
Goal Directed Dynamics

Emanuel Todorov
University of Washington and Roboti LLC

Abstract— We develop a general control framework where
a low-level optimizer is built into the robot dynamics. This
optimizer together with the robot constitute a goal directed
dynamical system, controlled on a higher level. The high
level command is a cost function. It can encode desired
accelerations, end-effector poses, center of pressure, and other
intuitive features that have been studied before. Unlike the
currently popular quadratic programming framework, which
comes with performance guarantees at the expense of modeling
flexibility, the optimization problem we solve at each time step
is non-convex and non-smooth. Nevertheless, by exploiting the
unique properties of the soft-constraint physics model we have
recently developed, we are able to design an efficient solver
for goal directed dynamics. It is only two times slower than
the forward dynamics solver, and is much faster than real
time. The simulation results reveal that complex movements
can be generated via greedy optimization of simple costs. This
new computational infrastructure can facilitate teleoperation,
feature-based control, deep learning of control policies, and
trajectory optimization. It will become a standard feature in
future releases of the MuJoCo simulator.

I. INTRODUCTION

The motivation of this work is to improve robot autonomy,
namely the ability to map high-level commands to suitable
low-level controls. This is generally what optimal control
aims to achieve, but it involves optimization through time
which can be hard to solve. In contrast, our approach here
is instantaneous and greedy.

We define goal directed dynamics (GDD) as the dynamics
of a robot with a layer of control intelligence built into it;
see Figure 1. Instead of sending a control signal to the robot
at each point in time, we send a cost function. This function
is defined over accelerations, but later we show how it can
also encode spatial goals, desired contact forces, center-of-
pressure targets etc. Once this function is specified, the robot
does two things at each point in time: (i) find the control
signal that minimizes the specified cost; (ii) apply this control
signal to the usual dynamics. This simplifies teleoperation
where a human can provide goals/costs interactively, as well
as facilitates the design of intuitive feature-based controllers.
Optimal control also becomes easier when applied to the goal
directed dynamics instead of the usual robot dynamics; this
is because part of the problem is offloaded to the low-level
optimizer.

Goal directed dynamics is the most general instance of
an intuitive approach which has a long history. The simplest
special case is computed torque control: a reference trajec-
tory specifies the desired acceleration at the current position

This work was supported by NSF grant 1602141 to Roboti LLC. Thanks
to Yuval Tassa and Igor Mordatch for comments on the manuscript.

robot

optimizer

controlstate

human
operator,
or automatic
controller state

 cost

Goal Directed
Dynamics

High Level
Control

Fig. 1. Illustration of the proposed framework. A human operator or a
high-level controller sends goals encoded as cost functions. An optimizer
maps these instantaneous goals to control signals. The optimizer together
with the robot constitute a goal directed dynamical system.

and velocity, and inverse dynamics are used to compute
the necessary control force, assuming full actuation and no
constraints. Operational space control [1], [2] is also related.
There one defines an end-effector and its corresponding
Jacobian, specifies goals in end-effector space, and uses
the Jacobian to construct various mappings between end-
effector and joint space. Multiple Jacobian-based methods
involving differently weighted pseudo-inverses have been
developed [3]. That line of work has leveraged the fact
that linear algebra and matrix factorization in particular
can be performed in real-time, and is still used today. For
example, [4] approximate unilateral constraints with equality
constraints and reduce the problem to linear algebra.

As computers become faster and numerical algorithms
become more efficient, new types of computational prob-
lems become tractable in real-time. The current trend is to
formulate control schemes that reduce to convex quadratic
programs (QP). This has been successful in quadrotor control
[5]. It is also used in locomotion, where a QP can jointly
compute control torques and contact forces such that the
center-of-mass accelerates according to some high-level plan
while the contact forces remain in the friction cone. The
cone is approximated with a pyramid whose faces become
linear inequality constraints in the QP. Another application is
manipulation, where a QP can compute control torques and
contact forces that stabilize an object in the hand. Multiple
variations on this theme have recently been explored [6], [7],
[8], [9]. There is however an important limitation in such
control schemes: in order to keep the QP convex, the com-
plementarity condition in the LCP formulation of frictional
contact [13], [14] is ignored, or alternatively the friction
components are ignored (recall that the LCP describing
frictional contact is equivalent to a non-convex QP which is



NP-hard). Because of this simplification, the solver is free to
choose any contact force in the friction cone, even if it is very
different from the actual contact force that results from the
control torques being applied. Thus treating contact forces
as independent decision variables (as in convex QP) makes
little physical sense. Our framework removes this limitation,
in a way that is numerically efficient. Note that if we are
not concerned with numerical efficiency, it is straightforward
to throw every desirable constraint into a general-purpose
optimizer and hope that it finds a reasonable solution in
a reasonable amount of time. However such hope is not
justified in the general case of non-convex optimization.

A similar criticisms of the QP approach was recently
presented in [12], and indeed that work is the most closely
related to ours in the Robotics literature. These authors
focused on robots in multiple contacts with the environment
but under static conditions. They took into account the actual
contact forces resulting from the control torques, using a
spring-damper contact model, and were able to stabilize the
system by solving a convex optimization problem. However
it is not clear how to extend this work to dynamic conditions,
given that spring-damper contact models have well-known
difficulties and have been largely superseded by modern
linear complementarity problem (LCP) solvers [13], [14].
Our agenda here is related to [12] but the techniques are
different and apply to dynamic settings. This is possible
thanks to a new formulation of the physics of soft contacts
developed in [15], [16] and implemented in MuJoCo [17].
It combines the stability and long time steps of LCP-type
solvers, with the softness and analytical advantages of spring-
damper contacts.

As already alluded to, if we want to develop an instanta-
neous control scheme that is more powerful than the current
QP-based schemes, we have no choice but to solve a harder
optimization problem in real-time. QPs are by no means the
limit of what modern computers can do. LCP-type solvers are
an existence proof of this. Such solvers have been available in
multiple physics engines for over a decade, and the problem
they solve at each time step (albeit approximately) is an
NP-hard non-convex optimization problem. While the soft
contact model in [16] reduces to convex optimization in
the case of forward dynamics, the goal directed dynamics
developed here require solving a non-convex optimization
problem.

Related non-convex optimization problems have been
studied in Computer Graphics, in the context of controlling
high-level features [18], [19], [20], [21], [22]. These features
(corresponding to goals in our terminology) are varied online,
using either hand-crafted or numerically optimized high-level
controllers. The available optimization schemes however do
not have robustness and performance comparable to the QP
approach. In general it is difficult to think of them as giving
rise to a new dynamical system that can be readily simulated
in place of the usual forward dynamics. This is because the
problem is formulated as generic non-convex optimization,
without special structure that can enable efficient solvers.
Indeed the emphasis in that literature has been not so

much on efficient optimization, but rather on design of cost
functions whose instantaneous optimization yields interesting
behaviors. This is very much complementary to our work.
Existing cost functions that are already known to work well
can be plugged in our framework and work even better.

A. Alternative view: Combining physics and control

An alternative way to understand GDD is to think of it
as combining physics and control in a single computation.
This is appealing because forward dynamics, i.e. computing
the acceleration v̇ resulting from control force τ , already
require some form of numerical optimization when unilateral
constraints are present [13], [14], [16]:

v̇(τ) = argmina physics(a, τ)
s.t. constraint(a, τ) (1)

One way to combine physics and control is to simply
add a task-related term to the objective, and obtain both
the acceleration and the (one-step-optimal) control force by
solving a single optimization problem:

(v̇, τ) = argmina,t physics(a, t) + task(a, t)
s.t. constraint(a, t) (2)

This is essentially what the QP approach does. The problem
however is that the result is no longer consistent with the
physics. Instead, in GDD we start with nested optimization
which is physically-consistent by construction:

(v̇, τ) = argmina,t task(a, t)
s.t. a = argminb physics(b, t)

s.t. constraint(b, t)
(3)

Our key insight then is to exploit MuJoCo’s inverse dynamics
– which enables us to avoid the above nested optimization,
and yields an efficient yet physically-consistent GDD solver.

II. GENERAL FRAMEWORK

We begin with a general definition of GDD, and later
specialize it to rich yet computationally-tractable systems.
Consider the second-order system

configuration: q ∈ Rm

velocity: v ∈ Rn

applied force: τ = (u, z) ∈ Rn

control force: u ∈ U ⊆ Rk

root force: z ∈ Rn−k

forward dynamics: v̇ = f (q, v, u)

inverse dynamics: τ = g (q, v, v̇) = (gu, gz)

inertia matrix: M(q) ∈ Rn×n

(4)

The dimensionality n of the velocity and applied force
vectors equals the number of degrees of freedom (DOF).
We assume for simplicity that actuators are in one-to-one
correspondence with scalar joints, and partition the DOF
space into actuated (u) and unactuated (z) subspaces. This is
what the bracket notation τ = (u, z) and g = (gu, gz) means.
The more general approach would be to write τ = B(q, v)u
for a generic control gain matrix B. Our setup corresponds
to B = (Ik×k 0k×(n−k))

T .



The time-derivative v̇ denotes the actual acceleration of
the system. Below we will also use a to denote hypothetical
accelerations, which are optimization variables in various
cost functions. The reason for using v instead of q̇ is because
q is a point on the configuration manifold while v is a vector
in the tangent space to this manifold. The orientations of
floating bases and free-moving objects are best represented
with quaternions, in which case dim(q) = 4 while dim(v) =
3 per joint, and so m > n. When the system is under-
actuated, we also have k < n. Most interesting systems have
these two properties. For example, a humanoid robot has
m = n + 1 and k = n − 6. The same holds for a fixed-
base arm manipulating one object. For a humanoid robot
manipulating two objects, m = n+ 3 and k = n− 18.

An important assumption implicit in (4) is that the inverse
dynamics g(q, v, v̇) exist and are uniquely defined. This is
not the case for systems with hard state constraints. But as we
will see later, we can use soft constraints to obtain realistic
behavior with uniquely-defined inverse dynamics.

The set of admissible controls U is usually a box. The set
of feasible accelerations A is more difficult to characterize.
It can be defined through the forward dynamics:

A(q, v) = {a ∈ Rn : ∃u ∈ U s.t. f (q, v, u) = a} (5)

or through the inverse dynamics:

A(q, v) = {a ∈ Rn : gu(q, v, a) ∈ U , gz(q, v, a) = 0} (6)

These two definitions are mathematically equivalent. We will
use the latter to obtain efficient algorithms.

Let `(·) denote the scalar cost over accelerations used to
specify the instantaneous goal. The space of such functions is
infinite-dimensional, so we cannot directly use them as high-
level controls, but we will choose suitable finite-dimensional
parameterizations later.

Now we can define the goal directed dynamics in two
ways, using the forward dynamics or the inverse dynamics of
the original system. Both definitions correspond to forward
GDD. They are mathematically equivalent, but again the
inverse definition yields more efficient algorithms. In both
cases the state (q, v) as well as the cost `(·) are given, and we
seek to define the goal directed acceleration v̇. The forward
definition is:

v̇ = f

(
q, v, argmin

u∈U
{‖(u, 0)‖R + ` (f (q, v, u))}

)
(7)

while the inverse definition is:

v̇ = arg min
a∈A(q,v)

{‖g (q, v, a)‖R + ` (a)} (8)

We have added a regularizing cost on the applied forces, in
addition to imposing actuation constraints. This regularizing
cost is the weighted L2 norm

‖τ‖R ≡
1

2
τTRτ (9)

The weighting matrix R can in principle be any s.p.d.
matrix. Here we use R =M−1. The rationale for weighting
by the inverse inertia is to match units in mixed cost

functions penalizing both forces and accelerations. From
Newton’s second law f = ma we have f2m−1 = a2m,
suggesting that forces should be weighted by M−1 while
accelerations should be weighted by M . More formally, the
inertia M(q) is the metric tensor over the configuration
manifold parameterized by q. It is used to compute dot-
products for tangent vectors (velocities and accelerations),
while its inverse is used to compute dot-products for co-
tangent vectors (moments and forces).

The constraint gz = 0 in the inverse definition (8)
removes infeasible accelerations which cannot be generated
by the actuators. The external forces needed to generate
such infeasible accelerations are sometimes called ‘root
forces’ or ‘magic forces’. They may be beneficial for task
achievement if we could somehow generate them. Thus when
optimization is used in a continuation regime (i.e. starting
with an easier problem and gradually transitioning towards
a harder problem while tracking the solution), it is often
useful to allow infeasible accelerations early on and suppress
them later. The augmented Lagrangian primal-dual method
we adopt later does that automatically.

Example: end-effector control with full actuation

We now illustrate our general framework with an example
where the above optimization problem can be solved in
closed form. Let M (q) denote the configuration-dependent
inertias as before, and c (q, v) the vector of centripetal,
Coriolis, gravitational and any other control-independent
forces. Since the system here is fully actuated, we have u = τ
and z = ∅. The inverse dynamics are

τ =M (q) v̇ + c (q, v) (10)

Since M is always s.p.d. the above equation can be solved
for v̇ to obtain the corresponding forward dynamics.

Let our end-effector have Jacobian Je (q) and desired
acceleration a∗e in end-effector space. The simplest cost
function for specifying this acceleration goal is

` (a) =
1

2
‖Jea− a∗e‖

2 (11)

Substituting in either the forward or inverse definition for the
general case and assuming no actuation limits, we obtain the
following acceleration for the GDD:

v̇ =
(
M + JT

e Je
)−1 (

JT
e a
∗
e − c

)
(12)

This is an instance of a Jacobian pseudo-inverse. Note that
we could have chosen a different L2 norm in end-effector
space, resulting in a differently weighted pseudo-inverse. The
weighting consistent with our unit-matching approach in this
case is given by the inverse end-effector inertia JeM−1JT

e .
We could extend this example to under-actuated systems

and still obtain an analytical solution. As long as the root
force gz (q, v, a) is linear in a, it will add a linear equality
constraint to the quadratic optimization problem, resulting in
a differently weighted pseudo-inverse. Real robots however
are subject to contacts, joint limits and dry friction. These
phenomena make it impossible to solve our optimization



problem analytically because the relationship between force
and acceleration becomes nonlinear and piece-wise smooth.
We turn to such systems next.

III. SPECIALIZATION TO MUJOCO PHYSICS

We now apply the above framework to dynamical systems
that can be modeled in the MuJoCo simulator [17]. It
simulates multi-joint dynamics in joint coordinates, using a
soft-constraint model [16] that can handle frictional contacts,
joint and tendon limits, dry friction in joints and tendons, and
a variety of equality constraints. Unlike LCP-type solvers,
MuJoCo’s constraint solver reduces to unconstrained convex
optimization in forward dynamics. Importantly, the inverse
dynamics are uniquely defined and computed analytically,
making the inverse formulation of GDD (8) more appealing
than the forward formulation (7).

We now provide a brief summary of MuJoCo’s physics
model, emphasizing those aspects that are relevant to GDD.
Forward dynamics in MuJoCo are defined starting with the
Gauss principle of least constraint [24], and extending it with
a constraint violation term as follows:

v̇ = argmin
a
{‖Ma+ c− τ‖M−1 + s (Ja− r)} (13)

Here s(·) is a convex C1 function which softly penalizes
acceleration constraint violations [17], J(q) is the constraint
Jacobian, and r(q, v) is a reference acceleration in constraint
space which is computed from a virtual spring-damper used
for constraint stabilization. This is related to Baumgarte
stabilization [25], except here r modifies the acceleration
target for the optimizer instead of applying a force directly.
The function s(·) is a quadratic spline when friction cones
are approximated as pyramids. Thus its gradient ∇s is piece-
wise affine and continuous, while its Hessian H[s] is piece-
wise constant and discontinuous.

Compared to the velocity-stepping schemes used in most
other modern simulators, our formulation has several unique
advantages: (i) the optimization problem is unconstrained;
(ii) the optimization problem is convex; (iii) the forward
dynamics are defined in continuous time; (iv) the inverse
dynamics are uniquely-defined and computed analytically;
see eq. (14). The summary provided here is not sufficient to
understand how all of this is possible, and why we are able
to side-step hard computational problems that have presented
obstacles in prior work on contact dynamics. The MuJoCo
simulation framework has taken us many years of research
and product development, as described in detail elsewhere
[15], [16], [17]. Our goal here is not to re-introduce the
framework, but rather to leverage its unique features in
solving control problems.

Since problem (13) is convex and unconstrained, it has
a unique minimizer which makes the gradient vanish. This
yields the identity

τ =Mv̇ + c+ JT∇s (Jv̇ − r) (14)

We can now recognize −∇s as the constraint force. Note that
for given v̇ we have an analytical formula for τ , correspond-
ing to inverse dynamics. In forward dynamics on the other

hand, we are given τ and computing v̇ requires solving the
system of non-linear equations (14), or equivalently solving
optimization problem (13), both of which require a numerical
method.

We can further differentiate the inverse dynamics and
obtain its Jacobian with respect to acceleration, denoted P :

P ≡ ∂g

∂a
=M + JTH [s] J (15)

So the Jacobian of the inverse dynamics turns out to be
an s.p.d. matrix. This is because it is also the Hessian of
the convex objective in the extended Gauss principle (13)
without the term τ . Having an analytical Jacobian, without
need for sampling or finite difference approximations, speeds
up the optimization required for GDD.

With these mathematical preliminaries regarding MuJoCo
physics, let us now apply the inverse formulation of GDD
(8). Leaving out the constraints on a for the moment, the
objective function becomes

L(a) = ‖g(a)‖R + `(a) (16)

The gradient of this function is

∇L = PRg +∇` (17)

and the Gauss-Newton approximation to the Hessian is

H[L] = PRP +H[`] (18)

We now have all the ingredients needed to construct an effi-
cient optimizer. The goal is to minimize L(a) subject to the
constraints in the inverse formulation, namely gu(a) ∈ U and
gz(a) = 0. The former is usually a box constraint specifying
actuation limits. This combination of constraints is well-
suited for augmented Lagrangian primal-dual methods [26].

It is notable that we did not have to impose friction
cone constraints in the optimization. This is because the
inverse dynamics in MuJoCo’s physics model are such that
for any acceleration a, the constraint force −∇s (Ja− r)
automatically satisfies friction cones and any other applicable
constraints. Indeed if the controls u are not bounded, the only
constraint left in our GDD optimization problem (8) is the
equality constraint gz(a) = 0.

IV. RELATION TO DYNAMIC PROGRAMMING

We defined GDD as the solution to the equivalent opti-
mization problems (7) and (8). Similar optimization prob-
lems also arise in dynamic programming, suggesting new
algorithms for approximate dynamic programming based on
GDD. To see the similarity, recall the Bellman equation
for the optimal value function. To update the value at each
state, we must find the control that optimizes control cost
plus the value of the resulting next state. If we think of the
value function as encoding the goal (thereby replacing the
generic cost `(a) we use to provide high-level commands),
the Bellman update is doing what we propose to do. So we
are essentially incorporating a Bellman-update-like operator
in the robot dynamics. Next we develop this idea more
formally.



Consider the discrete-time version of our second-order
control system (4), namely:

qt+h = qt + hvt
vt+h = vt + hf(qt, vt, ut)

(19)

Define the running cost as

‖(u, 0)‖R + p(q, v) (20)

The first term is our previous regularization cost, while the
second term is a new state-dependent cost that can be used to
specify desirable states. The latter corresponds to the running
cost in optimal control formulations.

Let V ∗(q, v) denote the optimal value function for the
above optimal control problem (first-exit formulation). Then
V ∗ satisfies the Bellman equation

V ∗(q, v) = p(q, v) +
min
u∈U
‖(u, 0)‖R + V ∗(q + hv, v + hf(q, v, u))

(21)
The Bellman equations for finite horizon, average cost and
discounted formulations have similar structure. Note that the
minimization in (21) is identical to the minimization in the
forward definition of GDD (7) when the goal-setting cost
`(·) is defined as

`(a) = V ∗(q + hv, v + ha) (22)

This of course is not a coincidence; the optimal value
function has the key property that the policy which is greedy
with respect to it is the optimal policy. Conversely, if we
could somehow guess `(·) that takes into account the long-
term value of the state, the goal directed dynamics will match
the optimally controlled dynamics.

Thus far the relation between goal-directed dynamics and
dynamic programming is intuitive but does not seem to
suggest new algorithms. Things get more interesting however
when we turn to the inverse formulation. We will now
redefine the optimal control problem as follows. Instead of
using the control u to drive the system, we will use the
acceleration a. So the control system becomes

qt+h = qt + hvt
vt+h = vt + hat

(23)

When q contains quaternions, the summation q+hv denotes
integration over the 4D unit sphere; this is the only remaining
nonlinearity, and it is kinematic rather than dynamic. The
running cost is

‖g(q, v, a)‖R + p(q, v) (24)

This is the same as the previous definition (20) but has been
expressed as a function of acceleration.

We can now write down the Bellman equation for the
inverse dynamics (or acceleration-based) formulation of op-
timal control:

V ∗(q, v) = p(q, v) +
min

a∈A(q,v)
‖g(q, v, a)‖R + V ∗(q + hv, v + ha)

(25)

This is mathematically equivalent to the Bellman equa-
tion (21) for the forward dynamics formulation of optimal
control, meaning that the two equations characterize the
same optimal value function. But as in GDD, the inverse
formulation offers algorithmic advantages, in particular when
it comes to trajectory optimization methods such as dif-
ferential dynamic programming (DDP) [27] and iterative
linear-quadratic-Gaussian control (iLQG) [28]. Such meth-
ods maintain a local quadratic approximation to V ∗ which
is propagated backwards in time through the linearized (in
the case of iLQG) dynamics. But in the inverse dynamics
formulation, our control system (23) became linear! There-
fore propagation errors due to dynamics linearization will
not accumulate. This of course is not a free lunch: what we
did is to hide the complexity of the nonlinear dynamics in
the cost over accelerations. So when we approximate this
cost with a quadratic, the approximation error is likely to be
greater compared to approximating a traditional control cost.
However, control costs are often used to tame the optimizer
and produce sensible behavior, and not because we care
about the specific expression; for example the quadratic costs
used in practice do not correspond to power or any other
physically meaningful quantity. This is why we refer to them
as regularization costs and control costs interchangeably. So
if we could put all approximation errors in one place, the
control cost is the ideal place. Another advantage in the
context of MuJoCo physics is that we are working with
inverse dynamics, which are computed analytically unlike
forward dynamics. We have not yet developed a specific
algorithm exploiting this new inverse formulation of optimal
control, although we already have a name for it: acceleration-
based iterative LQR (AILQR). We are looking forward to
developing this algoritghm in future work.

V. COST FUNCTION DESIGN

Coming back to the instantaneous optimization in GDD,
we need a cost function `(·). We already discussed one
example, namely the end-effector acceleration cost (11). This
was used in an analytically-solvable special case, but it can
be used in the general case as well. Another setting where we
can readily obtain a desired acceleration in joint space, and
construct a cost `(·) around it, are policies that are trained to
output acceleration targets. For example, [23] trained such a
neural network controller capable of stable 3D locomotion
to spatial targets specified interactively.

Recall that the constraint forces in the MuJoCo physics
model we are using are computed analytically given the
acceleration: the vector of all such forces is −∇s(Ja − r)
where J, r are fixed given the state (q, v). This includes
frictional contact forces, joint limit forces, dry friction forces
and equality constraint forces. Therefore all these quantities
can be used to construct cost functions for the purpose of
GDD. For example, the center of pressure can be computed
by identifying all contact points between the robot and the
ground plane, and weighting their positions by the corre-
sponding contact normal forces.



Spatial goals can be specified by computing a desired end-
effector acceleration and using a cost similar to (11). This
desired acceleration can be obtained from a virtual spring-
damper, or perhaps a minimum-jerk spline which will likely
result in smoother and more human-like movements [29].

Finally, as already summarized earlier, there is a rich lit-
erature in both Robotics and Graphics proposing to optimize
various quantities instantaneously. These include center of
pressure, ZMP and related ‘capture points’ [9], [10], [11],
as well center of mass, linear and angular momentum, and
many other intuitive features that have proven useful. Our
goal here is not to design new costs, but rather to develop the
computational infrastructure which can be used to optimize
efficiently any cost in this broad family, without the modeling
limitations imposed by the QP framework.

VI. NUMERICAL BENCHMARKS

Here we describe simulation results from two MuJoCo
models: a humanoid and a disembodied hand; see Figure 2
and the accompanying movie. In each case we selected a
body segment and used the mouse to interactively specify
a spatial goal. The cost `(·) had two terms. The first term
was an end-effector acceleration term for the selected body
segment, as in (11), specifying a desired acceleration towards
the spatial goal. The second term was

α

2
‖a+ βv‖R (26)

where α is the relative weight of the cost term and β is
a virtual damping coefficient. This tells the GDD to stop
moving, resembling a joint-space damping mechanism. In
this way, once the first term drives a given body segment to
a desired location, it can be disabled and the second term
makes GDD hold it in place – although with this particular
cost it slowly falls under gravity, because we also have a
cost on τ .

We used the interactive simulation described above to
collect a dataset of records, each containing (q, v, a, τ) for
one model and one point in time. We then re-run the
simulations offline, disabling rendering and interaction so
that we could time the solvers more accurately. The dataset
for each model had 20, 000 records. We tested performance
on an Intel i7-6700K 4 GHz processor. The average CPU
times per step in a single thread were as follows:

CPU time per step (µs) humanoid hand

forward 49 128

goal-directed 90 182

goal-directed + forward 99 194

Note that these times are in microseconds. So in all cases it
takes well below a millisecond to execute the GDD solver
to convergence (to a feasible but possibly local minimum).
The GDD solver is only two times slower than the for-
ward solver, which is impressive given that it is solving
a non-convex and non-smooth problem. Even though GDD
computes both the control and the acceleration, the control

Fig. 2. Physics models used to benchmark the GDD solver.

may not be exactly feasible, since we are using a primal-
dual method. Therefore we clamp the control to the feasible
set and execute forward dynamics. This clamping operation
introduces a very small change and the forward solver is
warmstarted with the acceleration found by GDD, thus the
forward solver converges almost immediately and adds only
10 microseconds on average (last line in the above table).

Next we present statistics characterizing the behavior of
the GDD solver over the 20, 000 simulation step for each
test model. For each statistic we show the 50th percentile
(i.e. the median) and the 95th percentile:

satistic (50% (95%)) humanoid hand

constraints 23 (38) 19 (30)

iterations 4 (9) 5 (9)

dual updates 1 (1) 1 (3)

physics violation 3e-11 (6e-7) 2e-8 (5e-7)

residual gradient 1e-7 (1e-6) 1e-9 (8e-9)

The number of constraints reflects the number of active
contacts and joint limits, and corresponds to the number of
rows in the Jacobian J . Each iteration involves a Newton
step to find the search direction, followed by exact line-
search exploiting the structure of the objective function. Dual
updates are needed to re-estimate the Lagrange multipliers
for the constrained optimization problem. The last two rows



characterize the quality of the solution. The bottom line is
that both the physics violation error and the residual gradient
are very small, and the number of iterations is also very small
considering the problem class.

VII. CONCLUSIONS AND FUTURE WORK

We developed a general control framework using cost
functions in place of traditional control signals. The em-
bedded GDD solver computes the optimal controls given
the instantaneous cost/goal, and applies them to the physical
system. This solver is sufficiently fast and robust to be used
in a low-level control loop, generalizing the QP solvers that
are currently popular in robotics. While some illustrations
of behaviors generated by our new solver can be found
in the accompanying movie, our objective here was not to
explore what cost functions are needed to generate interesting
behaviors. This has been done extensively before. Instead
we focused on developing a more general optimization
framework that can make prior cost functions work better.

In future work we will experiment with more elaborate
costs and applications to physical systems. We will also
develop the new trajectory optimizer outlined earlier, using
GDD in an inner loop and replacing the user-defined in-
stantaneous cost in GDD with an approximation the optimal
value function. Another possible application of GDD is in
the context of model-based Reinforcement Learning, where it
can be used to optimize over actions given an approximation
to the optimal value function. GDD can also facilitate policy
gradient methods: learn a controller that outputs desired
accelerations rather than forces, and then use GDD online to
compute the corresponding forces and execute the controller.

REFERENCES

[1] O. Khatib, A unified approach for motion and force control of robot
manipulators: The operational space formulation. IEEE Journal on
Robotics and Automation, 3: 43-53, 1987.

[2] L. Sentis, J. Park, O. Khatib, Compliant control of multicontact and
center-of-mass behaviors in humanoid robots. IEEE Transactions on
Robotics 26: 483-501, 2010.

[3] R. Featherstone, O. Khatib, Load-independence of the dynamically-
consistent inverse of the Jacobian matrix. International Journal of
Robotics Research, 16: 168-170, 1997.

[4] L. Righetti, J. Buchli, M. Mistry, M. Kalakrishnan, S. Schaal, Optimal
distribution of contact forces with inverse-dynamics control. Interna-
tional Journal of Robotics Research, 32: 280-298, 2013.

[5] D. Mellinger, N. Michael, V. Kumar, Trajectory generation and control
for precise aggressive maneuvers with quadrotors. International Journal
of Robotics Research, 31: 664-674, 2012.

[6] A. Escande, N. Mansard, P. Wieber, Hierarchical quadratic program-
ming: Fast online humanoid-robot motion generation. International
Journal of Robotics Research, 33: 1006-1028, 2014.

[7] S. Feng, W. Whitman, X. Xinjilefu, C. Atkeson, Optimization-based
full body control for the DARPA Robotics Challenge. Journal of Field
Robotics, 32: 293-312, 2015.

[8] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Perme-
nter, T. Koolen, P. Marion, R. Tedrake, Optimization-based locomotion
planning, estimation, and control design for the Atlas humanoid robot.
Autonomous Robots, 40: 429-455, 2016.

[9] T. Koolen, T. De oer, J. Rebula, A. Goswami, J. Pratt, Capturability-
based analysis and control of legged locomotion. Part 1: Theory
and application to three simple gain models. International Journal of
Robotics Research, 2012.

[10] P. Saradain, G. Bessonnet, Forces acting on a biped robot. Center
of pressure – zero moment point. IEEE Trans. Systems, Man, and
Cybernetics, Part A, 34: 630637, 2004.

[11] M. Vukobratovic, B. Borovac, Zero-moment point – Thirty five years
of its life. International Journal of Humanoid Robotics, 1: 157173, 2004.

[12] E. Farnioli, M. Gabiccini, A. Bicchi, Optimal contact force distribution
for compliant humanoid robots in whole-body loco-manipulation tasks.
ICRA 2015.

[13] D. Stewart, J. Trinkle, An implicit time-stepping scheme for rigid-body
dynamics with inelastic collisions and coulomb friction. International
Journal Numerical Methods Engineering, 39: 2673-2691, 1996.

[14] M. Anitescu, F. Potra, D. Stewart, Time-stepping for three dimensional
rigid body dynamics. Computer Methods in Applied Mechanics and
Engineering, 177: 183-197, 1999.

[15] E. Todorov, T. Erez, Y. Tassa, MuJoCo: A physics engine for model-
based control. International Conference on Itelligent Robots and Sys-
tems (IROS) 2012.

[16] E. Todorov, Convex and analytically-invertible dynamics with contacts
and constraints: Theory and implementation in MuJoCo. ICRA 2014.

[17] E. Todorov, MuJoCo: Modeling, Simulation and Visualization of
Multi-Joint Dynamics with Contact. Seattle WA: Roboti Publishing,
2016. www.mujoco.org/book

[18] Y. Abe, M. da Silva, J. Popovic, Multiobjective control with frictional
contacts. ACM SIGGRAPH/Eurographics Symposium on Computer
Animation 2007.

[19] M. de Lasa, I. Mordatch, A. Hertzmann, Feature-based locomotion
controllers. SIGGRAPH 2010.

[20] M. Al Borno, M. de Lasa, A. Hertzmann, Trajectory optimization
for full-body movements with complex contacts. IEEE Transactions on
Visualization and Computer Graphics, vol 19, 2013.

[21] Y. Lee, M. Park, T. Kwon, J. Lee, Locomotion control for many-
muscle humanoids. SIGGRAPH 2016.

[22] A. Macchietto, V. Zordan, C. Shelton, Momentum control for balance.
SIGGRAPH 2009.

[23] I. Mordatch, K. Lowrey, G. Andrew, Z. Popovic, E. Todorov, Interac-
tive control of diverse complex characters with neural networks. NIPS
2015.

[24] R. Kalaba, H. Natsuyama, F. Udwadia, An extension of Gauss’s
principle of least constraint. International Journal of General Systems,
33: 63-69, 2004.

[25] J. Baumgarte, Stabilization of constraints and integrals of motion
in dynamical systems. Computer Methods in Applied Mechanics and
Engineering, 1: 1-16, 1972.

[26] A. Forsgren, P. Gill, Primal-dual interior methods for nonconvex
nonlinear programming. SIAM J Optim 8: 1132-1152, 1998.

[27] D. Jacobson, D. Mayne, Differential Dynamic Programming. Elsevier
Publishing Company, New York, 1970.

[28] E. Todorov, W. Li, A generalized iterative LQG method for locally-
optimal feedback control of constrained nonlinear stochastic systems.
American Control Conference, 2005.

[29] T. Flash, N. Hogan, The coordination of arm movements: An exper-
imentally confirmed mathematical model. Journal of Neuroscience, 5:
1688-1703, 1985.


