now recall.
Suppose we have unconstrained continuous-time dynamics
Ma = τ subject to acceleration constraints JEa = a∗E.
Then, given M, τ, JE, a

∗
E, the constrained acceleration is the

solution to the convex optimization problem

min
a : JEa=a∗E

(Ma− τ)T M−1 (Ma− τ) (4)

Since we aim to invert the dynamics later, and hard con-
straints are non-invertible, we must soften the constraints
somehow. We propose to do this by softening the Gauss prin-
ciple, i.e. replacing the hard constraint with a soft penalty.



Proposition. The acceleration of the constrained system is
defined as the solution to the convex optimization problem

min
a

(Ma− τ)T M−1 (Ma− τ)+ (5)

(JEa− a∗E)
T
R−1E (JEa− a∗E)

where the regularizer RE is a diagonal positive matrix.
In the limit RE → 0 the solution to problem (5) converges

to the solution to problem (4), which is non-invertible. How-
ever for any RE � 0 the resulting dynamics are invertible,
as shown by construction later.

We now return to discrete time and impose a soft con-
straint on velocity rather than acceleration: JEv

′ = v∗E (q, v).
Here v∗E is the desired next-step velocity in constraint space,
computed by any suitable constraint stabilization mechanism.
Our specific choice will be described later.

Theorem 1. The dynamics under the proposed soft Gauss
principle are

v′ = v̂ + M̂−1JT f (6)

where M̂ and v̂ are defined as

M̂ ≡M + JTE R
−1
E JE (7)

v̂ ≡ v + M̂−1
(
(p+ u− c)h+ JTE R

−1
E (v∗E − JEv)

)
Proof. Apply the soft Gauss principle with

a =
v′ − v
h

, a∗E =
v∗E − JEv

h
, τ = p+ u− c+ JT f

h

Solving (5) analytically yields (6, 7). �
We can interpret M̂ as the apparent inertia that takes into

account the constraints, and v̂ as the next-step velocity that
takes into account all forces except for the contact impulse.

For hard constraints the dynamics remain in the general
form (6), but the definitions (7) are replaced with

M̂−1 ≡M−1 −M−1JTE A−1E JEM
−1

v̂ ≡ v + M̂−1 (p+ u− c)h+M−1JTE A
−1
E (v∗E − JEv)

where AE ≡ JEM
−1JTE is the inverse inertia in constraint

space. This can be shown by solving (4), or by taking the
limit RE → 0 and using the matrix inversion lemma.

Equations (6, 7) represent modified dynamics which im-
plicitly take the constraints into account. We did not compute
the impulse fE explicitly because it can only be computed
after v′ is known, i.e. in the context of inverse dynamics.

D. Contact dynamics

We now have everything in place for the contact com-
putation stage. First we project (6) in contact space via
multiplication by the contact Jacobian J :

Jv′ = Jv̂ + JM̂−1JT f

Then we write the contact-space dynamics as

Af + v− = v+ (8)

where A ≡ JM̂−1JT is the inverse of the apparent inertia,
v− ≡ Jv̂ is the next-step velocity before the contact impulse,

and v+ ≡ Jv′ is the next-step velocity after the contact
impulse, all expressed in contact space.

To complete the forward dynamics computation we have
to solve (8) for (f, v+) given (A, v−). This involves twice
as many unknowns as the number of equations in (8), thus
we need additional information – which comes in the from
of inequality constraints reflecting the laws of contact and
friction. We now introduce these inequalities, and at the same
time explain what exactly is included in the contact space.

In our current implementation in MuJoCo the contact
solver can handle three types of objects: friction loss in the
joints, limits on joint angles and distances, and frictional
contacts. The elements fi of the vector f satisfy different
inequality constraints depending on the type of object they
represent, as follows:

friction: η (i)− fi ≥ 0

η (i) + fi ≥ 0

limit: fi ≥ 0

contact: fi ≥ 0

f2i −
d(i)∑
j=1

(
fi+j
µj (i)

)2

≥ 0

(9)

Assembling the left hand sides of the above inequalities in
the vector φ (f), we can write (9) as φ (f) ≥ 0.

In (9) subscripts denote vector elements as usual, while
i in brackets denotes parameters of the object whose data
starts at position i in the vector f . In the case of friction
loss, η (i) is the (load-independent) joint torque that is lost
to friction before the joint starts accelerating. Limits can
be defined for revolute, prismatic and ball joints (the latter
limits are cylinders in the angle-axis representation of the
joint quaternion), as well as for tendon lengths (tendons
are strings whose spatial path is defined by via points and
wrapping objects), and distances between geometric shapes
(i.e. frictionless contacts).

In the case of frictional contacts, d (i) ∈ {2, 3, 5} is
the dimensionality of the friction space and µj (i) are the
friction coefficients in the d (i) dimensions. The contact
contributes 1 + d (i) elements to the vector f with the
following semantics. Consider a 3D frame whose first axis
is aligned with the contact normal. Impulses (fi, fi+1, fi+2)
cause relative translation along the contact frame axes, while
(fi+3, fi+4, fi+5) cause relative rotation around the axes.
Thus fi is the normal impulse, (fi+1, fi+2) is the tangential
friction impulse, fi+3 is the torsional friction impulse, and
(fi+4, fi+5) is the rolling friction impulse. The contact
inequalities in (9) specify that the normal impulse must be
non-negative, and that the impulse vector must lie within the
elliptical friction cone. In the special case when d (i) = 2
and µ1 (i) = µ2 (i) = µ (i), this reduces to the more familiar
definition of a friction cone:

µ (i) fi ≥
√
f2i+1 + f2i+2

We now return to the computation of the contact impulse
f and next-step velocity v+. Conditions (8, 9) are still



insufficient to determine a unique solution. There are two
paths forward: complementarity-based and complementarity-
free. The former approach introduces additional constraints
(complementarity conditions) to obtain a unique solution. For
example, the contact normal inequality fi ≥ 0 is augmented
with v+i ≥ 0 and fiv

+
i = 0. In the presence of frictional

contacts, this approach yields an NP-hard problem in the
forward dynamics. Furthermore its inverse cannot be defined.
Thus we will not pursue it further in this paper. Instead we
will rely on the complementarity-free approach.

E. Complementarity-free contact dynamics

In our approach to contact dynamics [4], the impulse f
is defined via minimization of the (regularized and offset)
next-step kinetic energy subject to (9):

min
f :φ(f)≥0

(
v+ − v∗

)T
A−1

(
v+ − v∗

)
+ fTRf (10)

The regularizer R is a diagonal positive matrix, which is
needed because A can be singular and also because it
introduces smoothing that is necessary to define the inverse
later. Kinetic energy is measured relative to a desired contact
velocity v∗ which can be computed by any suitable contact
stabilization mechanism (details below).

Substituting (8) in (10), the impulse f is found as

min
f :φ(f)≥0

1

2
fT (A+R) f + fT

(
v− − v∗

)
(11)

This is a convex optimization problem and has a unique
global minimum. We solve it using our (yet unpublished)
generalization of the projected Gauss-Seidel method (GPGS)
that can handle cone and pyramid constraints.

III. INVERSE DYNAMICS

A. Overall inverse computation

Given (q, v, v′), we compute J, JE, D, p, v
∗, v∗E as in the

forward dynamics, and define v̇ ≡ (v′ − v)h−1. Then we
apply the RNE algorithm to compute the sum of all forces
acting on the system except for the Coriolis, centripetal and
gravity force c (q, v) and the extra inertial force Dv̇. More
precisely, from (1) and (2) we have

RNE (q, v, v̇) +Dv̇ = p+ u+
JT f + JTE fE

h
(12)

Once the impulses f, fE are computed as explained below,
the control force u is recovered from (12) and we are done.

Note that we did not need to compute or factorize the
inertia matrix M . It will turn out that M is not needed to
recover the impulses either.

B. Inverse constraint dynamics

Recall that in the forward dynamics we did not compute
the constraint impulse fE, but only modified the dynamics so
as to take it into account implicitly. Here fE can be computed
explicitly because v′ is known.

Theorem 2. The constraint impulse fE which caused the
observed state transition (q, v)→ v′ satisfies

JTE fE = JTE R
−1
E (v∗E − JEv

′) (13)

Proof. Combining (6) and (7) yields(
M + JTE R

−1
E JE

)
(v′ − v) =

(p+ u− c)h+ JT f + JTE R
−1
E (v∗E − JEv)

Subtracting this from (3) yields the result (13). �
We can further recover the actual fE if we assume that the

equality constraints are non-redundant (i.e. that JE has full
rank). However this assumption is not needed to complete the
inverse dynamics computation, because (12) only depends on
JTE fE which we already have from (13).

C. Inverse contact dynamics: General case

In our previous work [4] we showed how the convex
contact model described above can be inverted in an uncon-
strained setting, by converting the inequality constraints into
log-barrier penalty functions. Here we present a more general
version of this result, allowing hard inequality constraints –
which in turn make it possible to use projected and active-set
methods in the forward dynamics. We first state the abstract
result and then specialize it to dynamic simulation.

Theorem 3. Let A ∈ Rn,n be symmetric positive semi-
definite, r, s : Rn → R be convex, φ : Rn → Rn be convex,
and b, c ∈ Rn. Define x∗b , x

∗
c ∈ Rn as the (unique global)

solutions to the following convex optimization problems:

x∗b : min
x:φ(x)≥0

r (x) + s (Ax+ b) +
1

2
xTAx+ xT b

(14a)

x∗c : min
x:φ(x)≥0

r (x) + xT (A∇s (c) + c) (14b)

Then Ax∗b + b = c implies x∗b = x∗c .
Proof . Since x∗b , x

∗
c are defined as solutions to convex opti-

mization problems, they can be equivalently characterized by
the corresponding Karush-Kuhn-Tucker (KKT) conditions.
The KKT conditions for problem (14a) are:

∇r (x) +A∇s (Ax+ b) +Ax+ b+

(
∂φ

∂x

)T
λ = 0

φ (x) ≥ 0, λ ≥ 0, φ (x)
T
λ = 0

The KKT conditions for problem (14b) are:

∇r (x) +A∇s (c) + c+

(
∂φ

∂x

)T
λ = 0

φ (x) ≥ 0, λ ≥ 0, φ (x)
T
λ = 0

These two sets of conditions are identical when Ax+ b = c.
Therefore, if the solution x∗b to the first problem satisfies
Ax∗b + b = c, then x∗b will also be the solution to the second
problem, and so x∗b = x∗c . �

This theorem can be applied to complementarity-free
contact dynamics by identifying x with f , b with v−, c with
v+, and absorbing the linear term −fTv∗ in r (f). Thus we
have the following corollary.

Corollary. Given A, v∗, v−, the impulse is computed by
solving the (forward dynamics) convex optimization problem

min
f :φ(f)≥0

r (f) + s
(
Af + v−

)
+

1

2
fTAf + fT

(
v− − v∗

)



Given A, v∗, v+, the impulse is computed by solving the
(inverse dynamics) convex optimization problem

min
f :φ(f)≥0

r (f) + fT
(
A∇s

(
v+
)
+ v+ − v∗

)
Both computations yield the same impulse f .

D. Inverse contact dynamics: Analytical special case

We now focus on the specific formulation (11) used in
the forward dynamics, where instead of a general impulse
regularizer r (f) we had

r (f) =
1

2
fTRf − fTv∗

In this case the inverse can be computed analytically. In
particular, problem (14b) can be written in least-squares form

min
f :φ(f)≥0

1

2
(f − y)T R (f − y) (15)

where the vector y is defined as

y ≡ R−1
(
v∗ − v+

)
Including a general velocity regularizer s (v+) would merely
add a constant to y and still allow the inverse to be computed
analytically, but we omit it here so as to match the forward
dynamics formulation (11) used by our GPGS solver.

We now make a key observation: the terms corresponding
to the different objects used to construct the contact space
are decoupled, both in the objective function and in the
constraints. Thus problem (15) decomposes into a collection
of smaller problems – one for each friction loss, limit, and
frictional contact object. These smaller problems can be
solved analytically as follows.

Theorem 4. The solution to the inverse dynamics opti-
mization problem (15) is

friction: fi = max (−η (i) ,min (η (i) , yi))

limit: fi = max (0, yi)

contact: fi, · · · , fi+d(i) = ConeProject (y, i)

ConeProject extracts the contact-specific data yi, · · · , yi+d(i)
from y, and then calls Algorithm 5 below to compute the
nearest vector within the friction cone.

E. Projection on a friction cone

Here we develop the analytical procedure for projecting a
vector on a friction cone with certain properties. Let C be an
elliptical cone defined as

C ≡
{
x ∈ Rd+1 : x0 ≥ 0, x20 ≥

∑d

j=1
µ−2j x2j

}
We seek the vector x ∈ C which minimizes the weighted
distance to a given vector y ∈ Rd+1:

min
x : x∈C

∑d

k=0
rk (xk − yk)2

Here r ∈ Rd+1 is a vector of positive weights, i.e. the
diagonal of the matrix R above. Throughout this section k
is an index starting at 0 while j is an index starting at 1.

This general problem cannot be solved analytically be-
cause both the cone and the distance metric are elliptical,
making the problem equivalent to finding the roots of a
polynomial of order 2 (d+ 1). Our goal then is to identify
conditions that simplify the problem, in particular make the
cone circular and the metric Cartesian. The metric is made
Cartesian by the change of variables

x̂k ≡ r1/2k xk, ŷk ≡ r1/2k yk (16)

The minimization problem now becomes

min
x̂ : x̂∈Ĉ

∑
k
(x̂k − ŷk)2

where the transformed friction cone Ĉ is

Ĉ =
{
x̂ ∈ Rd+1 : x̂0 ≥ 0, r−10 x̂20 ≥

∑
j
µ−2j r−1j x̂2j

}
This cone is circular when µ2

jrj = const, which can be
enforced by requiring that there exists a scalar µ̂ such that

µ2
jrj = µ̂2r0 (17)

The transformed friction cone then takes the familiar form

Ĉ =
{
x̂ ∈ Rd+1 : x̂0 ≥ 0, µ̂2x̂20 ≥

∑
j
x̂2j

}
The resulting optimization problem can now be solved

analytically. If ŷ ∈ Ĉ then x̂ = ŷ and we are done. Otherwise
x̂ lies on the surface of the cone Ĉ and can be found via
Lagrange multipliers: there exists a scalar λ such that

x̂− ŷ + λ
(
µ̂2x̂0,−x̂1, · · · ,−x̂d

)T
= 0

We can find λ by expressing x̂ as a function of ŷ and λ:

x̂0 =
ŷ0

1 + µ̂2λ
, x̂j =

ŷj
1− λ

(18)

Substituting this x̂ in the surface equality constraint and
solving for λ yields two general solutions:

λ± =
1∓ β

1± µ̂2β
, β =

(∑
j ŷ

2
j

µ̂2ŷ20

)1/2

(19)

with corresponding vectors x̂± given by (18). If both vectors
have non-negative first components

(
x̂±0 ≥ 0

)
, the optimal

solution is the one closer to ŷ. If only one vector has non-
negative first component, it is the optimal solution. If both
have negative first components, the optimal solution is x̂ = 0.

We must also handle two special cases where the above
general method involves division by 0. If ŷ0 = 0 we have
1 + µ̂2λ = 0. In that case the solution can be shown to be

x̂0 =
µ̂

1 + µ̂2

(∑
j
ŷ2j

)1/2
, x̂j =

µ̂2

1 + µ̂2
ŷj (20)

The other special case is ŷj = 0 for all j ≥ 1, resulting in
1− λ = 0. In that case the solution is the tip of the friction
cone x̂ = 0.

We now clarify how the contact model can be constructed
so as to obey the restriction (17). The regularizing weights
r0, · · · , rd together with the friction coefficients µ1, · · · , µd
and the transformed coefficient µ̂ appear to have 2d + 2



degrees of freedom, however d of them are removed due
to (17), leaving us with d + 2 degrees of freedom. The
friction coefficients clearly need to be under the control of
the user, thus only two of the regularizers can be specified
independently. It is then natural to construct the contact
model by specifying the following independent parameters:

friction coefficients: µ1, · · · , µd
normal regularizer: r0
mean friction regularizer: rF

(21)

Defining

rj ≡
rFµ
−2
j〈

µ−2j
〉 , µ̂2 ≡ rF

r0
〈
µ−2j

〉 (22)

where 〈.〉 denotes the mean value, we can verify that (17)
is satisfied and furthermore rF = 〈rj〉 as intended. We now
summarize the algorithm.

Algorithm 5. Given the contact model parameters (21)
and the vector y, compute the vector x as follows:

1) if y is inside the friction cone, set x = y and return;
2) if yj = 0 for all j ≥ 1, set x = 0 and return;
3) compute rj and µ̂2 from (22);
4) compute ŷ from (16);
5) if ŷ0 = 0, compute x̂ from (20) and go to step 8;
6) compute x̂± from (18, 19);
7) choose the optimal x̂ among {x̂±, 0};
8) compute x by inverting (16).
As a sanity check, we generated random optimization

problems in this family and compared our analytical solution
to the solution found by the MATLAB fmincon iterative
solver. The two solutions agreed within the tolerance level
specified for the iterative solver.

IV. COMPUTATIONAL COMPLEXITY

Let n = dim(v) be the number of degrees of freedom and
m = dim(f) the number of impulses. We will ignore holo-
nomic constraints in this analysis because the computational
cost is dominated by the contact impulses.

The forward dynamics involve computing and factorizing
the inertia M which is O

(
n3
)
. Computing A = JM−1JT

is O
(
m2n+ n2m

)
. Applying the GPGS iterative solver

is O
(
m2 maxiter

)
. Note however that the branch-induced

sparsity of M as well as the sparsity of J make the actual
performance better than these worst-case estimates. Our
implementation exploits sparsity.

The inverse dynamics involve RNE which is O(n), as well
as our new analytical impulse solver which is O(m). We use
a precomputed approximation to the diagonal of A to set the
regularizer R, avoiding any higher-order operations. Thus
the worst-case performance is dominated by the computation
of the contact Jacobian J which is O(mn). Again, sparsity
makes the actual performance better.

The above computational complexity analysis does not
include collision detection – which is identical in both the
forward and inverse dynamics. In simulations relevant to
robotics, we have found collision detection to be a small
fraction of the computational cost.

V. ANALYSIS AND TUNING OF THE IMPULSE DYNAMICS

Here we analyze the behavior of the dynamics defined
above. We also show how to set the solver parameters
R,RE, v

∗, v∗E so as to obtain a stabilization mechanism.
For contacts we focus on the case when all inequality

constraints are inactive, i.e. φ (f) > 0 at the solution f found
by the impulse solver. Physically this corresponds to non-
sliding contacts (modulo contact softness). In that case, from
(15) we have

f = R−1 (v∗ − Jv′) (23)

Note how similar this contact impulse is to the constraint
impulse (13), despite the fact that the two were defined and
computed differently. This observation motivates analysis
in the combined space of constraints and contacts, with
coordinates x defined as follows. For constraints, limits and
contact normals xi is the violation/penetration distance. For
frictional dimensions xi is defined relative to an arbitrary
offset (we only care about the velocity in that case).

Define the Jacobian J , regularization matrix R and
desired next-step velocity ẋ∗ in x-space by stacking the
corresponding quantities for constraints and contacts:

J ≡
[
JE
J

]
, R ≡

[
RE 0
0 R

]
, ẋ∗ ≡

[
v∗E
v∗

]
Then the velocity and inverse inertia in x-space are

ẋ = J v, A = JM−1J T

As before, ẋ′ = ẋ + hẍ will denote the actual next-step
velocity. We will also need the x-space acceleration that the
non-impulsive forces cause:

a ≡ JM−1 (p− c+ u)

Finally we must decide how the desired next-step velocity
ẋ∗ is computed; different choices give rise to different
dynamics. Motivated by the idea of Baumgarte stabilization
[12], we consider a virtual PD controller that causes accel-
eration −Bẋ−Kx. Thus ẋ∗ is defined as

ẋ∗ ≡ ẋ− hBẋ− hKx (24)

We now have everything in place to obtain the dynamics.
Theorem 6. The x-space dynamics are(

I +AR−1
)
ẍ+AR−1Bẋ+AR−1Kx = a (25)

Proof. Substituting (23) and (13) in (3) yields

M (v′ − v) = (p− c+ u)h+

JTE R
−1
E (v∗E − JEv

′) + JTR−1 (v∗ − Jv′)

Multiplying by JM−1 and using the above definitions,

ẋ′ − ẋ = ah+AR−1 (ẋ∗ − ẋ′)

Using the definitions of ẋ′ and ẋ∗ yields the result (25). �
We can now gain a better understanding of what the

impulse solver is doing. Suppose we set R = Aε for some
positive ε. Since A and R have the same units (they were
added together in (11)), ε is a dimensionless constant. Also



Fig. 1. The two MuJoCo models used in the simulations. Left: single-joint
mechanism with dry friction. The arrow shows the contact impulse. Right:
27-dof humanoid. The red cylinders show the active contacts. Joint limits
prevent more contacts.

set B = B (1 + ε) ,K = K (1 + ε) for some B,K. Assuming
for the moment that A is invertible, (25) becomes

ẍ+ Bẋ+Kx =
ε

1 + ε
a (26)

Therefore in the limit ε → ∞ we have a spring-damper
driven by a. In the limit ε → 0 the spring-damper becomes
autonomous and removes constraint violations regardless of
a. The latter limit corresponds to hard constraints and con-
tacts. In practice we use small ε. Since our solver implements
the above dynamics implicitly, we can get very close to the
ε → 0 limit without instabilities, numerical errors, or need
for small timesteps.

While (26) is illuminating, it does not apply in general
because A can be singular; for example, two frictional
contacts on the same body make A singular. Furthermore
we cannot set R = Aε because we want R to be diagonal,
so that the dynamics can be inverted analytically.

In our implementation we set R to a diagonal matrix:

Rii = max (Aiiε, rmin) , (27)

Similarly the stiffness and damping are diagonal:

Bii = 2 (1 + ε)κ−1, Kii = (1 + ε)κ−2 (28)

We can now carry the analysis of (25) further by approx-
imating A with its diagonal, resulting in

ẍ+ 2κ−1ẋ+ κ−2x ≈ ε

1 + ε
a

Note that the choice of stiffness and damping coefficients in
(28) made the autonomous part of the dynamics critically-
damped, where κ−1 is the natural frequency and so κ is the
time constant of the x-space dynamics. It is also informative
to look at penetrations. If we consider a free-floating object
resting on the ground in the presence of gravity g, we have
a = g, and so the penetration is

x ≈ κ2εg

1 + ε

independent of the mass of the object.
There are two final caveats. First, the Rii corresponding

to the friction dimensions of each contact must be further
adjusted so as to satisfy (22). Second, in friction dimensions
we only care about velocity, thus we set the corresponding
Kii = 0. In that case the velocity decays to 0 at rate 2κ−1,
and κ again has the meaning of a time constant.

Time (2 sec)

Fr
ic

tio
n 

im
pu

ls
e

Time (2 sec)

C
on

ta
ct

 im
pu

ls
e

Fig. 2. Comparison of the friction impulse and contact impulse computed
by the forward (black) and inverse (orange) dynamics, while the single-
joint system was being perturbed randomly. The two curves in each plot
are within 1E-5 of each other, thus the difference is not visible.

To summarize, the user specifies the impulse regularization
scaling ε and the error reduction time constant κ, and then the
solver parameters R,RE, v

∗, v∗E are computed automatically
using (27, 28, 24) with the above modifications.

Instead of using a diagonal approximation, we can obtain
a stabilization mechanism that is closer to critical damping
as follows. Define a diagonal R as above. Now solve the
following equations for B and K:

AR−1B = 2κ−1
(
I +AR−1

)
AR−1K = κ−2

(
I +AR−1

)
If A is invertible these equations can be solved exactly,
resulting in exact critical damping. If not, then a pseudo-
inverse can be used. The resulting B and K are no longer
diagonal, but that does not complicate the computation.

VI. SIMULATIONS

A. Correctness

We demonstrate numerically the correctness of the in-
version using a single-joint mechanism (Figure 1 left) with
two impulses: dry friction in the joint and contact with the
ground. Figure 2 compares these impulses as computed by
the forward and inverse dynamics, while the mechanism is
perturbed with random control forces.

Recall that the impulses in the forward dynamics are
computed with our GPGS iterative solver which may not
discover the optimal solution within the number of iterations
we allow in runtime. Indeed for more complex simulations
the forward and inverse do not agree so closely, making
the inverse dynamics approach more appealing for optimal
control and estimation applications.

B. Speed of computation

Figure 3 illustrates the computational efficiency of our
algorithms and their implementation in MuJoCo. The tests
were done on an Intel i7-3930K processor, Windows 7,
single-threaded computation taking advantage of AVX in-
structions (with custom BLAS-like routines). We dragged
the humanoid model around in the virtual environment
using a 3D mouse. This generated many different contact
configurations with different Jacobian size. We run both the
forward and inverse dynamics and timed them using high-
resolution timers. The timing data and size of the Jacobian
at each simulation step were saved in a file. Afterwards, we
found all simulation steps in which the Jacobian had a given



0 20 40 60 80 100
0

100

200

300

400

500

Size of contact Jacobian

C
PU

 ti
m

e 
pe

r s
te

p 
(m

ic
ro

se
c)

Forward(50)

Forward(5)
Inverse

0 20 40 60 80 100
0

5

10

15

20

Size of contact Jacobian

Sp
ee

du
p 

fa
ct

or

Forward(50) / Inverse

Forward(5) / Inverse

Fig. 3. Comparison of the speed of the forward and inverse dynamics
computations for the humanoid. Left: CPU time per simulation step is shown
for different sizes of the contact Jacobian. The PGS iterative solver in the
forward dynamics was run for 5 or 50 iterations. Right: the speedup factor
is the ratio of forward dynamics CPU time to inverse dynamics CPU time.

size (plotted on the x-axis in Figure 3), and computed the
median of the corresponding CPU times. We performed the
test twice, with 5 and 50 iterations of the GPGS solver in the
forward dynamics. To generate larger Jacobians we enabled
all contact friction directions. For 10 contacts with sliding
friction only, the Jacobian size would be 30.

We find the results in Figure 3 quite remarkable. On a
single core of a desktop processor, we can evaluate the
inverse dynamics of a 27-dof humanoid subject to 100
impulses in 30 microseconds. In the absence of impulses the
time goes down to 10 microseconds. Since the simulation
timestep is 10 milliseconds, the inverse dynamics are being
computed between 300 and 1000 times faster than real time
depending on the number of impulses. The forward dynamics
are slower – by an order of magnitude – but still much faster
than real time. Note that increasing the number of GPGS
iterations from 5 to 50 is expensive with large number of
impulses, but the inverse dynamics are faster regardless of
the number of GPGS iterations. This is because computing
the full A matrix is avoided.

VII. CONCLUSIONS AND FUTURE WORK

We described a full-featured simulation pipeline for multi-
joint dynamics subject to constraints and contacts. Forward
simulation requires an iterative solver, while inverse dynam-
ics are computed analytically and faster.

The inversion is possible because our formulation allows a
certain amount of softness. One can think of the impulses as
being generated by smart spring-dampers, which are aware of
each other and furthermore scale their stiffness and damping
automatically with inertia. The forward formulation consid-
ers the interactions among all impulses, involving the dense
matrix A and the diagonal regularizer R. The mathematical
relation between the forward and inverse is such that the A
matrix is no longer needed in the inverse, and we are left only
with the R matrix allowing us to decompose the problem.

Softness is controlled by the two parameters ε, κ whose
effects we analyzed. Small values of these parameters make
the forward dynamics harder to simulate (requiring smaller
timesteps or larger number of solver iterations). They also
make the output of the inverse dynamics more sensitive to

the input, but the actual computation is not affected since it
always relies on the same analytical procedure.

Our softness parameters ε, κ are generally related to the
constraint-force mixing (CFM) and error reduction parameter
(ERP) introduced in the Open Dynamics Engine (ODE),
although the specifics are different. CFM regularization in
ODE is applied to the full system while we only apply
regularization in the impulse space, and furthermore the
problem solved by ODE does not become convex even after
regularization. ERP implements a first-order constraint stabi-
lization mechanism while we use a second-order mechanism.

Our results have many potential applications in data anal-
ysis, simulation, estimation and control. We have already
leveraged the new analytical inverse dynamics in the context
of state estimation, using it to enforce a physics consis-
tency prior [13]. Future applications to optimal control are
particularly exciting. We were recently able to synthesize
complex full-body movements with direct trajectory opti-
mization automatically, without relying on motion capture
or manual scripting [14]. While this was done offline, we
estimate that in model-predictive control (MPC) mode our
existing optimizer will be an order of magnitude slower than
real time. The analytical inverse dynamics developed here
may provide the missing order of magnitude speedup. If we
could replicate [14] in MPC mode, it is likely to transform
robotic control as well as interactive games.

REFERENCES

[1] D. Stewart and J. Trinkle, “An implicit time-stepping scheme for
rigid-body dynamics with inelastic collisions and coulomb friction,”
International Journal Numerical Methods Engineering, vol. 39, pp.
2673–2691, 1996.

[2] M. Anitescu, F. Potra, and D. Stewart, “Time-stepping for three-
dimensional rigid body dynamics,” Computer Methods in Applied
Mechanics and Engineering, vol. 177, pp. 183–197, 1999.

[3] D. Kaufman, S. Sueda, D. James, and D. Pai, “Staggered projections
for frictional contact in multibody systems,” ACM Transactions on
Graphics, vol. 164, pp. 1–11, 2008.

[4] E. Todorov, “A convex, smooth and invertible contact model for
trajectory optimization,” ICRA, 2011.

[5] E. Drumwright and Shell, “Modeling contact friction and joint fric-
tion in dynamic robotic simulation using the principle of maximum
dissipation,” International Workshop on the Algorithmic Foundations
of Robotics, 2010.

[6] E. Drumwright and E. Shell, “An evaluation of methods for modeling
contact in multibody simulation,” ICRA, 2011.

[7] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of
complex behaviors through online trajectory optimization,” IROS,
2012.

[8] A. Chatterjee and A. Ruina, “A new algebraic rigid body collision
law based on impulse space considerations,” Journal of Applied
Mechanics, 1998.

[9] R. Featherstone, Rigid Body Dynamics Algorithms. Springer, 2008.
[10] ——, “Efficient factorization of the joint-space inertia matrix for

branched kinematic trees,” International Journal of Robotics Research,
2005.

[11] F. Udwadia and R. Kalaba, “A new perspective on constrained motion,”
Proceedings of the Royal Society, 1992.

[12] J. Baumgarte, “Stabilization of constraints and integrals of motion in
dynamical systems,” Computer Methods In Applied Mechanics And
Engineering, 1972.

[13] K. Lowrey, Y. Tassa, T. Erez, S. Kolev, and E. Todorov, “Physically-
consistent sensor fusion for contact-rich behaviors,” manuscript under
review, 2014.

[14] I. Mordatch, E. Todorov, and Z. Popovic, “Discovery of complex
behaviors through contact-invariant optimization,” SIGGRAPH, 2012.


