
MuJoCo: A physics engine for model-based control

Emanuel Todorov, Tom Erez and Yuval Tassa
University of Washington

Abstract—We describe a new physics engine tailored to
model-based control. Multi-joint dynamics are represented in
generalized coordinates and computed via recursive algorithms.
Contact responses are computed via efficient new algorithms
we have developed, based on the modern velocity-stepping
approach which avoids the difficulties with spring-dampers.
Models are specified using either a high-level C++ API or an
intuitive XML file format. A built-in compiler transforms the
user model into an optimized data structure used for runtime
computation. The engine can compute both forward and inverse
dynamics. The latter are well-defined even in the presence of
contacts and equality constraints. The model can include tendon
wrapping as well as actuator activation states (e.g. pneumatic
cylinders or muscles). To facilitate optimal control applications
and in particular sampling and finite differencing, the dynamics
can be evaluated for different states and controls in parallel.
Around 400,000 dynamics evaluations per second are possible
on a 12-core machine, for a 3D homanoid with 18 dofs and 6
active contacts. We have already used the engine in a number
of control applications. It will soon be made publicly available.

I. INTRODUCTION

As robotic hardware becomes more complex and capa-
ble, the importance of simulation tools increases. Existing
physics engines can be used to test controllers that are
already designed. However they lack the speed, accuracy
and overall feature sets needed to automate the controller
design process itself. On the other hand, software packages
for automatic controller design (to the extent that they exists)
are not integrated with physics engines, effectively limiting
them to scenarios where the plant dynamics can be written
down explicitly. In the absence of adequate tools, the field
continues to rely on manual controller designs – which may
be a large part of the reason why present-day robots do not
perform as well as one may have hoped given the impressive
sensors, actuators and computing power that are available.
Before presenting our work, we brief1y discuss the re-

quirements for controller design software. First and foremost,
such software should be based on a suitable mathematical
and algorithmic foundation. While many approaches to au-
tomatic control exist, and a proper comparison of their merits
is beyond the scope of this paper, we believe that numerical
optimization is the most powerful and generally applicable
tool for automating processes that would otherwise require
human intelligence. Indeed most algorithms in Artificial
Intelligence, Machine Learning, Computer Vision, System
Identification, State Estimation come down to numerical
optimization. In the context of robotic control, numerical
optimization is the basis of Optimal Control and is equally
applicable to Path Planning, Model-predictive Control, and
in general tuning the parameters of any parametric controller.

The essence of control optimization is to automatically
construct many candidate controllers, evaluate their perfor-
mance in simulation, and use the data to construct bet-
ter controllers. This process can rely on sampling (as in
evolutionary algorithms or Reinforcement Learning) or on
gradient information – which is usually obtained via finite
differencing because the dynamics of a complex robot are
too complex to differentiate analytically, especially in the
presence of contact dynamics. Either way, optimizing a
controller requires a vast number of dynamics evaluations
for different states and controls. For example, in our recent
work on de novo synthesis of humanoid running gaits [3] we
needed around 200 000 000 evaluations – which takes less
than 10 minutes on a 12-core machine using the software
described here. With a time-step of 15 msec (at which our
simulations are stable) this is roughly 5 000 times faster than
real-time. If we used an engine that merely runs in real-time,
as for example the Open Dynamics Engine (ODE) when
used in a similar context [5], we would have to wait for a
month. The three orders-of-magnitude speed advantage can
be broken down as follows: one order of magnitude is due to
faster computation, one order of magnitude is due to parallel
processing which fully utilizes all available processors, and
one order of magnitude is due to higher accuracy and stability
allowing larger time-steps; for comparison, ODE requires
time-steps below 1 msec to achieve stable locomotion [5].
Controller optimization also calls for high simulation

accuracy. The approximations used in gaming engines are
often justified with the argument that accuracy is not so
important as long as the simulation is stable. This may be
true in scenarios where one can tune the engine’s parameters
to make an existing controller look realistic. In the context
of control optimization, however, the controller is being
"tuned" to the engine and not the other way around. As
Sims [7] pointed out, if the physics engine allows cheating
the optimization algorithm will find a way to exploit it –
and produce a controller that achieves its goal (in the sense
of optimizing the specified cost function) in a physically
unrealistic way. This has been our experience as well.
The requirements for speed and accuracy are obvious

in principle. What is less obvious however is that, in the
context of control optimization, these requirements become
so demanding that none of the existing physics engines can
meet them. Indeed we were unaware of this a few years
back when we attempted to build the control functionality we
needed on top of ODE, and were quickly disappointed. ODE
as well as other game-oriented engines (such as NVIDIA
PhysX and Bullet Physics) represent the system state in over-

complete Cartesian coordinates and enforce joint constraints
numerically. This is sensible when simulating a large number
of mostly disconnected bodies with few joint constraints,
however it becomes both inaccurate and inefficient when
simulating elaborate multi-joint systems such as humanoids.
Another issue with game engines lies in the contact dynam-
ics, formulated as (approximations to) linear complemen-
tarity problems or LCPs [8]. Although this approach is a
significant improvement over earlier spring-damper models
of contact, it still requires manual tuning and small time
steps. On the other end of the spectrum are engines such
as SD/FAST and OpenSim, which represent the system state
and perform all computations in joint coordinates, and thus
do not need to enforce joint constraints numerically (except
for occasional loop joints). However the latter engines either
ignore contacts, or use spring-dampers resulting in large pen-
etrations or in stiff dynamics. This limits their applications
to robotics where contact dynamics are key.

These observations indicated that we need a new engine,
representing the state in joint coordinates and simulating
contacts in ways that are related to LCP but better. Thus
the name MuJoCo – which stands for Multi-Joint dynamics
with Contact. We developed several new formulations of
the physics of contact [11], [12], [10] and implemented the
resulting algorithms in MuJoCo. Note that contact simulation
is an area of active research, unlike simulation of smooth
multi-joint dynamics where the book has basically been
written [4]. This is why we have decided to provide multiple
mechanisms for modeling contact dynamics, and allow the
user to select the one most suitable for a given system.
In addition, MuJoCo has several unique features which are
rarely needed for simulation purposes but greatly facilitate
control applications:

• The same dynamical system can be evaluated in par-
allel (in shared memory or distributed architectures)
for different states and controls. This is useful for
approximating derivatives via finite differencing, which
in turn enables numerical optimization.

• Inverse dynamics can always be computed, even in the
presence of contacts and equality constraints. Inverse
dynamics are useful for analysis of recorded data as
well as computed torque control applications.

• Actuator dynamics such as the pressures inside pneu-
matic or hydraulic cylinders as well as the activations
of biological muscles can be modeled. Actuators can
transmit forces via linkages or tendons. Tendons can
wrap around 3D shapes, and can have hard length limits.

• There are multiple ways to access MuJoCo’s function-
ality: a standalone executable with interactive interface
allowing the user to ’reach into’ the simulation with a
6D mouse; interfaces to MATLAB and soon ROS; and
a static C library that can be linked to user programs.

• The user can invoke the entire pipeline or only pieces
of it, facilitating the implementation of non-standard
computations. MuJoCo’s functionality can be further
extended with a variety of callbacks specifying control

laws, passive force fields, custom equality constraints,
and custom contact solvers.

• Models are created in an intuitive XML format or using
a C++ API, and then compiled automatically into low-
level data structures optimized for runtime computation.
XML model files in other formats (e.g. URDF) can
be converted to the native MuJoCo format. The native
format is designed to be human readable and editable.

The rest of the paper is organized as follows. Section
II describes the main algorithms implemented in MuJoCo.
Section III provides an overview of the modeling conven-
tion. Section IV presents timing tests and comparisons to
SD/FAST – which does not handle contacts, but is the best
prior engine for multi-joint dynamics in our opinion. Section
V provides a summary and outlines future work.

II. ALGORITHMIC FOUNDATIONS

Here we provide a summary of the numerical algorithms
implemented in MuJoCo. We start with notation and smooth
dynamics which are fairly standard, then explain the contact
simulation algorithms in more detail, followed by computa-
tional complexity and inverse dynamics.

A. Equations of motion and smooth dynamics

We will use the following notation:

q position in generalized coordinates
v velocity in generalized coordinates
 inertia matrix in generalized coordinates
b "bias" forces: Coriolis, centrifugal, gravity, springs
 external/applied forces
 equality constraints: (q) = 0
 Jacobian of equality constraints
v∗ desired velocity in equality constraint coordinates
f impulse caused by equality constraints
 Jacobian of active contacts
v velocity in contact coordinates
f impulse caused by contacts
 time step

3D rotations (ball joints and base orientations) are repre-
sented as unit quaternions, while their rotational velocities
are represented as 3D vectors. Thus in general we have
dim (v) dim (q), so we write v instead of q̇.
The equations of motion in continuous time are

 (q) v = (b (qv) +)

+ (q)
T
f (qv) + (q)

T
f (qv)

Note that we have not divided by . This is because
constraint and contact forces are impulsive, and the latter
are generally inconsistent with continuous-time formulations
(e.g. Painleve’s paradox). Indeed in order to model hard
contacts (as opposed to spring-damper approximations), we
will have to adopt a discrete-time velocity-based formulation
[8] which is now standard in gaming engines. The procedure
for solving the above equations of motion consists of the
following steps:

1) Compute the Cartesian positions and orientations of
all rigid bodies (i.e. the forward kinematics), detect
potential collisions (with some safety margin), and
construct the Jacobians .

2) Compute the inertia matrix using the Composite
Rigid Body (CRB) algorithm, the bias forces b using
the Recursive Newton Euler (RNE) algorithm, and the
sparse LTDL factorization of .

3) Express the equality constraint impulse f as a func-
tion of the (still unknown) contact impulse f , and
project the dynamics in the subspace tangent to the
equality constraint manifold. Apply constraint stabi-
lization.

4) Further project the dynamics in contact coordinates,
and solve for the contact impulse f and the resulting
contact velocity v .

5) Integrate numerically to obtain the next state.
Steps 1, 2 are standard [4]. We now clarify steps 3, 4, 5.

The desired next-step velocity v∗ (q) in equality constraint
coordinates is computed from the constraint violation (q),
in such a way that if the system follows v∗ exactly, the
violation will decay to 0 as a critically-damped spring. This
resembles Baumgarte stabilization, except that here v∗ is
directly enforced at the next time step – which can be more
accurate than traditional Baumgarte stabilization.
We now focus on the computations in a single time step.

Replacing v with (v+ − v) and with , and taking
into account the velocity transformations specified by the
Jacobians, the equations of motion in discrete time become

 (q)v+ = s (qv) (1a)

+ (q)
T
f + (q)

T
f

 (q)v+ = v
∗
 (q) (1b)

 (q)v+ = v (1c)

where the vector s is defined as

s (qv) = (q)v + b (qv) +

We will now drop the time indices and functional dependen-
cies for clarity. At this point the quantities s v

∗

are known, while f f v v remain to be computed.
Using (1a, 1b) and the fact that is always invertible,

we can express f as a function of f :

f =
¡

−1T
¢−1 ¡

v∗ −
−1 ¡s+ Tf

¢¢
Substituting this in (1a) and solving for v yields

v = Tf + r (2)

where r are defined as

 =−1 −−1T
¡

−1T
¢−1

−1

r = s+−1T
¡

−1T
¢−1

v∗

This is the projection in the subspace tangent to the equality
constraint manifold (step 3). When there are no equality
constraints we have = −1 and r = −1s. In terms
of implementation, multiplication by −1 is done using

sparse back-substitution (following sparse factorization), and
the recurring matrix −1T =

¡

−1¢T is computed
only once and reused when necessary.
At this point we know r in (2) and need to compute

f , which corresponds to step 4 and will be described later.
Once this is done, we use (2) to obtain v+, and then
integrate the position. MuJoCo provides two integrators. One
is the semi-implicit Euler method:

q+ = q ” + ” v+

Semi-implicit refers to the fact that we are using the next-
step velocity. This approach tends to be more accurate than
explicit integration, and is key to velocity-stepping schemes.
The plus sign is in quotes because 3D rotations are expressed
as unit quaternions while their velocities are 3D vectors, and
so we use formulas for quaternion integration rather than
simple addition. The other integrator is 4th-order Runge-
Kutta, modified to work with next-step velocities rather than
accelerations.

B. Solving for the contact impulse

We now return to step 4. Substituting (2) in (1c) yields
the following equation in contact coordinates:

f + v0 = v (3)

where v0 are defined as

 =
T

v0 = r

The matrix is the inverse inertia projected in the sub-
space tangent to the equality constraint manifold, and then
expressed in the contact coordinates. The vector v0 is the
contact velocity which results in the absence of an impulse.
The quantities v0 are known, while f v need to be
computed.
Let dim (f) = . We have to compute 2 scalar quanti-

ties while (3) provides only equality constraints. Thus we
need an additional effective constraints in order to obtain
a unique solution. These additional constraints come from
the Coulomb friction model with complementarity conditions
[8], or some approximation to it as discussed later. Focusing
for the moment on a single contact, let the contact impulse
f be partitioned as

£
N ; fF

¤
where N is the normal

component and fF ∈ R2 is the tangential/friction component,
and similarly for v . Along the normal we have

N ≥ 0 N ≥ 0 N N = 0 (4)

These conditions correspond to the fact that the contact
impulse cannot pull the bodies towards each other, the bodies
cannot penetrate, and if the contact is breaking then there can
be no contact impulse. In the tangent plane we have

vF parallel to fF

vF fF

® ≤ 0 (5)°°fF°° ≤ N

The first line means that if there is slip then the friction force
must act in the direction opposite to the slip velocity. The

Fig. 1. Left: the algorithm is tested on a system consisting of several balls
moving inside a cube. Right: average number of Newton-like iterations as
a function of the number of contacts nc and the friction coefficient mu.

second line means that the contact force must lie inside the
friction cone, where is the coefficient of friction.
Condition (4) is called a complementarity condition. To-

gether with a linear equation such as (3) it can form a linear
complementarity problem (LCP). Condition (5) on the other
hand does not fit in the LCP framework because it involves
nonlinearities. One approach is to replace the friction cone
with a pyramid and convert the problem into an LCP [8],
which can then be solved with Lemke’s algorithm or other
methods such as the PATH solver. These methods however do
not scale well for larger problems [1], which is not surprising
given that the problem is generally NP-hard [6]. Furthermore
the pyramid approximation introduces errors.
Instead of following the LCP approach, MuJoCo imple-

ments three new algorithms for contact simulation based on
our recent work, as summarized next.

C. Implicit complementarity solver

The most accurate of the solvers provided in MuJoCo is
based on [11]. It aims to find an exact solution to (3, 4, 5).
The key idea is as follows. Instead of treating f and v
as independent quantities constrained by complementarity,
we express both as functions of a new hybrid variable x.
This is possible thanks to the complementarity conditions.
In the normal direction for example, if the corresponding
component of x is positive it encodes force (in which case
the velocity is 0), otherwise it encodes velocity and the force
is 0. We then solve the nonlinear equation

f (x) + v0 = v (x)

by converting it to an unconstrained optimization problem:

min
x
kf (x) + v0 − v (x)k2

The optimization uses a customized non-smooth Newton
method; in the line-search phase it exploits the fact that the
functions f (x) and v (x) are non-smooth only at planes
and friction-cone boundaries. See [11] for details.
Since the underlying problem is NP-hard, the algorithm

cannot always find the exact solution (which has 0 resid-
ual). Nevertheless it finds the exact solution almost all the
time, and when it does not it still converges to a sensible
solution. Furthermore the number of Newton-like iterations

0 200 400 600
simulation time (ms)

vertical
velocity

normal
impulse

Fig. 2. Left: Rendering of a humanoid (used for testing) in the MuJoCo
interactive 3D GUI. Right: a ball-drop test of the convex contact solver.
Note how the contact impulse is smoothed, and yet there is no penetration.

is surprisingly small, as illustrated in Fig. 1 taken from [11].
Each iteration involves factorization of a -by- matrix; this
could potentially be improved using Hessian-free methods.

D. Convex solver

A favorable trade-off between speed and accuracy is
obtained by replacing the nonlinear complementarity con-
straints (4, 5) with a convex optimization problem, whose
solution is very similar in practice [1] yet it can be computed
more efficiently. The algorithm is based on [12], which
turns out to be related to [2] even though it was developed
independently. The advantage of [12] is that the resulting
contact dynamics are invertible (see below).
The idea here is that contact impulses act to reduce the

relative velocity between contacting surfaces. It then makes
sense to define the kinetic energy in contact space, which
is v

−1v2, and minimize it subject to friction-cone
and non-penetration constraints. The remaining constraints
from (4, 5) are omitted because they make the optimization
problem non-convex. The friction cone is imposed as a
hard constraint, while non-penetration

¡
N ≥ 0¢ is imposed

with a cost (v) because otherwise the inverse dynamics
could not be defined for trajectories that happen to have
penetration. We have

f = arg min
f∈Cone

1

2
f (+) f + fv0 + (f + v0) (6)

 is a small (diagonal) regularization term. It is needed for
three reasons: is often singular; without the inverse
cannot be defined (see below); one can enable contact
interactions from a distance – which can be very useful
in continuation methods for numerical optimization – and
control the contact force magnitude by increasing with
distance. In addition to enabling continuation, the convex
solver is well suited for numerical optimization because it
smooths the dynamics while still producing phenomenolog-
ically hard contacts. This is illustrated with a ball-drop test
in Fig. 2, taken from [12].
The convex solver is actually a family of solvers, because

the convex optimization problem (6) can be handled with a
variety of numerical methods. Interior-point methods were
advocated in [2], [12] and they are certainly a viable option,
however projected methods (Newton, conjugate-gradient, or

Gauss-Seidel) may be faster and have comparable accu-
racy. By "projected" we mean that the cone constraints are
enforced after each iteration, or a non-smooth line-search
respecting the constraints is used. Projected methods are
usually limited to box constraints, however we have been
able to generalize them to cone constraints. Presently a cone-
projected Gauss-Seidel method is our favorite [9].

E. Diagonal solver

The least accurate but fastest contact solver is a diagonal
solver, which can be thought of as a mass-aware spring-
damper. The difficulty with traditional spring-damper models
is that, if the contact-space inertia is too large the contact will
be springy and result in large penetration and subsequent
oscillation, while if the inertia is too small the dynamics
will be stiff and very difficult to integrate numerically. Since
the contact-space inertia is configuration-dependent while the
spring-damper coefficients are fixed, this problem may seem
unavoidable. However, if we have access to the diagonal of
the matrix we can tune the spring-dampers online, and for
example make sure that we always have critically-damped
springs at all contacts. This is essentially what our diagonal
solver does, except it does not explicitly simulate spring-
dampers. Instead it computes the desired next-state velocity
v∗ which would result if penetrations decayed like critically-
damped springs (similar to equality-constraint violations) and
there was no slip, and then solves

diag () f = v
∗
 − v0 st f ∈ Cone

approximately. This is done by computing the components
of f independently for each contact (the diagonal solver
ignores contact interactions by definition) and enforcing the
friction-cone constraints, with the same projection method as
above. A regularization term can again be included.

F. Computational complexity

We now address the computational complexity of the en-
tire pipeline, including the smooth and impulsive dynamics.
Let = dim (v), = dim (v), and = dim (v). Thus
 are -by-, is -by-, is -by-, and is
-by-. The computational complexity of the different steps
can be summarized as follows:
• computing b via RNE is ()
• computing via CRB is

¡
2
¢

• factorizing is
¡
3
¢

• computing is
¡
2

¢
• computing is

¡
2

¢
• computing is

¡
2

¢
• computing is

¡
2

¢
• factorizing is

¡
3
¢
.

While these theoretical results are important for under-
standing how the CPU time will scale with the number of
DOFs, in practice the performance of the engine is dominated
by other factors, for the following reasons. First, the values of
 are small – rarely exceeding 50 and usually less. Second,
the branch-induced sparsity of makes sparse factorization
a lot faster than

¡
3
¢
as shown in [4]. Thus, since the

number of equality constraints is usually small (if present
at all), the bottleneck is the

¡
2

¢
computation of and

the repeated
¡
3
¢
factorizations inside the contact solvers.

Third and perhaps most important, counting the number
of f1oating point operations used to be essential when
f1oating point arithmetic was slow, but this is no longer the
case. Instead, modern processors use comparable numbers of
cycles for f1oating point, integer and indexing operations –
all of which are very fast. The bottleneck now is in memory
access. Thus the performance of physics engines such as
MuJoCo tends to be dominated by cache misses more than
traditional computational complexity considerations, and the
only way to assess performance reliably is to run extensive
timing tests.
Forward dynamics in the absence of contacts can alterna-

tively be computed using () recursive algorithms. How-
ever in the presence of branch-induced sparsity typical in
robotics these algorithms are not much faster than the present
approach [4]. More importantly, () forward dynamics
does not compute the inertia matrix which is needed to
compute , which in turn is needed for all contact simulation
methods that avoid the shortcomings of spring-dampers.

G. Inverse dynamics

We now describe the computation of inverse dynamics,
which is a unique feature of MuJoCo. It can be used to
analyze data or to compute the torques that will cause a
robot to follow a reference trajectory. Another important
application is in direct trajectory optimization (also known
as space-time optimization) where the variables being op-
timized are the sequence of positions q. Velocities v are
then defined via numeric differentiation, control forces are
defined via inverse dynamics, and the cost of the trajectory
is computed as a function of all these quantities. These ideas
are developed at length in [3]. Here we limit ourselves to the
inverse dynamics computation.
Ignoring equality constraints and contacts for the moment,

the RNE algorithm can be used to compute

 (q) v̇− b (qv) = ftot
where ftot is the sum of control forces which we aim to
compute, plus constraint and contact forces which are also
unknown. Indeed RNE was originally designed for inverse
dynamics, although it is also applicable in forward dynamics
for computing b, by setting v̇ = 0. The unusual negative sign
in front of b is our notational convention.
Our goal now is to distribute ftot as

ftot = + −1 (q)
T
f + −1 (q)

T
f

where ftot are known and f f are unknown.
Importantly, we want the inverse dynamics to be well-defined
for any (qv v̇) regardless of constraint and penetration
violations. This is because such violations are likely to be
present both in recorded data and in early stages of trajectory
optimization. Of course violations should be difficult to
achieve, i.e. the inferred control force should be large in
the corresponding subspace. Thus, in essence, we want the

dynamics to become more springy. The forward dynamics
as defined above do not have this property because f
and f are computed with knowledge of , and are scaled
automatically so as to cancel any components of that would
cause violations.
This leads to the following general approach to inverse dy-

namics in the presence of impulse solvers. Define a posthoc
mode where all impulses are computed as if = 0, and
then apply the actual at the end of the time step by adding
−1 to the next-step velocity. We use a modified in
this procedure, so that the inertia seen by the control forces
is increased in the subspace corresponding to violations:

 ← +

 +

The coefficients can be adjusted by the user.
When there are no equality constraints and the contact

solver has an exact inverse, the inverse dynamics can be
computed without resorting to posthoc mode. The convex
contact solver in particular is invertible [12], meaning that
given and = f + v0 we can recover f and v0.
Indeed using the fact that f is the global minimizer of (6) in
the forward dynamics, we can show that the same f can be
recovered in the inverse dynamics by solving the following
convex optimization problem:

f = arg min
f∈Cone

1

2
ff + f

¡
v +∇ ()

¢
This is easier to solve numerically than (6) because the ob-
jective function is now quadratic. If we omit the penetration
cost () and instead rely on energy minimization to set
the normal velocity to near 0, the matrix drops altogether,
meaning that we can also omit the computation of .

III. MODELING

A. Different ways to construct a MuJoCo model

MuJoCo models can exist on three levels of description:
• XML model file in a new format called MJCF;
• Sequence of C++ API calls for model construction;
• Low-level C structure generated by the built-in com-
piler, and optionally saved and loaded in binary files.

All descriptions contain the same information but in
different formats. They are related as follows. The MJCF
file is an intuitive text description written by the user. The
built-in parser loads the MJCF file and creates a runtime C++
object describing the entire model. When using MuJoCo as
an executable, this is the only way to create models. When
MuJoCo is linked as a library to a user program, the user
can still call the parser programmatically, but now has the
option of making the same sequence of API calls that the
parser would have made and thereby constructing the same
model. The parser route is usually the most convenient.
The API route is better when working with large models
that can be created programmatically, e.g. a chain with 100
identical links. Once a valid model object is created in the
runtime environment by either method, the built-in compiler
converts it into a low-level C structure used for all subsequent
computations.

Here is a fully functional XML file in MJCF format,
describing a f1oating box which can collide with the ground:

<?xml version="1.0" encoding="utf-8"?>
<mujoco version="1.0">
<world>
<geom type="plane" pos="0 0 0"/>
<body>
<joint type="free"/>
<geom type="box" pos="0 0 5"

size="1 2 3"/>
</body>

</world>
</mujoco>

A physical simulation needs a lot more information than
what this file specifies directly. The missing information
is filled-in automatically using suitable defaults, which can
themselves be redefined by the user. A full explanation of the
modeling convention is beyond the scope of this paper, but
one important feature is the ability to specify body inertial
properties automatically, by inferring them from the geom
shapes and (default) material density. In fact one can define
multiple geoms per body, and MuJoCo will combine their
masses and inertias and assign them to the body. Other
conveniences include an option to use either local or global
coordinates, and multiple ways for specifying orientations.

B. Elements of a MuJoCo model

a) Body: Bodies are the elements used to build kine-
matic trees. A MuJoCo model consists of one or several
kinematic trees, which can have f1oating bases including
isolated objects. Bodies have mass and inertia matrix but do
not have any geometric properties; they are just coordinate
frames with inertial properties. Internally each body has a
local coordinate frame which is centered at the center of
mass and is aligned with the principal axes of inertia. A
’world’ body is always defined.

b) Joint: Joints are defined inside bodies. They create
motion degrees of freedom between the body and its parent;
in the absence of joints the parent and child bodies are
welded together. Note that this is the opposite of engines such
as ODE – where joints constrain motion instead of enabling
motion. MuJoCo has four primitive joint types: slide,
hinge, ball which is represented with a quaternion, and
free joint which is a 3D translation followed by a 3D
quaternion rotation. The latter joint type is used to define
a f1oating base. A unique feature of MuJoCo is that the
primitive joint types can be composed into more complex
joints, without having to define intermediate dummy bodies.

c) DOF: Degrees of freedom (DOFs) are closely re-
lated to joints, but are not in one-to-one correspondence
because ball and free joints have multiple dofs. Since quater-
nions are 4D vectors (with unit length) while their velocities
are 3D vectors, we often have more positional coordinates
than velocity coordinates. DOFs have damping, maximum
velocity, armature inertia. DOFs can also have friction which

is handled by the impulse solver, together with contacts, joint
limits and tendon limits.

d) Geom: Geoms are massless geometric objects. Their
primary use in the engine is collision detection as well as ten-
don wrapping. However they can also be used during model
construction to specify the inertial properties of the body to
which they belong. The supported geom types are plane,
sphere, capsule, ellipsoid, box, cone, mesh.
Collision detection uses dedicated pair-wise functions when
possible, and otherwise defaults to a general-purpose convex
collider (implemented by libccd). Non-convex meshes can
be rendered but are not used in collision detection; instead
the user should decompose them into convex meshes.

e) Site: Sites are points of interest (along with 3D
frames) defined in the local frames of the bodies, and thus
moving with the bodies. They are used in the engine to route
tendons and apply certain types of forces, but can also be
used by the user’s program to encode sensor locations etc.

f) Constraint: Constraints can be used to create loop
joints or impose any other kinematic equality constraint (i.e.
a constraint that only depends on position). MuJoCo has
several predefined types of constraints: 3D position constraint
forcing two points on two bodies to coincide (effectively
creating another ball joint), joint angle constraint allowing
joint angles to be coupled through polynomial functions,
tendon length constraint specifying that the length of a
given tendon must remain constant, as well as arbitrary user-
defined constraints implemented via callbacks.

g) Tendon: Tendons define spatial paths that can be
used for actuation and also for imposing inequality or equal-
ity constraints; for example one can simulate a marionette or
a tensegrity structure by specifying maximum tendon lengths.
The tendon path is the shortest path that passes through a
sequence of specified sites or wraps around specified geoms.

h) Actuator: Actuators have control inputs, optional
activation states (used to model muscles and pneumatic
cylinders) with suitable first-order dynamics, gains that can
be fixed or depend on position and velocity (so as to
model the force-length-velocity properties of muscles). They
can transmit forces to the multi-joint mechanism by acting
directly on the joints, pulling on tendons, or acting via slider-
crank mechanisms converting linear to angular motion.

IV. TIMING TESTS

A. Performance on smooth dynamics compared to SD/FAST

We measured the speed of multi-joint dynamics simula-
tion in the absence of contacts or equality constraints. We
constructed four identical models in MuJoCo and SD/FAST.
This was done not only for speed comparisons, but also
for debugging MuJoCo and making sure the results are
numerically correct. There were small differences on the
order of machine precision – which is because the different
implementations of the algorithms have somewhat different
round-off patterns.
The Isolated model consists of isolated rigid bodies con-

nected to the world with various joints; here is block-

diagonal. The Chain model is a long chain of bodies, thus
 is dense. The Hand and Humanoid have sparse .
Table 1 shows the number of dynamics evaluations per

second in a single thread. Results are averaged over 100 runs
on four different Intel processors: X9650 (3 GHz), X5570
(2.93 GHz), i7 940 (2.93 GHz), X5860 (3.33 GHz). The
columns "MuJoCo" and "SD/FAST" involve computing

and b as well as the forward kinematics and the Jacobians
of all rigid bodies. The last column adds sparse factorization
of followed by back-substitution; this is only tested in
MuJoCo because SD/FAST does not provide sparse factor-
ization.

Model (DOF) SD/FAST MuJoCo with \
Isolated (34) 122 000 151 000 133 000

Chain (31) 128 000 103 000 41 000

Hand (32) 89 000 101 000 76 000

Humanoid (29) 130 000 123 000 75 000

Table 1: Number of smooth dynamics evaluations per second in
a single thread, rounded to 1 000.

The key observation here is that MuJoCo is quite compa-
rable to SD/FAST. This was a pleasant surprise because, de-
spite all our efforts to optimize the code, SD/FAST generates
model-specific C code which we had expected to be faster.
But apparently modern compilers (Visual Studio 2010 in this
case) manage to blur the distinction. Note that as expected,
the Hand and Humanoid models with sparse are faster
than the Chain model which has dense , yet are slower
than the Isolated model with block-diagonal .

B. Overall performance in trajectory optimization

We also tested the overall performance of MuJoCo in the
context of trajectory optimization through inverse dynamics
[3]. The dynamical system is a 3D humanoid with 18 DOFs,
shown in Fig. 3C. The trajectory has 30 time steps and limit-
cycle topology. There are 3 contact points on each foot. Table
2 shows the time (in seconds) needed to evaluate the cost
of the trajectory along with the cost gradient and Hessian.
The derivative computations are based on central finite
differences. We show results for two types of finite-difference
clouds: quadratic and linear. The latter has 2 rather than
2 states. These tests were run on a PC with two 6-core
Intel X5860 processors (3.33 GHz), with Hyper-threading
enabled. This yields 24 virtual cores, so we compare 1 vs.
24 threads.

Threads States 6 contacts 4 contacts 0 contacts
1 42930 1096 0742 0245

1 3150 0071 0046 0014

24 42930 0111 0075 0027

24 3150 0008 0006 0003

Table 2: CPU time (in seconds) for one evaluation of the
trajectory cost, gradient and Hessian. The number of states where
the dynamics are evaluated corresponds to different Hessian ap-
proximations.

Fig. 3. Illustration of projects where we have used MuJoCo for control
synthesis and modeling. A,B are from [9]. C is from [3]. D is from [13].

Threads 6 contacts 4 contacts 0 contacts
1 42 000 63 000 200 000

24 390 000 549 000 1 320 000

Table 3: This is the inverse of Table 2. Here we show the number
of dynamics evaluations per second.

The results are quite remarkable. One a single desktop
machine, we are able to run nearly 400 000 evaluations
per second including contact dynamics. Using the Gauss-
Newton approximation to the Hessian (i.e. linear could), this
corresponds to nearly 100 quasi-Newton steps of trajectory
optimization per second. With fewer active contacts the speed
is much higher. Note that these results do not take into ac-
count the time needed to implement the actual minimization
method, however since the Hessian is very sparse, this time
is a small fraction of the dynamics evaluations. Note also that
here we used an interior-point method for solving the convex
optimization problem (6). Our new projected methods appear
to be faster, although we have not yet done careful testing.

V. SUMMARY AND FUTURE WORK

We described our new physics engine designed for model-
based control, including algorithms, modeling conventions
and timing results. The engine has already been used suc-
cessfully in a number of projects, as illustrated in Fig. 3.
In terms of smooth multi-joint dynamics, single-threaded

MuJoCo is comparable to SD/FAST. The contact-related
tests we reported are very encouraging. We have not yet
performed systematic comparisons to gaming engines, how-
ever the existing literature indicates that gaming engines are
substantially slower when used in the same context.
The code is thread-safe and is already multi-threaded. The

next step is to implement a cluster version, where a central
dispatcher will send subsets of states to individual machines

and assemble the results. The cluster version should yield
another order of magnitude speedup. In addition we plan to
port the key pieces of code to OpenCL and run it on GPUs.
This has actually been a design goal from day one, and to
this end we have written all run-time code in C and avoided
external libraries.
With regard to simulation accuracy, we compared the

smooth portion of the dynamics to the output of SD/FAST
and found the differences to be within the margin of round-
off errors. The accuracy of the contact dynamics has not
yet been validated, however our implicit complementarity
method has a built-in accuracy check – when the residual is
0 we know that the problem has been solved exactly. The
convex solver should have similar accuracy to the one studied
in [1], which produced results indistinguishable from LCP
solvers but much faster. Of course our implementation is
different so this needs to be tested.
MuJoCo was developed to enable our research in model-

based control. The experience so far indicates that it is a
very useful and widely applicable tool, that can accelerate
progress in robotic control. Thus we have decided to make
it publicly available. It will be free for non-profit research.
GPU-enabled and cluster versions, as well as additional func-
tionality regarding numerical optimization will be released
subsequently. The website will be www.mujoco.org

ACKNOWLEDGMENTS

This work was supported in part by the US National
Science Foundation and the US National Institutes of Health.

REFERENCES

[1] E. Drumwright and Shell. Modeling contact friction and joint
friction in dynamic robotic simulation using the principle of maximum
dissipation. International Workshop on the Algorithmic Foundations
of Robotics, 2010.

[2] E. Drumwright and D. Shell. A robust and tractable contact model for
dynamic robotics simulation. Proc. of ACM Symposium on Applied
Computing, 2009.

[3] T. Erez and E. Todorov. Trajectory optimization for domains with
contacts using inverse dynamics. IROS, 2012.

[4] R. Featherstone. Rigid Body Dynamics Algorithms. Springer, 2008.
[5] M. de Lasa J. Wang and A. Hertzmann. Optimizing walking con-

trollers for uncertain inputs and environments. ACM Transactions on
Graphics, 2010.

[6] D. Kaufman, S. Sueda, D. James, and D. Pai. Staggered projections
for frictional contact in multibody systems. ACM Transactions on
Graphics (SIGGRAPH AISA), 164:1–11, 2008.

[7] K. Sims. Evolving virtual creatures. SIGGRAPH, 1994.
[8] D. Stewart and J. Trinkle. An implicit time-stepping scheme for

rigid-body dynamics with inelastic collisions and coulomb friction.
International Journal Numerical Methods Engineering, 39:2673–2691,
1996.

[9] Y. Tassa, T. Erez, and E. Todorov. Synthesis and stabilization of
complex behaviors through online trajectory optimization. IROS, 2012.

[10] Y. Tassa and E. Todorov. Stochastic complementarity for local control
of discontinuous dynamics. Robotics: Science and Systems, 2010.

[11] E. Todorov. Implicit nonlinear complementarity: A new approach to
contact dynamics. ICRA, 2010.

[12] E. Todorov. A convex, smooth and invertible contact model for
trajectory optimization. ICRA, 2011.

[13] J. Xu, V. Kumar, Y. Matsuoka, and E. Todorov. Design of an
anthropomorphic robotic finger with biomimetic artificial joints. IEEE
BioRob, 2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

