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TO THE EDITOR—In a recent paper in
Nature Neuroscience, Todorov1 referred to
our finding that a motor cortical represen-
tation of hand trajectory during spiral
drawing precedes the hand’s movement by
an interval that varies with path curva-
ture2,3. Although there are several possible
explanations for this finding, Todorov,
using a simplistic model, argued that
because cortical cells share common prop-
erties with muscles, this relationship could
be due to a combination of inertia, viscos-
ity and stiffness acting on the acceleration,
speed and position of the arm, respective-
ly. Although simple, his model is flawed
and cannot support this conclusion.

The author models a multijoint arm
as a simple cantilever that is converted to
single point-mass equation using a Jaco-
bian transformation (web supplement A,
http://www.nature.com/neuro/web_spec-
ials/). The arm’s properties were derived
from a simplified version of muscle whose
activity is a linear combination of motor
cortical activity. This model was used to
reinterpret our results2,3. In our study,
monkeys drew spirals on a vertically ori-
ented computer touchscreen. The center
of the spiral was located in front of the
monkey, between its shoulders. Accord-
ing to Todorov’s model, this location cor-
responded to the equilibrium point of the
arm—the location where the parameters
in his model would force the arm to rest.
Todorov assumed that cortical activity
reflects the inertia, viscosity and stiffness
of the arm and showed that his model
produces the same variable lags as our
cortical population vectors. However, any
acceleration representation in the cortical
activity would actually decrease lags as a
function of curvature, which is exactly
opposite to our finding (web supplement
B, http://www.nature.com/neuro-
/web_specials/).

The increased lag with increasing cur-
vature shown in Todorov’s article is due to
his positional term. The idea that extrinsic
position may be a factor in motor cortical
activity is not new4–6. However, Todorov’s
method of equating extrinsic position rep-
resentation to muscle stiffness is incorrect.
This model assumes that muscle viscoelas-
tic properties are independent of muscle
activation. Thus, even an inactivated mus-
cle will act as a large spring pulling the arm
back to some equilibrium position. In real
muscle, the force–length and force–veloci-
ty relationships are modulated by muscle

to 0.544 for the non-transformed data (P <
0.0001, Wilcoxon’s signed-rank test). This
was anticipated, because the square-root
transformation is expected to make the dis-
tribution of counts more symmetrical. This
transformation is routinely used when ana-
lyzing counts8–10, given the commonly
highly skewed distribution of such data.
Finally, we analyzed the data without any
transformation or smoothing. In this case,
the agreement with the original analysis was
even closer, the average absolute difference
being only 0.86%. We conclude that the
relationship between neural activity and
movement parameters found earlier5 holds
irrespective of the specific transformation
and/or smoothing used. Finally, while we
dealt above with the issue of square-root
transformation because of the more gener-
al importance of this transformation for
analyzing neuronal spike counts, there are
also numerous other points raised by
Todorov1 which we also dispute, including
the force direction/magnitude issue, which
we cannot critically discuss due to space
limitations.

Apostolos P. Georgopoulos and
James Ashe
Brain Sciences Center, Veterans Affairs Medical
Center and Department of Neuroscience,
University of Minnesota Medical School,
Minneapolis, Minnesota 55417, USA
email (A.P.G): omega@tc.umn.edu

REPLY TO MORAN AND SCHWARTZ—Assum-
ing that M1 cells control the activation of
muscle groups, I have previously derived
an equation1 relating the M1 population
vector (PV) to hand kinematics and kinet-
ics. In addition to force and acceleration
terms, this equation includes velocity and
positional terms needed to compensate for
muscle visco-elasticity. The interplay
among these terms offers a simple expla-
nation to several puzzling phenomena1

including the curvature-dependent time-
lag between PV direction and tangential
velocity2,3. The strength of the model is
that multiple phenomena are explained
simultaneously, using the most basic prop-
erties of the musculoskeletal apparatus and
thus avoiding the danger of curve fitting.

Moran and Schwartz claim that the fit
to their data2,3 is somehow an artifact of
the approximation I used, and that the
results will change if additional details are
considered. It is not explained how a first-
oreer approximation could produce such

One motor cortex, two different views
activation such that at zero activation, the
muscle is essentially a non-force producer.
In the real world, the combination of grav-
ity and inactive muscles will force the arm
to fall to the side. In Todorov’s model, the
combined effect of gravity and muscle stiff-
ness on inactive muscles would make the
hand float at mid-chest level; muscle activ-
ity would be required to force the arm
down below chest level. This, of course, is
unrealistic. Viscoelastic models like the
ones used by Todorov are only valid for
perturbation studies where both posture
and neural activity are assumed to be con-
stant. Using such equations to solve for
time-varying muscle activations violates
the basic assumptions of perturbation
models. Simple dynamic models can be
useful to explain arm mechanics. However,
when the models are not consistent with
basic physiology, exclude important phe-
nomena, and violate inherent assumptions,
they cannot be compared to empirical data.

Daniel W. Moran and Andrew B.
Schwartz
The Neurosciences Institute, 10640 John Jay
Hopkins Drive, San Diego, California 92121,
USA
email: dmoran@nsi.edu or aschwartz@nsi.edu

TO THE EDITOR—Here we refute claims by
Todorov1 and Scott7 that the importance of
target direction as an explanatory factor for
cortical activity in a regression analysis we
performed5 is an ‘artifact’ of a square-root
transformation of neural discharge rates.
Specifically, it was touted by Scott7 that
“squaring [sic] the discharge rate of neu-
rons in order to stabilize the variance ...
causes a dramatic increase in the percent-
age of neurons that appear to represent
movement direction (from 17% [sic] to
43% in Todorov’s model).” The data to
which Todorov1 referred concerned the per-
centages of cells for which a particular vari-
able yielded the highest R2 when used alone
in the regression. We re-analyzed these data
using the regression analysis we used pre-
viously5 but without any transformation of
the discharge rate. The results of the two
analyses were practically identical, the aver-
age absolute difference being only 1.9%
(http://www.nature.com/neuro/web_spe-
cials/). However, there was a statistically sig-
nificant improvement of the regression fit
when the square-root transformation was
used. The median R2 for the square-root
transformed data was 0.5811, as compared
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artifacts. The absence of gravity and acti-
vation-dependent stiffness in my model are
discussed at length, without any explana-
tion as to why adding them should change
the results. Unlike hand acceleration, which
is time-varying, the gravitational force is
roughly constant for small variations in
limb configuration. Therefore, its effect is
absorbed in the baseline (defined as 
postural activity in the center of the work-
space). The constant stiffness approx-
imation is reasonable once a certain
activation level is reached11. It is true that
setting stiffness to zero abolishes the time
lag–curvature effect; however, that point is
irrelevant—whether or not muscle stiffness
is constant, it certainly exists and there is
no justification for setting it to zero. To
compensate for muscle stiffness, M1 cells
have to exhibit well-documented position-
al gradients—which, in combination with
the acceleration term, produce the nega-
tive time lag–curvature relationship1.

Moran and Schwartz have only shown
that my model is approximate—which is
very different from being “flawed.” Still, is
it possible that the results are an artifact of
the approximation, for reasons that these
authors did not identify? To assess the sen-
sitivity to previously unmodeled details, I
repeated the analysis using a state-of-the-
art muscle model12 (http://www.nature.
com/neuro/web_specials/). Muscle force
was expressed as a complex function of
muscle length, velocity and stimulation
frequency; this function depends on 19
experimentally derived parameters and
incorporates numerous results from mus-
cle physiology12. For a wide range of para-
meters, the predicted relationship between
PV time lag and path curvature was quan-
titatively similar to the original result1 as
well as to the experimental data2,3. Thus,
when Moran and Schwartz wrote that my
model “is not consistent with basic physi-
ology, excludes important phenomena,
and violates inherent assumptions,” their
concerns were misplaced.

REPLY TO GEORGOPOULOS AND ASHE—In
their letter, Georgopoulos and Ashe address
the issue of whether data preprocessing
affects M1 cell classification. Their results
do not refute my main point1, which is that
previous classification procedures5,13 can be
seriously biased—with or without data pre-
processing. Here I focus on the procedure5

for classifying cells as direction- (D), posi-
tion- (P), velocity- (V) or acceleration-relat-
ed (A) according to the largest R2.

By definition, the bias of a statistical
estimator is the expected difference
between the correct and estimated values

different components of the cell response
are not fixed, but instead increase monot-
onically with the magnitude of the corre-
sponding kinematic and kinetic terms.
Thus a cell classified in one task as ‘veloci-
ty-related’ could become ‘position-related’
in another task if the movement is slow
enough, ‘acceleration-related’ if the move-
ment is fast enough, and ‘load-related’ if a
large enough external load is imposed
(http://www.nature.com/neuro/web_spe-
cials/). Given this sensitivity to task para-
meters, classifying M1 cells according to
the largest component of their response
should perhaps be avoided altogether.

Emanuel Todorov
Gatsby Computational Neuroscience Unit,
University College London, 17 Queen Square
London WC1N 3 AR, UK
email: emo@gatsby.ucl.ac.uk

REPLY—The article by Todorov1 and asso-
ciated letters illustrate clear opinion differ-
ences regarding the function of motor
cortex during goal-directed arm move-
ments. This controversy is partially gener-
ated by the different experimental
protocols used to examine motor cortex
function in non-human primates. The first,
introduced by Evarts, examines single-joint
movements and relates neural activity to
muscle-based or joint-based variables15.
The second, introduced by Georgopoulos,
examines whole-arm movements and
relates neural activity to hand-based vari-
ables16. Practitioners of the former find
correlates of muscle-based or joint-based
variables; practitioners of the latter find
correlates of hand-based variables.

T. S. Kuhn captures the present situa-
tion: “proponents of competing paradigms
practice their trades in different worlds ...
the two groups of scientists see different
things when they look from the same point
in the same direction.”17 With regard to
motor cortex function, neural correlates of
hand direction are seen as evidence by one
group that hand direction is an important
and potentially dominant signal, whereas
the other group views this observation as
an obvious by-product of neural activity
that controls muscles to move the limb.

These differences of opinion are impor-
tant for understanding not only the func-
tion of motor cortex, but also the function
of other cortical and subcortical regions of
the CNS, such as the spinal cord. At the
extremes, the spinal cord could be viewed
as the central location where all decisions
on the details of motor selection are gener-
ated from a simple descending command
specifying the global goal of the task. Alter-

of a given parameter. The identical per-
centages found by Georgopoulos and Ashe
with and without data preprocessing only
prove that, for this particular dataset, the
bias is equal in both cases. The value of this
bias cannot be inferred from their results
(or anything else computed on real data),
because the correct answer is unknown. In
the absence of analytical insight, the only
way to identify the bias of an estimator is
to apply it to synthetic datasets where the
correct answer is known. When applied to
synthetic data1 with no separate direction-
al component, the above classification pro-
cedure finds D 43%, V 39%, P 16%, A 2%
on smoothed square-root-transformed
spike trains, and D 26%, V 56%, P 16%, A
2% on raw binned spike trains (different
from continuous mean firing rates which
were labelled MFR previously1). The effects
of the data transformation (8% on aver-
age) are to be expected in general, and
could exist in other datasets. With or with-
out the transformation, the above per-
centages are very far from the correct
answer: D 0%, V 49%, P 46%, A 5%—that
is, the classification procedure itself is
biased. Thus the burden of proof lies on
Georgopoulos and Ashe. Unless they iden-
tify the exact conditions under which their
procedure is unbiased, and ascertain by
independent means that these conditions
hold for the M1 population, their results
remain hard to interpret.

To gain more insight into why the R2

classification procedure fails, I analyzed the
family of synthetic responses misclassified
as directional (http://www.nature.com/
neuro/web_specials/). These responses do
not look directional: the temporal fluctu-
ations of the underlying position, velocity
and acceleration terms do not cancel out.
The artificially created ‘directional’ region
of parameter space is centered at the point
where the correct classification boundaries
meet. Therfore responses are misclassified
as directional just because they do not fit
well in the other categories. It would be
interesting to re-analyze the data of Geor-
gopoulos and Ashe for that possibility. Do
responses labeled as directional vary only
with movement direction and contain no
systematic temporal fluctuations (which is
how a truly directional cell should behave),
or do they fluctuate over time in ways that
do not happen to fit in any of the alterna-
tive categories? The latter type of response
is more properly labeled ‘unknown’ rather
than ‘directional.’

Finally, this debate obscures a more
fundamental problem1,14 with M1 cell clas-
sification, a problem that remains even if
unbiased procedures are developed. The
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natively, it could be viewed as evolutionary
baggage that simply conducts fully orches-
trated signals generated in higher motor
regions onto motoneurons. As usual, the
truth likely lies in the middle.

Todorov states that many neural corre-
lates of hand-based variables can be
explained if motor cortical activity simply
encoded muscle activation patterns. Relat-
ed arguments have been proposed for
neural correlates of mental rotation in
motor cortex18. Neither of these articles
disprove that neural activity reflects hand-
related or cognitive functions; they simply
demonstrate that there are alternative inter-
pretations for these experimental observa-
tions. Although one can argue whether
Todorov’s model can predict the details of
each hand-based correlate, this muscle-
based model reveals how little we know
about the function of motor cortex during
whole-limb motor tasks.

Although the model by Todorov chal-
lenges the use of hand-based frameworks
for interpreting motor cortical activity, it
is important to recognize the technical dif-
ficulty of these experiments. It was a log-
ical and sensible decision to relate neural

5. Ashe, J. & Georgopoulos, A. P. Cereb. Cortex 6,
590–600 (1994).

6. Fu, Q.-G., Flament, D., Coltz, J. D. & Ebner, T. J.
J. Neurophysiol. 73, 836–854 (1995).

7. Scott, S. Nat. Neurosci. 4, 307–308 (2000).

8. Snedecor, G. W. & Cochran, W. G. Statistical
Methods (Iowa State Univ. Press, Ames, Iowa,
1989).

9. Cox, D. R. & Lewis, P. A. W. The Statistical
Analysis of Series of Events (Chapman and Hall,
London, 1966).

10. Tukey, J. W. Exploratory Data Analysis (Addison-
Wesley, Reading, Massachusetts, 1977).

11. Rack, P. & Westbury, D. J. Physiol. (Lond.) 204,
443–460 (1969).

12. Brown, I., Cheng, E. & Loeb, G. J. Muscle Res.
Cell Motility 20, 627–643 (1999).

13. Taira, M., Boline, J., Smyrnis, N., Georgopoulos,
A. & Ashe, J. Exp. Brain. Res. 109, 367–376
(1996).

14. Fetz, E. Behav. Brain Sci. 15, 679–690 (1992).

15. Evarts, E.V. J. Neurophysiol. 31,14–27 (1968).

16. Georgopoulos, A. P., Kalaska, J. F., Caminiti, R.
& Massey, J. T. J. Neurosci. 2 1527–1537 (1982).

17. Kuhn, T. S. The Structure of Scientific Revolutions
2nd edn. 150 (University of Chicago Press,
Chicago, 1970).

18. Cisek, P. & Scott, S. H. Neurosci. Lett. 272, 1–4
(1999).

19. Scott, S. H. Can. J. Physiol. Pharm. (in press).

activity to movements of the hand when
Georgopoulos and colleagues introduced
this paradigm over 20 years ago16. This
hand-based model has provided an influ-
ential contribution to both motor and
cognitive neuroscience. However, sub-
stantial progress in our understanding of
the function of primary motor cortex now
requires a change in the experimental
framework19. Such a change must allow
for exploration of the rich and diverse
activation patterns of motor cortical neu-
rons related not only to global features of
the task, but also to features of movement
related to the peripheral motor apparatus.

Stephen H. Scott
Dept. of Anatomy and Cell Biology, Queen’s
University, Kingston, Ontario K7L 3N6,
Canada
e-mail: steve@biomed.queensu.ca
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j au % Fe ' mẍ % b 0x % kx 3

Daniel Moran and Andrew Schwartz - Web Supplement A

The author models a multijoint arm as a simple cantilever which is converted to single

point-mass equation using a Jacobian transformation.  Thus:

j Fm % Fe ' mẍ 1

where Fm represents individual muscle forces and Fe represents any external forces applied to

hand (e.g., manipulandum), m represents the inertia of the arm and  represents handẍ

acceleration.  The arm’s combined muscle properties were derived from a simplified version of

muscle activity defined as:

f (a,l, 0l ) ' a & k (l0&l) & Fb 0l L 2

where ƒ, a, l, l0 represent a single muscle’s force, activation, length, and rest length, respectively. 

Summing Equation 2 over all muscles, and substituting into Equation 1 yields:

where the viscous (b) and elastic (k) terms are due combined muscle properties.  The left term in 

Equation 3 represents muscle activation (multiplied by the muscle’s preferred direction) which

the author equates with M1 activity (i.e., a motor cortical cell is an upper motor neuron).  

Therefore, the first term of Equation 3 represents a motor cortical population vector which, when

there are no external forces, is a linear combination of acceleration, velocity and position of the

hand.



Daniel Moran and Andrew Schwartz - Web Supplement B

The effect of acceleration on lag in Todorov’s formulation can be demonstrated by

eliminating the position term (i.e., setting the stiffness coefficient to zero) in his lag equation

(Figure 4 caption).  Figure 1 shows that increasing acceleration actually decreases lag in drawing

tasks.  Thus, acceleration has exactly the opposite effect of that needed to explain our

observations.  Therefore, the increased lags with increasing curvature shown in Figure 4 of

Todorov’s article are due solely to his positional term.  This contrary effect of acceleration is due

to the inverse speed-curvature relation characteristic of drawing movements (i.e., 2/3 power law). 

When drawing the outside of a spiral, acceleration is low and velocity is high; thus, the phase of

a weighted signal of velocity and acceleration would lie closer to the velocity signal than the

acceleration signal.  When the hand is on the inside of the spiral, the opposite is true and a mixed

signal would be closer to the acceleration signal in phase.  However, because the angular velocity

of the movement increases with higher curvature, the time lag actually decreases.  This is shown

graphically in Figure 2 where a mixed signal of 50% velocity and 50% acceleration is compared

temporally to velocity during a spiral drawing task adhering to the 2/3 power law.
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Figure 1: Effects of acceleration on M1 population vector lags as
a function of curvature. Even though acceleration increases under
higher curvature, the time lag of a PV sensitive to both acceleration
and velocity decreases. Based on equation in Figure 4 caption of
Todorov’s paper without the stiffness term.
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Figure 2: Temporal comparison of a simulated motor cortical cell and
hand velocity during an outside->in spiral drawing task. The cell’s activity
(dotted line) is modulated by 50% velocity and 50% acceleration
information. The second line (solid) represents the hand velocity signal
(the component aligned with the cell’s preferred direction). As the task
progresses from the outside of the spiral inward toward higher curvatures,
the cortical activity behaves more like the acceleration signal; however,
since the angular velocity is also increasing, the time lag between cortical
activity and velocity (thin lines) actually decreases.
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Brain Sciences Center, Veterans Affairs Medical Center and Department of Neuroscience,
University of Minnesota Medical School, Minneapolis, Minnesota 55417,USA
email: (A.P.G.): omega@tc.umn.edu

Table 1. Percentages of cells for which the noted variable yielded the highest R2.

Variable Motor cortex (N = 290)
Original analysis

(from Table 1 in ref. 3)
New analysis

Square-root transformed Non-transformed

Target direction 46.55 42.76

Velocity 39.66 40.00

Position 7.24 8.97

Acceleration 6.55 8.27
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Response to Moran and Schwartz

Figure Legend:

Muscle force is ( ) ( ) max2PE1PE fafffvflaf,, FVLMF ++= , where muscle length L ,

velocity V , and stimulation frequency M  are in dimensionless units12, 
maxF  is maximum

potentiated force in endpoint space. The functions

( ) ( ) ( ) ( ) ( )LLVLLLM 2PE1PE f,f,,fv,fl,,af  with all 19 parameters defining them are

described elsewhere12. The simpler form of the activation-frequency function ( )LM ,af

was used. All parameters were set to the average values for slow-twitch and fast-twitch

muscles12. The plot in A) shows the surface ( )VLMF ,,  for M  set to 1 (cyan), 0.5

(magenta), and 1.5 (yellow). Note that stiffness and damping (the partial derivatives with

respect to Length and Velocity) are both determined by M  and cannot be controlled

independently.

The hand was modeled as a m = 1 kg point mass in 2-dimensional endpoint space, pulled

by N  muscles with uniformly distributed (unit) force directions u1...N. With the new

muscle model, stiffness and damping could no longer be set explicitly— instead they

depended on the cocontraction level. Also, the PV could no longer be computed

independent of tuning— so a concrete tuning function (cosine) was used. Given hand

kinematics (1.5cm–7.5cm spiral traced in 2.5 seconds according to the 2/3 power law2,3),

the PV at each point in time was computed in 5 steps:

1) Net force was xf &&m= .



2) Lengths 
iL  and velocities 

iV  were1 
i

T
ii SrL ux−=  and 

i
T

i SV ux&−= . The scaling

constant 006.0=S  mapped a 100cm range of motion in x  to a 0.7–1.3

physiological range of normalized lengths L , and 
NrK1

 defined the muscle

lengths at the center 0x =  of the workspace.

3) The individual force contribution 
iF  of each muscle was determined from the

cosine tuning function  i
T

i C
N

F uf+= 2 .

4) Stimulation frequencies 
iM  were found by solving ( )iiii VLMFF ,,= .

5) The population vector ( ) iii MM u∑ −  was formed, with baselines 
iM

corresponding to maintained posture.

For nominal parameters N30,10 max == FN , cocontraction was adjusted to 15=C  so

that empirical stiffness K = 76 N/m and damping B = 9 Ns/m (found via perturbation

experiments in the model) were close to the previously1 used values of K = 50 N/m and B

= 10 Ns/m. Results for 6 different parameter sets are shown, each averaged over 10

simulation runs with random 
NrK1

 in the interval 0.9–1.1. The legend shows which

parameter was varied from its nominal value (with resulting stiffness and damping). For

all parameter settings, the timelag-curvature function closely resembled the original

result1 as well as the experimental data2,3. When gravity compensation was added to f ,

the function fluctuated near the nominal curve. Similar fluctuations are present in

experimental data2,3, although the latter could be due to noise.



Response to Georgopoulos and Ashe:

Figure legend:

The plot visualizes the parameter space of synthetic response profiles. As before1,

synthetic mean firing rates at time t  and angle θ  away from the preferred direction are

( ) ( ) ( ) ( ) ( )  ( ) ( )θθθθ coscos2cos,mfr tKxtxBtxMCt +++= &&& , where KBMC ,,,  are

sampled uniformly from 0–34, 0–4, 0–40, 0–200. Both the correct classification (the term

with maximal absolute contribution) and the R2 procedure applied to mfr  are scale and

translation invariant— so a two parameter plot ( )MKMB /,/  can be obtained by

subtracting C  and dividing by M . The classification regions in the figure are computed

through extensive simulations. Thin lines correspond to correct classification; thick lines

- R2 procedure applied to mfr ; dotted lines - probability contours of classifying a cell as

directional, R2 procedure applied to raw binned spike trains; dashed lines - correct

classification, two times faster movement. Line colors: red - position; green - velocity;

blue - acceleration; black - direction. Color intensity corresponds to the ‘confidence’ of

the correct classification, defined as the difference between the maximum and next



largest contribution. Spike train classification generally depends on all four parameters

KBMC ,,, , and is probabilistic because the same cell can be classified differently if a

new set of Poisson spike trains are sampled. So the deterministic classification regions

become probability distributions (dotted lines show the p = 0.5 and p = 0.3 contours of

the probability of misclassifying cells as directional). When the same reaching movement

is executed two times faster, hand displacement remains unchanged, velocity doubles,

and acceleration quadruples - so the correct classification regions (dashed lines) change.

The inset shows the response in the center of the region misclassified as directional. Note

that this response does not look directional— it just does not fit in any of the alternative

categories.
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