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We present a hierarchical framework for approximately optimal control of redundant ma-
nipulators. The plant is augmented with a low-level feedback controller, designed to yield
input-output behavior that captures the task-relevant aspects of plant dynamics but has
reduced dimensionality. This makes it possible to reformulate the optimal control prob-
lem in terms of the augmented dynamics, and optimize a high-level feedback controller
without running into the curse of dimensionality. The resulting control hierarchy com-
pares favorably to existing methods in robotics. Furthermore, we demonstrate a number
of similarities to �nonhierarchical� optimal feedback control. Besides its engineering ap-
plications, the new framework addresses a key unresolved problem in the neural control
of movement. It has long been hypothesized that coordination involves selective control
of task parameters via muscle synergies, but the link between these parameters and the
synergies capable of controlling them has remained elusive. Our framework provides this
missing link. © 2005 Wiley Periodicals, Inc.
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1. INTRODUCTION

The control of complex redundant systems is a chal-
lenging problem, of interest in both robotics and bio-
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transformation. This enables the high level to control
y unencumbered by the full details of the plant.

While the proposed scheme is designed to re-
semble the sensorimotor system on a structural level,
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ogical motor control. The nonlinear dynamics and
igh-dimensional state and control spaces of such
ystems prevent the use of many traditional methods
or controller design. One way to tackle very complex
roblems is through divide-and-conquer strategies.

ndeed, the most advanced control system known to
ate—the nervous system—appears to rely on such
trategies. Sensorimotor control occurs simulta-
eously on many levels.1–3 Lower-level circuits inter-
ct with the musculoskeletal system directly: They re-
eive rich sensory input, and generate corresponding
otor output before the rest of the brain has had time

o react to that input. Higher-level circuits interact
ith an augmented plant, that consists of the lower

evels and the musculoskeletal system. The lower lev-
ls perform a �not well understood� transformation,
llowing higher levels to operate on increasingly
ore abstract and more goal-related movement

epresentations.4

Here, we propose a hierarchical control scheme
nspired by this general organization of the
ensorimotor system, as well as by prior work on hi-
rarchical control in robotics.5–7 We focus on two-
evel feedback control hierarchies as illustrated in
igure 1. The low-level controller receives informa-
ion about the plant state x, and generates an abstract
nd more compact state representation y�x� that is
ent to the high level. The high-level controller moni-
ors task progress, and issues commands v�y� which
n general specify how y should change. The job of
he low-level controller is to compute energy-efficient
ontrols u�v ,x� consistent with v. Thus the low-level
ontroller does not solve a specific subtask �as usually
ssumed in hierarchical reinforcement learning�,8,9

ut instead performs an instantaneous feedback

igure 1. Schematic illustration of the proposed
ramework.
chieving functional resemblance is equally impor-
ant. Functionally, sensorimotor control is best de-
cribed as being near optimal.10 It may seem surpris-
ng that a hierarchical controller can closely
pproximate an optimal controller. But as we have
hown elsewhere,11,12 optimal feedback controllers
or redundant systems exhibit hierarchical organiza-
ion similar to Figure 1, even when such organization
s not imposed by design. This finding provides yet
nother motivation for the present scheme: If full-
lown optimization on redundant tasks is known to
ield hierarchical structure, it makes sense to restrict
he optimization to an �appropriately chosen� family
f hierarchical controllers.

The general idea that the brain monitors a small
umber of task parameters y instead of the full state
, generates abstract commands v, and maps them
nto muscle activations u using motor synergies, has
een around for a long time.13,14 A number of concrete
odels of end-effector control have been formulated

n the context of reaching tasks.15–20 The high-level
tate in such models is assumed to be hand position,
he abstract command is desired velocity in hand
pace or in joint space, and the high-level controller
s a simple positional servo. While these models are
elated to our work, in some sense they leave all the
ard questions unanswered: It is unclear how the task
arameters are actually controlled �i.e., what the cor-
esponding muscle synergies are�, and whether this
hoice of task parameters can yield satisfactory per-
ormance. We address these questions here.

Our framework is related in interesting ways to
nput-output feedback linearization21,22 as well as to
he operational space formulation6—which also fit in
he general scheme in Figure 1. These methods yield
inear dynamics on the high level, by cancelling the
lant nonlinearities at the low level. However, many
ystems of interest cannot be linearized, and further-
ore it is not clear that linearization is desirable in

he first place. Suppressing the natural plant dynam-
cs may require large control signals—which are en-
rgetically expensive, and also increase error in sys-
ems subject to control-multiplicative noise �a
niversal characteristic of biological movement�.23–25

n contrast, we summarize the plant dynamics on the
igh level and thus create opportunities for exploit-

ng them. Recent work in biped locomotion26 under-
cores the potential of such approaches. In general,
ur objective is dimensionality reduction rather than



linearization. This is because we are pursuing opti-
mality, and what makes optimal control hard is the
curse of dimensionality. We are also pursuing neuro-
biological relevance, and it is clear that a number of
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ehaviors �including locomotion27 and arm
ovements�28 are optimized with respect to the non-

inear musculoskeletal dynamics.
The rest of the paper is organized as follows. Sec-

ion 2 summarizes our previous findings relating op-
imal feedback control to hierarchical control, intro-
uces relevant concepts from biological motor
ontrol, and illustrates them with experimental data.
his motivates the formal development of the new

ramework in Section 3. The relation to existing meth-
dologies is elaborated in Section 4. Numerical com-
arisons to robotic control methods as well as to op-

imal control are presented in Section 5. Preliminary
esults have been reported in conference
roceedings.29

. BIOLOGICAL MOTIVATION, AND RELATION
O OPTIMAL CONTROL

ptimal control models of biological movement have
long history, and provide satisfying computational

ccounts of many behavioral phenomena.10 The ma-
ority of these models are formulated in open loop,
nd plan a desired trajectory while ignoring the role
f online feedback. Desired trajectory planning im-
lies that the neural processing in the mosaic of brain
reas involved in online sensorimotor control does
ittle more than play a prerecorded movement tape—

hich is unlikely.4 Consequently, we and others30–33

ave focused on optimal feedback control models,
hat predict not only average behavior but also the
ask-specific sensorimotor contingencies used to gen-
rate intelligent adjustments online. Such adjust-
ents enable biological systems to “solve a control

roblem repeatedly rather than repeat its solution,”13

nd thus afford remarkable levels of performance in
he presence of noise, delays, internal fluctuations,
nd unpredictable changes in the environment. The
atter models have significantly extended the range of
henomena addressed by open-loop optimization.10

ome of the key results from this line of work are di-
ectly relevant to hierarchical control, as described
ext.

.1. Minimal Intervention, Synergies,
nd Uncontrolled Manifolds

ur work on motor coordination11,12 revealed that
hen the task is redundant, the optimal feedback
ontroller exhibits hierarchical structure even
hough it is not specifically designed to be hierarchi-
al. Figure 2 illustrates this finding in the context of a
imple redundant task—where two state variables
1 ,x2 with dynamics xi�t+1�=axi�t�+ui�t��1+�i�t��, i
1,2 have to be controlled so that x1+x2 equals a
iven target T. The noise model is control multipli-
ative; details can be found in ref. 11. The optimal
ontroller pushes the system state toward the near-
st point on the manifold of acceptable states �“re-
undant direction” in Figure 2�. This clearly requires

ess control energy compared to pushing toward a
redefined point �say x1=x2=T/2�. It also causes less
ariability in the direction that matters �compare
tate covariance to gray circle�. Note however that
ariability in the redundant direction is increased—
ecause the optimal controller is not correcting de-
iations in that direction. Analysis of optimal value
unctions for stochastic nonlinear control problems
as shown that the structure in Figure 2 is a general
roperty of optimal feedback controllers: Deviations

rom the average behavior are corrected selectively,
nly when they compromise task performance.11 We
ave called this the minimal intervention principle.

This is an important result because redundancy
s ubiquitous in the motor system. The phenomenon
f increased variability along redundant directions
illustrated below� has been observed in a wide
ange of behaviors,11 and has been quantified via the
uncontrolled manifold” method for comparing
ask-relevant and task-irrelevant variance.34 It im-
lies that the substantial yet structured variability of
iological movements is not due to sloppiness, but
n the contrary, is a signature of an exceptionally
ell-designed sensorimotor system.

igure 2. Properties of optimal feedback controllers in re-
undant tasks �reprinted from Ref. 10�.



The hierarchical nature of the optimal controller
is evident in Figure 2: u1 ,u2 are coupled, and equal
to some function of x1+x2 rather than being func-
tions of the individual state variables x1 ,x2. In the
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erminology of Figure 1, the high-level state is y
x1+x2, the high-level control is v= f�y�, and the vec-

or of actual control signals is u= �v ;v�. In more com-
lex tasks, our analysis has shown that the optimal
ontrol law still has this property, but for a high-
evel state y which may not be easy to guess. This is
ecause y is related to the shape of the optimal value
unction �defined as the sum of future costs under an
ptimal control law� rather than the cost function,
nd the optimal value function is hard to compute.
evertheless, these results11,12 provide strong moti-

ation for hierarchical approximations to optimal
ontrol in redundant tasks.

.2. Empirical Illustration of Structured Motor
ariability

elective control of task-relevant parameters—which
s a signature of both optimal feedback control and
ierarchical control schemes—implies increased
ariability in task-irrelevant parameters. This phe-
omenon is illustrated here with data from the fol-

owing experiment. Six subjects were asked to move
epeatedly between three targets attached to their
ody �one target on each leg, and one on the left
pper arm�. Subjects held a 25 cm wooden pointer in

heir right hand, and always used the same tip �TIP
� to touch the center of the targets. We measured
he position and orientation of the center of the
ointer with a Polhemus Liberty sensor �240 Hz
ampling rate�, which allowed us to calculate the po-
itions of both TIP 1 and TIP 2. The experimental
etup is shown in Figure 3�a�. The goal of the experi-
ent was to quantify the positional variance of the
ovement paths.

The data were analyzed as follows. The start and
nd times of each movement were found using a
elocity threshold, applied when TIP 1 was within
0 cm of a target. Outlier movements, that failed to
each within 10 cm of their target, were eliminated.
ach movement was resampled in space, at equal

ntervals with length 2% of the total path length for
hat movement �this resampling is needed to sup-
ress temporal misalignment�. The mean and cova-
iance for each sample point were computed, sepa-
ately for each subject and movement target.
ositional variance was defined as the trace of the
ovariance matrix. The means and covariances were
hen averaged over subjects, and plotted in Figure
�b� �±1 standard deviation ellipsoids are shown at
5% intervals�. To facilitate comparison, we further
veraged over the three targets and plotted the po-
itional variances of the two tips of the pointer in
igure 3�c�.

The main result shown in Figure 3�c� nicely il-
ustrates the typical structure of motor variability.
he position of the task-relevant TIP 1 is less vari-
ble than the task-irrelevant TIP 2. Furthermore,

igure 3. Experimental illustration of increased variabil-
ty in redundant dimensions.



both variances are smaller in the task-relevant por-
tions of the movement �when the pointer approaches
the target� compared to the middle of the move-
ment. The latter effect is much stronger for the task-
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elevant TIP 1.
These observations make it clear that the ner-

ous system is not using the classic robotics
pproach—which is to plan a trajectory in joint
pace, and then execute that trajectory using some
ombination of computed torque and servo control.
his is not surprising. Since a joint-space trajectory
lan contains no information regarding task rel-
vance, the execution system would have no choice
ut to track faithfully all details of the plan—

ncluding the irrelevant ones. This would result in
ncreased energy consumption, and increased errors
ue to control-dependent noise.

. HIERARCHICAL CONTROL FRAMEWORK

ey to our framework is the low-level controller
„v ,x…—whose design we address first, assuming

hat the high-level parameters y„x… and their desired
ynamics have been given. We pay specific attention

o the case when the controls u do not affect the high-
evel parameters y instantaneously. We then discuss
ow the desired y-dynamics can be adapted to the
atural plant dynamics, and how the high-level con-

roller v„y… can be designed using optimal control
echniques.

.1. Low-Level Controller Design

onsider the dynamical system

ẋ�t� = a�x�t�� + B�x�t��u�t� , �1�

here x�Rnx is the state vector, u�Rnu is the control
ector, a„x… are the passive dynamics, and B„x…u are
he control-dependent dynamics �assumed linear in
he control�. We are interested in controllers that
chieve low cumulative cost, for a cost-per-step
unction of the form

��t,x�t�,u�t�� = q�t,x�t�� + r�u�t�,x�t�� . �2�

he high-level state vector y�Rny, ny�nx, is a static
unction of the plant state:
lied by the user. What we provide is a way to “con-
rol” y, that is, to generate controls u which affect x
n such a way that the corresponding changes in y
re as desired. We assume that y contains enough
nformation to compute the state-dependent cost
�t ,x�; in other words, there exists a function q̃ such
hat

q̃�t,h„x…� = q�t,x� . �4�

ther than that, the function h should be chosen to
ield the lowest-dimensional representation which
llows satisfactory control. Different choices of h
ill be explored later. The control cost r„u ,x… cannot

e represented exactly on the high level, because it
ypically contains independent contributions from
ll components of u. This is the reason why the pro-
osed hierarchical scheme is only an approximation

o optimal control.
Differentiating Eq. �3� w.r.t. t and using Eq. �1�,

he dynamics of y become

ẏ = H�x��a„x… + B„x…u� , �5�

here H„x…=�h„x…/�x is the Jacobian of the function
. Note that y will often contain more information

han end-effector position.
Our design method seeks to create an aug-

ented system with prescribed high-level dynamics

ẏ = f„y… + G„y…v , �6�

here v�Rnv is the high-level control signal gener-
ted by some high-level controller. The functions
,G define the meaning of the high-level control v,
s discussed later. For now, we simply assume that
,G are some known functions.

The low-level controller design problem is the
ollowing: choose u„v ,x… so that the prescribed �Eq.
6�� and actual �Eq. �5�� y dynamics are identical;

hen multiple solutions exist, use the control cost
„u ,x… to resolve redundancy. The control u is thus
efined at each time t as the solution to the follow-

ng constrained optimization problem:



given v and x, find u that minimizes
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H�x�B„x…u = f„y… + G„y…v − H„x…a„x… . �7�

n addition to the above equality constraint, we can
ncorporate inequality constraints on u. The latter are
articularly important in biological movement con-

rol where muscle activations are always non-
egative. For a general r„u ,x…, problem �7� has to be
olved numerically at each time step �using Sequen-
ial Quadratic Programming, or another efficient

ethod�. Since the solution is likely to be similar from
ne time step to the next, we can use the current so-

ution to initialize the search for the next solution.
In practice, the control cost will normally have

he quadratic form

r„u,x… =
1
2

uTR„x…u , �8�

here R„x… is a symmetric positive-definite matrix
often proportional to the identify matrix�. When
„u ,x… is in the form �8�, and control inequality con-
traints are absent, we can solve Eq. �7� explicitly.
he solution relies on the following fact:

the minimum of
1
2

uTWu subject to Xu = c is

u = XW
† c . �9�

he weighted pseudo-inverse is defined as

XW
† = W−1XT�XW−1XT�−1, �10�

here W is symmetric positive definite, and X has
ull row rank. Note that XI

† is the Moore–Penrose
seudo-inverse XT�XXT�−1; in that case we use the
horthand X†.

Applying this to problem �7� for a cost in the
orm �8�, and assuming that H„x…B„x… has full row-
ank �a condition which will we return to�, the
nique solution is
n case of inequality constraints on u, we cannot ob-
ain an explicit solution, and have to resort to nu-

erical optimization. But the quadratic form �8� of
he control cost allows us to use Quadratic
rogramming—which is numerically very efficient
hen the cost is convex.

Another form of cost function, that can be used
n the low level to resolve redundancy, is

r„u,x… =
1
2

uTR„x…u + „a„x… + B„x…u…

T�xg„x… . �12�

he new term encourages movement against the
radient of some potential function g„x…. With this
„u ,x… problem �7� can still be solved explicitly, us-
ng the following fact:

the minimum of
1
2

uTWu + uTd subject to Xu = c is

u = � X

NX
TW

�−1� c

− NX
Td

� = XW
† c − NX�NX

TWNX�−1NX
Td ,

�13�

here NX is a matrix whose columns form an ortho-
ormal basis for the null space of X. Note that solving

he system �X ;NX
TW�u= �c ;−NX

Td� with a linear solver
s numerically preferable to explicit computation of
he pseudo-inverses in Eq. �13�. A similar point has
een made in Ref. 35 regarding velocity control meth-
ds.

Applying Eq. �13� to our problem in the case
hen control inequality constraints are absent, and

uppressing the functional dependencies for clarity,
e have

u = �HB�R
†
„f + Gv − Ha…

− NHB�NHB
T RNHB�−1NHB

T BT�xg . �14�

n comparison to Eq. �11�, the controller in Eq. �14�
as an extra term acting in the redundant subspace
here variations in x do not affect y. Thus g„x… can

e used to modify the behavior of the controlled sys-
em in that subspace; the choice of g„x… is presently
eft to the user.



An alternative way of computing u„v ,x… is to
transform the above constrained optimization prob-
lem into an unconstrained one, and use a mixed cost
that absorbs all constraints. Let c„u ,x… be a potential
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unction replacing any control inequality constraints:
„u ,x…=0 when u satisfies those constraints and
„u ,x…�0 when it does not. Then we can define u at
ach time t as the solution to the following uncon-
trained optimization problem:

given v and x, find u that minimizes

�1�f„y… + G„y…v − H„x…a„x… − H„x…B„x…u�2 + �2c„u,x…

+ r„u,x… . �15�

he constants �1 ,�2 set the relative importance of sat-
sfying constraints versus minimizing energy. For
arge �’s the solution to this problem is numerically
ndistinguishable from the solution to the con-
trained problem, in the case when all constraints can
e satisfied. However, the advantage of Eq. �15� is
hat it applies even when the constraints on u cannot
e satisfied—which can happen when H„x…B„x… be-
omes row-rank deficient, or when the high-level
ontrol v calls for a low-level control u exceeding its
llowed range.

.2. Dynamic Compatibility Between Levels
f Control

potential problem with the above method is lack
f “dynamic compatibility” between the two levels.
his occurs when ẏ does not explicitly depend on u,
nd leads to H„x…B„x…=0. For example, suppose y is
nd-effector position, v is end-effector velocity, and
is joint torque. This is problematic because torque

annot affect velocity instantaneously. However
orque has a predictable effect when applied over
ime, suggesting that the “instantaneous” a ,B
hould be replaced with functions ã , B̃ incorporating
emporal prediction. Next we present a method for
oing so.

Consider the discrete-time representation of sys-
em �1� with time step �:

x�t + �� = x�t� + ��a�x�t�� + B�x�t��u�t�� . �16�

e now analyze this system within a single step,
rom time t to time t+�. Define the shortcut notation
�=x�t+��, �� �0,��, so that x0=x�t�. The control
a�x�� � a�x0� + A�x� − x0�, A = 	 �a„x…

�x
	

x = x0

.

�17�

hen, we have continuous dynamics

ẋ� = Ax� + �a„x0… + b − Ax0� , �18�

here the term in the brackets is constant. In the
ase when x ,a ,b ,A=a��x0� are scalar, we can solve
his initial-value ODE analytically, and after some
earrangement obtain

x� = x0 +
exp��a��x0�� − 1

a��x0�
�a�x0� + b� . �19�

his scalar result indicates that in the vector case we
an expect a similar solution involving a matrix ex-
onential and an inverse, and we can also expect
omplications when A is singular.

We will now solve Eq. �18� in the vector case, by
erforming Euler integration in n smaller time steps
f duration d=�/n each, and then taking the limit
→�. Each step k�n is in the form

xd�k+1� = �I + dA�xdk + d„a„x0… − Ax0 + b… . �20�

pplying this recursion n times, and noting that
dn=x�, we have

x� = �I + dA�nx0 + �I + �I + dA� + ¯

+ �I + dA�n−1�d„a„x0… − Ax0 + b… . �21�

sing the identity �I+X+ ¯ +Xn−1��X− I�= �Xn− I�
long with dAx0= ��I+dA�− I�x0, the above equality
implifies to

x� = x0 + �T��A,n��a�x0� + b� , �22�

here the matrix function T is defined as



T�X,n� =
1
n

I + 
I +

X
n
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X
n
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hen X is invertible, T further simplifies to

T�X,n� = 

I +
X
n
�n

− I�X−1. �24�

n the limit n→�, the identity limn→��I+X/n�n

exp�X� can be used to obtain

T�X,�� = �exp�X� − I�X−1. �25�

hen X is singular we can approximate T�X ,�� by
ither adding �I to X and applying Eq. �25�, or by
sing T�X ,n� evaluated with a large n. Numerically,
e have found that T�X ,n� converges even for sin-

ular X, although we do not have a closed-form so-
ution in that case.

Switching back to continuous notation, we have
he following modified integration scheme:

x�t + �� = x�t� + �T��A,���a�x�t�� + B�x�t��u�t�� ,

�26�

hich differs from Euler integration �16� only by T.
his motivates the construction of the “predictive”
ynamics ã , B̃ from the following condition: Euler

ntegration �16� with ã , B̃ should be equivalent to the
odified scheme �26� with the original a ,B. This

ondition is satisfied by

ã„x… = T��A,��a„x… ,

B̃„x… = T��A,��B„x… . �27�

Explicit integration of the functions ã , B̃ re-
embles implicit integration of the original a ,B. To
ee the relationship to implicit integration, consider
he implicit Euler scheme

x� = x0 + �„a�x�� + b… , �28�

here x� is now the unknown in a nonlinear equa-
ion. One way to approximate the solution is to lin-
arize a around x0 as we did before, yielding
ng by �I−�A� , the solution is

x� = x0 + �T̄��A�„a�x0� + b… , �30�

here the matrix function T̄ is defined as

T̄�X� = �I − X�−1. �31�

his is very similar to Eq. �22�, except that T̄ now
eplaces T. However Eq. �25� is preferable to Eq. �31�,
ecause it captures the exact solution of the linear-

zed ODE �18� while the implicit Euler method relies
n a finite-difference approximation. Note that im-
licit integration is in general more stable and accu-
ate, so the functions ã , B̃ can be used instead of a ,B
ven when dynamic compatibility is not an issue.
heir only drawback is the increased computational
ost per step—which may be offset by the larger
ime steps that implicit integrators can safely take.

Here is a simple example of how Eq. �27� can
nforce dynamic compatibility. Suppose p and v are
he position and velocity of a one-dimensional point

ith mass 1, and u is the applied force, so that v̇
u. The plant state is x= �p ;v�. Let the high-level

tate be y=p. Then, the dynamics functions are
„x…= �v ;0� and B= �0;1�. Therefore, H=�y/�x
�1,0�, and so HB=0. To apply Eq. �27�, we first

ompute A=�a/�x= �0,1 ;0 ,0�. Numerically
��A ,�� converges to the matrix �1,�/2;0 ,1�. Thus

he modified dynamics are ã„x…=a„x… and B̃
��/2;1�, yielding HB̃=�/2. The fact that HB̃�0
akes it possible to design the low-level controller

sing Eq. �11�.

.3. High-Level Dynamics and Cost Models

t is clear from Eq. �11� that as long as H„x…B„x… has
ull row-rank, we can choose f ,G arbitrarily and
hereby instantiate whatever high-level dynamics

e desire. But what should we desire? One possibil-
ty is to choose f„y… linear and G„y… constant—which
ields linear y dynamics, and is related to feedback

inearization as discussed below. However we be-
ieve that the y dynamics should mimic the x dy-
amics to the extent possible, so that the high-level
ontroller can exploit the natural plant dynamics



while operating on a lower-dimensional system.
Matching the passive dynamics in Eqs. �5� and �6�
yields
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f„h„x…… � H„x…a„x… . �32�

atching the control-dependent terms in Eqs. �5�
nd �6� yields

G„h„x……ṽ„u,x… � H„x…B„x…u , �33�

here the function ṽ„u ,x… remains to be defined. In
ddition, optimization of the high-level controller
ill be facilitated if the cost function can be captured

n the high level. The state-dependent cost term
�t ,x� is by definition computable given y=h„x…, but
e would also like �an approximation to� the control

nergy term r„u ,x…. This requires a function r̃ such
hat

r̃„ṽ„u,x…,h„x…… � r„u,x… . �34�

Functions f ,G , r̃ that approximately satisfy Eqs.
32�–�34� can be constructed by choosing a suitable
arameterization �basis functions, neural networks,
tc.�, collecting data, and fitting a model using su-
ervised learning procedures. The dataset consists of
bservation pairs �x�k� ,u�k��, where u�k� is the signal
enerated by some existing controller when the
lant is in state x�k�. Given x�k� and u�k�, we can com-
ute learning targets for f ,G , r̃ by evaluating the
ight hand sides of Eqs. �32�–�34�. Thus the applica-
ion of supervised learning is straightforward—as
ong as we define the function ṽ„u ,x…. This function
orresponds to the meaning of the high-level control
ignals, and should be chosen using physical intu-
tion. For example, if u is joint torque and y is end-
ffector position and velocity, ṽ„u ,x… could be either
nd-effector acceleration or force. In the former case

will be constant and will not capture anything
bout plant dynamics. In the latter case, G will be
elated to inverse inertia in end-effector space. Re-
ardless of how we choose the function ṽ, after

earning we will have ṽ„u„v,x… ,x…�v. Note that
henever the functions f ,G change �through learn-

ng or otherwise� the low-level controller must be
edesigned.

It is interesting to ask under what conditions
qs. �32�–�34� can be satisfied exactly. We focus on

he passive dynamics �32�, which do not depend on
ur choice of ṽ„u ,x… and are also likely to be the
ost worthwhile fitting. Since x→y is a many-to-
H„x1…a„x1… = H�x2�a�x2� whenever h„x1… = h„x2… .

�35�

efine the set M�x0�= ˆx :h„x…=h„x0…‰ and suppose h
s such that M is a smooth manifold. This is the
edundant �or uncontrolled� manifold where the
lant state x can fluctuate without affecting the high-

evel state y. If the passive dynamics act within this
anifold, i.e., a„x…�TxM†x‡, then H„x…a„x…=0 and

q. �35� is trivially satisfied. Therefore, Eq. �35� can
nly be violated by the component of the vector field
normal to M. In particular, note that the row vec-

ors of the matrix H„x… span the subspace normal to
†x‡, and so H„x…a„x… is a form of projection of the

ector field in the normal subspace. For nonlinear
„x… this projection is difficult to understand because
„x… varies with x, but in the linear case h„x…=Hx

ondition �35� becomes

H�a„x1… − a„x2…� = 0 whenever H�x1 − x2� = 0.

�36�

he latter condition has a simple interpretation: if
he difference between two states lies within the re-
undant subspace, then the difference in the passive
ynamics between these states should also lie within

he redundant subspace.

.4. High-Level Controller Optimization

high-level dynamics model together with an �ap-
roximate� high-level cost model lead to an optimal
ontrol problem formulated on the high level. This
roblem can be solved via standard techniques, or
ia a new implicit method �see below� that is specific
o hierarchical control schemes.

While a survey of standard techniques for opti-
al controller design is beyond the scope of this pa-

er, three points are in order. First, mapping the
riginal control problem to the high level reduces
imensionality, and thereby facilitates the applica-

ion of numerical methods for optimal control that
uffer from the curse of dimensionality. Second, a
igh-level dynamics model is required in order to
esign the low-level controller, even if the high-level
ontroller is built via model-free methods �such as
roportional-derivative control, or reinforcement



learning�. Third, it may be advantageous to use it-
erative design: Start with some high-level model, de-
sign the two-level control scheme and apply it, use
the resulting data to fit a high-level model more
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ompatible with the plant dynamics, and iterate. The
eed to iterate comes from the fact that the approxi-
ation �Eqs. �32�–�34�� depends on what regions of

he state and control spaces are visited, and that in
urn depends on what controller is being used dur-
ng data collection.

In addition to standard techniques, the hierar-
hical framework allows a novel implicit method for
ptimal controller design. In this method, the pas-
ive dynamics are no longer modeled explicitly on
he high level and the discrepancy between f„y… and
„x…a„x… is no longer compensated on the low level.

nstead, the high-level controller is given online ac-
ess to H„x…a„x… and is responsible for dealing with
hat term. The constraint in Eq. �7� simplifies to
„x…B„x…u=G„y…v, and the low-level controller
iven by Eq. �11� now becomes

u„v,x… = �H„x…B„x…�R„x…

† G„y…v . �37�

hen condition �35� is violated the input-output be-
avior of the augmented plant resulting from Eq.
37� is no longer autonomous in terms of y, but in-
tead can depend on the specific value of x—because
„x…a„x… can vary while y remains constant. In that

ase f„y… can still be computed as long as the plant
tate x is known. But how can we know x when
→y is a many-to-one mapping? We cannot if all we
re given is an arbitrarily chosen y. However, sup-
ose that we reached y by initializing the plant in
ome state x�0�, applying some high-level control se-
uence v�t�, computing the low-level controls from
q. �37�, and integrating the plant dynamics. Then
e always have a unique underlying state x. Implicit

omputation of f„y… can be used in conjunction with
rajectory-based methods for optimal control—such
s ODE methods,36 differential dynamic
rogramming,37 or the iterative linear-quadratic-
aussian method38 we have developed �illustrated

ater�. This modified version of our hierarchical
cheme is likely to yield better performance, but
omes at the price of not having an explicit high-
evel controller v„y… that is independent of the initial

and its trajectory. When condition �35� is satisfied,
nd an exact passive dynamics model f„y…

H„x…a„x… is available, the implicit method does not
mprove performance.
everal existing approaches are related to ours. Some
re related only in spirit �and are summarized first�,
hile others allow formal comparisons developed in

he subsections below.
In reinforcement learning, researchers have at-

empted to alleviate the curse of dimensionality via
utonomous low-level control policies8,9 that solve
pecific subproblems over time �such as exiting a
oom in a maze�. In contrast our low-level controller
erforms an instantaneous feedback transformation
f plant dynamics, and is continuously driven by
igh-level commands. We believe this is more appro-
riate for control of complex redundant manipulators

and is a more plausible model of biological sen-
orimotor control� while hierarchical reinforcement
earning is more appropriate for non-articulated
agents” solving navigation problems.

In control theory, there is increasing interest in
ybrid systems39–41 with continuous low-level dy-
amics and discrete event-driven high-level dynam-

cs. In contrast, the high-level dynamics we instanti-
te are continuous. Consider for example a walking
echanism. Our framework can be applied to yield

ugmented dynamics in terms of the center-of-mass
nd feet positions. The resulting high level could be
urther decomposed via a hybrid systems approach,

ith ground contacts being the discrete events. Thus,
he two approaches are in some cases complemen-
ary, and a closer examination of the link between
hem is needed.

In robotics, examples of hierarchical control in-
lude the subsumption architecture5 as well as virtual
odel control.42 The latter is similar to our approach

n terms of overall strategy—which is to design high-
evel feedback controllers without considering the
ull details of the plant. However virtual model con-
rol is a kinematic method: It maps forces produced
y virtual actuators into real actuator commands, and
oes not exploit knowledge of plant dynamics. An-
ther difference is that the high-level controller de-
ign is intuitive rather than model based, and further-
ore a model of high-level dynamics independent of

he specific high-level controller is not available. Fi-
ally, virtual model control takes dynamic compat-

bility for granted and does not readily apply to bio-
echanical systems with higher-order dynamics.



4.1. Feedback Linearization

There are interesting parallels between our method
and feedback linearization �FL�—which is one of the
f 21,22
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ew general methods for nonlinear control. For
omparison purposes, we first give a brief summary
f input-output FL in the single-input-single-output
ase. Consider the system

ẋ = a„x… + b„x…u ,

y = h„x… , �38�

here the control u is now called “input”, the high-
evel state y is “output”, the high-level control v is
external reference input”, and u ,y ,v are for simplic-
ty scalar. Define the Lie derivative of a function h„x…

ith respect to a vector field a„x… as the directional
erivative of h along a:

Lah =
�h„x…

�x
a„x… . �39�

ystem �38� is said to have relative degree r in a re-
ion D if for all x�D, we have

LbLa
kh„x… = 0 for all k � r − 1,

LbLa
r−1h„x… � 0. �40�

hen the low-level control law �called “state feedback
ontrol”� given by

u�v,x� =
1

LbLa
r−1h„x…

�v − La
rh„x…� �41�

ields linear y dynamics of the form y�r�=v, where y�r�

s the rth-order time derivative of y.
To see the similarity to our method, note that

efinition �39� implies Lah�x�=H„x…a„x… and simi-
arly for Lb. Now, in the case r=1 we have La

r−1h=h,
nd the control law �41� becomes

u�v,x� =
1

H„x…b„x…

�v − H„x…a„x…� �42�

hich is identical to our control law �11� for pre-
cribed high-level dynamics f�y�=0, G�y�=1 and
is to make it low-dimensional yet similar to
the x dynamics. Our method can instantiate
any desired y dynamics.

• The dynamic compatibility problem dis-
cussed above corresponds to a system with
relative degree greater than one. FL handles
this case by augmenting y with its first r−1
derivatives. We could do the same, but that
may defeat the purpose of our method be-
cause dimensionality is increased. Instead,
we prefer to use the predictive version ã , B̃ of
plant dynamics.

• Most of FL theory is developed for systems
with equal numbers of inputs and outputs,
while redundant manipulators tend to have
many more inputs than task-relevant out-
puts. Our method does not impose any such
restriction. We deal with the mismatch in di-
mensionality by formulating an optimization
problem—which yields a weighted pseudo-
inverse solution.

• There is an important step in FL which was
omitted in the above summary. It has to do
with finding an explicit parameterization of
the redundant manifold M defined above.
Such a parameterization is analytically inter-
esting, but does not facilitate the design of a
high-level controller �and the low-level con-
troller has already been designed�.

.2. Operational Space Formulation

ur framework also turns out to have a number of
nteresting similarities and differences with the op-
rational space �OS� formulation6—which is another
ierarchical scheme aiming to decouple task-level
ontrol from details of plant dynamics. For compari-
on purposes, we summarize the OS scheme here.
et q be the generalized coordinates of a redundant
anipulator. The end-effector coordinates p are re-

ated to q by the forward kinematics function p
k„q…, with Jacobian J„q…= �k„q… � �q . The equations
f motion are

� = M„q…q̈ + n„q,q̇… , �43�

here M„q… is the �symmetric positive-definite� gen-
ralized inertia matrix, and n are Coriolis, centrip-



etal, gravitational, and viscoelastic forces. The end-
effector inertia matrix is

	„q… = �J„q…M„q…

−1J„q…

T�−1. �44�
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he OS low-level controller maps desired end-
ffector accelerations p̈* to generalized forces � as

� = J„q…

T	„q…„p̈* − J̇„q…q̇… + n„q,q̇… . �45�

he OS scheme leaves the high-level controller
nspecified—as long as that controller can issue de-
ired end-effector accelerations. The high-level dy-
amics correspond to a point mass �p̈= p̈*�, therefore,

he operational space formulation is an instance of
eedback linearization.

Let us now apply our method to the same plant.
ote that our method is formulated using general
rst-order dynamics, and so the plant state contains
oth generalized coordinates and their derivatives.
e have x= �q ; q̇�, y= �p ; ṗ�, and, therefore,

h„x… = � k„q…

J„q…q̇
� . �46�

he second row in the above equation comes from
he identity

ṗ = J„q…q̇ . �47�

he Jacobian of h differs from the Jacobian of the
orward kinematics function, and is given by

H„x… = � J„q… 0

�

�q
�J„q…q̇� J„q…  , �48�

here the above partial derivative term can be writ-
en as J̇„q…. This is because

�

�q
�J„q…q̇� =

�

�q

 �k

�q
dq
dt � =

�

�q

dk

dt
�

=
d
dt

 �k

�q
� =

d
dt

�J„q…� = J̇„q… . �49�

From Eq. �43�, the passive and control-
ependent plant dynamics expressed in first-order

orm are
uppose the prescribed high-level dynamics corre-
pond to a point mass „p̈=v… so that

f„y… = �ṗ

0 �, G„y… = �0

I � . �51�

et R„x…=I, so the control cost is uTu/2. Then the
onstraint in Eq. �7� becomes

� 0

J„q…M„q…

−1�u = �ṗ

v
�

− � J„q…q̇

J̇„q…q̇ − J„q…M„q…

−1n„q,q̇…

� .

�52�

he first row is always satisfied because of Eq. �47�.
hus, the effective constraint on u is given by the
econd row of the above equation. Replacing the
eneral u ,v with their specific to this example val-
es � , p̈*, the solution produced by our method is

� = �J„q…M„q…

−1�†
„p̈* − J̇„q…q̇+J„q…M„q…

−1n„q,q̇…… .

�53�

o make the relationship to the operational space
ormulation more explicit, we omit the dependence
n q for clarity, and observe that the definition of the
eighted pseudo-inverse implies �JM−1�†=MJM2

† and
T	=MJM

† . The two methods can then be rewritten as

operational space: � = MJM
† �p̈* − J̇q̇� + n ,

hierarchical control: � = MJM2
† �p̈* − J̇q̇�

+ �JM−1�†�JM−1�n . �54�

he overall form is very similar, but there are two dif-
erences. First, the torques n„q , q̇… are fully cancelled
n the OS method, while our method only cancels the
omponent acting in end-effector space. Second, the
acobian pseudo-inverses being used are weighted
ifferently �see next section�. Note that when J is in-



vertible, both formulas reduce to the inverse dynam-
ics �43�, and map desired accelerations to forces. To
see this, differentiate �47� to obtain J„q…q̈= p̈− J̇„q…q̇.

Despite the similarity, our framework is more
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eneral than the operational space formulation—in
wo ways that are obscured by this example. First, it
an handle systems other than second order, without
ny modification. Indeed, we will later illustrate the
ontrol of a third-order system �a model of the hu-
an arm�. Second, our framework is not constrained

o point-mass high-level dynamics in the form �51�,
ut can be used with other high-level models that
re better adapted to the natural plant dynamics. Be-
ow we will see an example where adapting the
igh-level dynamics makes a difference in terms of
erformance.

.3. Kinematic Redundancy Elimination

number of kinematic planning methods that map
esired end-effector velocities into joint velocities
ave been studied. Such methods start from the

dentity �47� and look for ways to invert J�q�. The
ajority of available methods lead to solutions of

he form

q̇ = J„q…W„q…

† ṗ*, �55�

nd can be interpreted as minimizing q̇TW„q…q̇/2
ubject to the constraint �47�. We will explore nu-
erically three such pseudo-inverses:

Moore–Penrose: W„q… = I,

Dynamically consistent: W„q… = M„q… ,

Impedance control: W„q… = I −
�

�q
�J„q�Tf� ,

f = �J„q…

T�†
„q0 − q… .

�56�

he Moore–Penrose pseudo-inverse minimizes joint
elocity, while the “dynamically consistent” one
inimizes kinetic energy.43 The pseudo-inverse la-

eled “impedance control” minimizes a quantity that
oes not have a name, but has an integrability prop-
rty which yields repeatable joint motion.44 In our
Note that the dynamically consistent pseudo-
nverse JM

† also appears in the operational space for-
ulation �despite the fact that the OS controller is

riven by desired accelerations rather than desired
elocities�. Instead of JM

† , our method as shown in
q. �54� involves the pseudo-inverse JM2

† . If one were
o apply Eq. �55� using our pseudo-inverse, that

ould correspond to minimizing q̇TM„q…
2q̇/2

�M„q…q̇�2/2—which is the vector norm of the gen-
ralized momentum. However, we hesitate to pro-
ose this or any other method for kinematic redun-
ancy elimination, because we do not believe that
edundancy elimination during planning is a good
dea in the first place.

Mapping desired end-effector velocities to joint
elocities has traditionally been used for open-loop
lanning. In contrast, our method makes it possible

o perform closed-loop control with end-effector ve-
ocity as the high-level control signal. All we have to
o is redefine y as y=p, while the plant is still x
†q ; q̇‡. Now h„x…=k„x… and so H„x…= �J„q… ,0�. The
rescribed high-level dynamics are f„y…=0, G�y�=I,
nd the plant dynamics are the same as in Eq. �50�.
n this case, we have a dynamic compatibility prob-
em: H„x…B„x…=0, and so in order to apply our

ethod, the functions a ,B have to be replaced with
heir predictive form ã , B̃.

. NUMERICAL SIMULATIONS

.1. Comparison to Robotic Control Methods

ur method was compared to existing methods in
obotics on a family of robotic manipulators �Figure
�a��, which were simulated with the Matlab Robot-
cs Toolbox.45 The manipulators had between 2 and
0 hinge joints and moved in the plane. The kine-
atics were scaled so that all links of a given ma-

ipulator were equal in length, and the end effector
filled circle� was 1 m away from the base in the
hown configuration. The dynamics were also
caled, so that all links had the same mass and the
um of all link masses was 1 kg. Material density
as kept constant, and set so that a 1 m cylindrical

ink with diameter 0.1 m had mass 1 kg. The link
iameter for each manipulator was computed given
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he constraint on total mass and the fixed material
ensity. Link inertia was then found assuming uni-

orm density.
We compared the three kinematic methods

iven in Eq. �56� and the two dynamics methods
iven in Eq. �54�, as follows. A database of joint po-
itions q and joint velocities q̇, along with desired
nd-effector accelerations p̈*, was generated ran-
omly. For each manipulator, the database had
0,000 entries sampled uniformly from qi� �−
 ,
�,

˙ i� �−1,1�, p̈i
*� �−10,10�. Each method was used to

ompute a torque � that yields end-effector accelera-
ion p̈* when the plant is in state �q ; q̇�. The dynamic

ethods �54� perform that computation directly. Us-
ng the kinematic methods �56� is more complicated,
ut possible. We first computed the current end-
ffector velocity ṗ from Eq. �47�, and the desired ve-
ocity at a time �=0.01 s later as ṗ*���= ṗ+�p̈*.
hen, ṗ*��� was mapped to q̇*��� using each kine-
atic method, the desired joint acceleration was

omputed as q̈*= „q̇*���− q̇…/�, and used in the in-
erse dynamics Eq. �43� to obtain the torque �. De-

Figure 4. Comparison of control method
pite this complication, both kinematic and dynamic
ethods achieved the desired end-effector accelera-

ion in the absence of noise.
We compared two indices of performance, aver-

ged over the entire database for each manipulator.
he first index was control energy �Figure 4�b��. In

he nonredundant case �degress of freedom �DOF�
2� all methods are identical, but as redundancy in-
reases we see clear differences. The dynamic meth-
ds outperform the kinematic ones, and in particular
ur method �hierarchical control� outperforms all
thers. The second index is the error in end-effector
cceleration, caused by control-multiplicative noise
njected in the computed torque: �i

actual= �1
0.1�i��i

computed, where �i�N�0,1�. The results in
igure 4�c� are not identical to Figure 4�b�, despite
he fact that noise is proportional to torque, because
he nonlinear mapping from torques to end-effector
ccelerations makes a difference. But the rank order
f the five methods remains unchanged.

The above simulations are encouraging—
specially since they do not reflect the full power of
ur method. This is because the version �54� of the

ies on a family of robotic manipulators.
s

olog



method was derived for trivial high-level dynamics
�51�, not adapted to the plant dynamics. The next
example illustrates the advantage of such adapta-
tion. We defined an optimal control problem with
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he following total cost:

�p�T� − p*�2 + w��
t=1

T−1

���t��2, �57�

here p* is the target of a reaching movement ex-
cuted with the 2-DOF manipulator, T=500 is the
umber of time steps, step duration is �=0.001 s �re-
ulting in a 0.5 s movement�, and w=0.0001 is the
eight for the control cost. Targets were 0.3 m away

rom the starting position, in eight equally spaced
irections. This simulation also included gravity

downward direction in the figures�.
We compared the performance of our method,

ith y= †p ; ṗ‡, applied to trivial high-level dynamics
51� versus high-level dynamics adapted to the
lant. The latter were obtained by fitting a linear
ynamical system model to data from the former set
f simulations. The dataset contained entries of the
orm �p , ṗ , p̈ , ṽ ,r�, where ṽ is the end-effector force
˜ = �JJT�−1J�, and r is the control cost r=w����2. There

ere 4,000 such entries, corresponding to the 500
ime steps in each of the eight movement directions.
he model fitting was based on the equations

p̈ = F†p ;ṗ‡ + Gṽ ,

r = ṽTRṽ . �58�

These equations are linear in the unknown ma-
rices F ,G ,R, and therefore can be solved in a least
quares sense via linear regression. The fit accounted
or 87% of the variance in p̈ and 95% of the variance
n r, despite the nonlinear dynamics of the manipu-
ator. Once F ,G ,R were computed, the adapted
igh-level dynamics could be defined as Eq. �58� by
eplacing ṽ with v. The fit also yielded a control cost

odel vTRv on the high level. In case of the trivial
ynamics, that cost model was in the same form but
ith R=w�I. Thus, in both cases we have linear

igh-level dynamics, and quadratic cost

�p�T� − p*�2 + �
t=1

T−1

v�t�TRv�t� , �59�

hich corresponds to a linear-quadratic optimal
ontrol problem. The optimal high-level controller in
ach case was found with standard linear-quadratic
echniques, and the resulting two-level control
cheme was applied to the manipulator.

Results are shown in Figure 5. For the trivial dy-
amics �before learning� the end-effector paths were
traight as expected. For the adapted dynamics �af-
er learning� the paths became systematically
urved. As a result of this strategy, the total cost �57�
as reduced by 23%. The improvement was largely
ue to the adapted controller’s ability to take advan-

age of gravity.

.2. Application to Arm Movements,
nd Comparison to Optimal Control

ere, we apply our method to a model of the human
rm �Figure 6�a��. The details of this model can be
ound elsewhere,46 so we will keep the description
rief. The skeletal kinematics and dynamics are

dentical to the above 2-DOF robotic manipulator
apart from parameter settings�, but the muscle ac-
uators make this model more complex: The dynam-
cs become third order, and the controls become con-
trained. The muscles acting on the human arm in
he horizontal plane can be organized into six actua-
or groups: Shoulder flexors �SF� and extensors �SX�,
lbow flexors �EF�, and extensors �EX�, biarticular
exors �BF�, and extensors �BX�. The tension pro-
uced by muscle i depends on its physiological
ross-sectional area �PCSA� and activation state ai, as
ell as the muscle length and velocity. The substan-

ial length-and-velocity dependence is illustrated in

igure 5. Effects of adapting the high-level dynamics to
he plant dynamics.
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igure 6�a�, for maximal activation a=1. This surface
s based on the Virtual Muscle model,47 which pro-
ides a state-of-the-art fit to a range of physiological
ata. Tensions are multiplied by moment arms to
ield joint torques. Moment arms are posture depen-
ent �Figure 6�a��, in a way consistent with experi-
ental data. They also determine the mapping from

oint positions q and velocities q̇ to muscle lengths
nd velocities. Muscle activation states have first-
rder low-pass filter dynamics ȧi= �ui−ai�/�. The
ontrols ui are constrained to the range �0,1�. The
omplete system has a 10D state vector x
�q1 ;q2 ; q̇1 ; q̇2 ;a1 ; ¯a6� and a 6D control vector u
�u1 ; ¯u6�.

The task is reaching: the arm starts from rest at
q1=
/4, q2=
/2�, and has to reach a specified tar-
et in 0.5 s, with minimal control energy. The cost
er step is

s�t��p�t� − p*�2 + u�t�TRu�t� , �60�

here s�t�=1 when t�0.4 s and 0 otherwise �we
ant the hand to remain stationary at the target for

Figure 6. Comparison to the op
he last 0.1 s�. The diagonal matrix R has entries pro-
ortional to PCSAi—because larger muscles gener-
te more force per unit activation, and therefore con-
ume more metabolic energy. Targets are arranged in
circle with 15 cm radius around the start position.

We designed two hierarchical controllers, for y
p and y= †p ; ṗ‡, respectively. Because of the third-
rder dynamics, our method relied on the predictive

unctions ã , B̃ in both cases. The control inequality
onstraints made the explicit solutions Eqs. �11� and
37� inapplicable, and therefore, the low-level con-
roller used Quadratic Programming at each time
tep to compute u„v ,x…. Instead of modeling the
igh-level dynamics, here we used the implicit
ethod described above �which yields a high-level

eedback controller�. In addition to the two hierar-
hical controllers, we also computed the optimal
eedback controller in each case, using our iterative
inear-quadratic-Gaussian �iLQG� method.38

Figure 6�b� shows deterministic and stochastic
and paths for each controller. Stochastic trajectories
ere simulated by corrupting each control signal

l controller in human reaching.
t
p
a

tima



w
e
t
w
=
t
m
m
N
l
m

t
n
m
t
h
d
T
t
t
e
t
h
p
a

p
a
t
t
p
t
i
c
t
c
a
t

5
S

H
d
m
t
s
h
h

�
a

Todorov et al.: From Task Parameters to Motor Synergies • 707
ith 100% control-multiplicative noise. The differ-
nces on the level of kinematics are small, although
hey increase �especially for the y=p controller�

hen noise is added. Note that although the y
†p ; ṗ‡ controller appears to be more accurate than

he optimal controller, that is not the case—the opti-
al controller allows more variability during the
ovement but reaches the target more accurately.
ote also that the controllers can sustain such a

arge amount of motor noise because we are not
odeling sensory noise and delays.

Figure 6�c� shows the �open-loop� muscle activa-
ions. Each subplot is one muscle-controller combi-
ation. The horizontal axis corresponds to move-
ent direction, while the vertical axis is time during

he movement �increasing downward�. Dark means
igher activation. We now see a much more clear
istinction between the two hierarchical controllers.
he muscle activations found by the y= †p ; ṗ‡ con-

roller are quite similar to the optimal muscle activa-
ions, and furthermore resemble many features of
xperimentally observed muscle activations �but
hat is beyond the scope of the paper�. On the other
and, the y=p controller misses the elaborate tem-
oral pattern of muscle activation, although it still
ctivates the appropriate muscles.

Apart from demonstrating the power and gener-

Figure 7. Internal dynami
lity of the proposed method, these results are im-
ortant with regard to prior models of end-effector
rm movement control.15–20 Our method completes
hese models by going all the way to muscle activa-
ions. It also reveals a problem. The relatively poor
erformance of the y=p controller suggests that con-

rolling hand position through instantaneous veloc-
ty commands is not a good idea—because such
ommands are too far removed from the muscles
hat have to carry them out. In contrast, high-level
ommands related to hand force rather than velocity
fford hierarchical control that is much closer to op-
imal.

.3. Internal Dynamics and Sensorimotor
ynergies

ere, we study a tracking task executed with a re-
undant linear plant. Linearity allows us to look
ore closely at the structure of the hierarchical con-

roller, and compare it to the structure of the corre-
ponding optimal controller. We also explore the be-
avior within the redundant subspace where the
igh-level controller cannot act.

The plant �Figure 7�a�� consists of two points
H,E� with mass 1, driven by three linear muscle-like
ctuators that can both push and pull. Actuator i has

d sensorimotor synergies.
a

cs an



activation state ai and generates force ai−bq̇i−k�qi
− q̄i�, where b=10, k=10 are intrinsic damping and
stiffness, qi is the length of the actuator, and q̄i=0.3 is
the resting length of the spring. We can think of
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and Ko are compared in Figure 7�b� �right�. The simi-
larity in both cases is striking. Note that of these four
vectors, the only one we set manually was H. Then K
was computed automatically by our method, while
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oint H as the “hand,” and point E as the “elbow” of
telescopic linear “arm.” At each time step, we are

iven a target position p*. The task is to track the
arget with the hand. The state vector is x
�q1 ;q2 ; q̇1 ; q̇2 ;a1 ;a2 ;a3 ;1 ;p*�. The constant 1 is
eeded to implement the spring model, and p* is

ncluded in the state because it varies over time.
ote that q3 is not included in the state because q3
q1+q2. The activation dynamics are ȧi= �ui−ai�/�
ith time constant 40 ms. The control vector is u
�u1 ;u2 ;u3�. Tracking is formulated as an optimal

ontrol problem with cost-per-step xTQx+uTRu. We
et R=10−5, and Q=HTH, where H
�1,1 ,0 ,0 ,0 ,0 ,0 ,0 ,−1�. This encodes the tracking
rror �q1+q2−p*�2, where q1+q2 is hand position.
epresenting p*�t� as Brownian motion, the problem
ecomes LQG and can be solved with standard
ethods. The optimal control law is u=L°x, where

° is a 3�9 matrix of optimal feedback gains. L° will
e compared to the hierarchical controller below.

The high-level state is defined as the instanta-
eous tracking error:

y = q1 + q2 − p*. �61�

ote that y=Hx, with H as defined above. The high-
evel dynamics and cost are ẏ=v and y2, respectively.
ecause of the linearity of the plant, the mapping

rom v to u is now linear: u=Kv, where K is com-
uted from Eq. �11�. The optimal high-level control

aw is also linear: v=gy, where the gain g is found
ia LQG techniques. Then the hierarchical controller

s

u = Lx, where L = KgH . �62�

o compare the structure of the hierarchical and op-
imal controllers, we applied singular value decom-
osition to the optimal L° and found that it has sin-
ular values �447.6,1.9,0�—which is essentially rank
. So, we can write the optimal controller as

u = L°x, where L° � K° g° H° �63�

nd K° and H° are the left and right singular vectors
f L° corresponding to the largest singular value.
he elements of vectors H and H° �normalized to
nit length� are compared in Figure 7�b� �left�, and K
° and H° fell out of �nonhierarchical� optimal feed-
ack control. In summary, the structure of the hier-
rchical and optimal feedback controllers can be
ery similar.

This linear “arm” model is interesting because
he augmented plant has internal dynamics: Point E
s free to move without affecting the task outcome.
f course it cannot move arbitrarily, since the actua-

ors have stiffness and damping that couple Points E
nd H. But the high-level controller has no means of
onitoring and correcting the trajectory of E, be-

ause it sees only the trajectory of H. To explore the
nternal dynamics, we applied both the hierarchical
nd optimal control laws, with 100% control-
ultiplicative noise. Figures 7�c� and 7�d� show the

rajectories of Points H and E. While the “hand” H
racks the target reliably, the “elbow” E exhibits sub-
tantial variability for both controllers. The lack of
ontrol over E may seem undesirable, but in fact
here is nothing undesirable about it—or else the op-
imal controller would not allow E to fluctuate. If we
eally want E to follow a certain trajectory, we
hould be honest about that fact and encode it in the
erformance criterion. Since the performance crite-
ion for this task is not affected by E, we cannot
lame our controller for failing to accomplish some-
hing we did not ask for. On the contrary, we should
e pleased that it closely resembles the optimal con-
roller.

. DISCUSSION

e presented a general framework for hierarchical
eedback control of redundant systems. The design of
he proposed control hierarchy involves: �i� Specify-
ng a set of high-level parameters and their desired
ynamics; �ii� designing a low-level feedback control-

er which yields an augmented plant with the speci-
ed input-output behavior; �iii� designing a high-

evel feedback controller that solves the original
ontrol problem but operates on a simplified system.
ur focus was on automating the design of the two

eedback controllers, as well as the construction of
igh-level dynamics that mimic the plant dynamics.
his provided a way of controlling the specified high-

evel parameters.
The choice of appropriate high-level parameters

s presently an open question, although a few rel-



evant comments can be made. One extreme case
would be to use a scalar performance index as the
only high-level parameter. Then the high-level com-
mands will essentially say “perform better,” but will
n
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