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Optimal choice of actions is a fundamental problem relevant to
fields as diverse as neuroscience, psychology, economics, computer
science, and control engineering. Despite this broad relevance the
abstract setting is similar: we have an agent choosing actions over
time, an uncertain dynamical system whose state is affected by
those actions, and a performance criterion that the agent seeks
to optimize. Solving problems of this kind remains hard, in part,
because of overly generic formulations. Here, we propose a more
structured formulation that greatly simplifies the construction of
optimal control laws in both discrete and continuous domains.
An exhaustive search over actions is avoided and the problem
becomes linear. This yields algorithms that outperform Dynamic
Programming and Reinforcement Learning, and thereby solve tra-
ditional problems more efficiently. Our framework also enables
computations that were not possible before: composing optimal
control laws by mixing primitives, applying deterministic methods
to stochastic systems, quantifying the benefits of error tolerance,
and inferring goals from behavioral data via convex optimization.
Development of a general class of easily solvable problems tends
to accelerate progress—as linear systems theory has done, for
example. Our framework may have similar impact in fields where
optimal choice of actions is relevant.

action selection | cost function | linear Bellman equation | stochastic optimal
control

I f you are going to act, you might as well act in the best way
possible. But which way is best? This is the general problem

we consider here. Examples include a nervous system generat-
ing muscle activations to maximize movement performance (1),
a foraging animal deciding which way to turn to maximize food
(2), an internet router directing packets to minimize delays (3),
an onboard computer controlling a jet engine to minimize fuel
consumption (4), and an investor choosing transactions to maxi-
mize wealth (5). Such problems are often formalized as Markov
decision processes (MDPs), with stochastic dynamics p(x′|x, u)
specifying the transition probability from state x to state x′ under
action u, and immediate cost �(x, u) for being in state x and choos-
ing action u. The performance criterion that the agent seeks to
optimize is some cumulative cost that can be formulated in mul-
tiple ways. Throughout the article we focus on one formulation
(total cost with terminal/goal states) and summarize results for
other formulations.

Optimal actions cannot be found by greedy optimization of the
immediate cost, but instead must take into account all future costs.
This is a daunting task because the number of possible futures
grows exponentially with time. What makes the task doable is the
optimal cost-to-go function v(x) defined as the expected cumu-
lative cost for starting at state x and acting optimally thereafter.
It compresses all relevant information about the future and thus
enables greedy computation of optimal actions. v(x) equals the
minimum (over actions u) of the immediate cost �(x, u) plus the
expected cost-to-go E[v(x′)] at the next state x′:

v(x) = min
u

{�(x, u) + Ex′∼p(·|x,u)[v(x′)]}. [1]

The subscript indicates that the expectation is taken with respect
to the transition probability distribution p(·|x, u) induced by action
u. Eq. 1 is fundamental to optimal control theory and is called the
Bellman equation. It gives rise to Dynamic Programming (3) and

Reinforcement Learning (2) methods that are very general but
can be inefficient. Indeed, Eq. 1 characterizes v(x) only implicitly,
as the solution to an unsolved optimization problem, impeding
both analytical and numerical approaches.

Here, we show how the Bellman equation can be greatly sim-
plified. We find an analytical solution for the optimal u given v,
and then transform Eq. 1 into a linear equation. Short of solv-
ing the entire problem analytically, reducing optimal control to a
linear equation is the best one can hope for. This simplification
comes at a modest price: although we impose certain structure
on the problem formulation, most control problems of practical
interest can still be handled. In discrete domains our work has
no precursors. In continuous domains there exists related prior
work (6–8) that we build on here. Additional results can be found
in our recent conference articles (9–11), online preprints (12–14),
and supplementary notes [supporting information (SI) Appendix].

Results
Reducing Optimal Control to a Linear Problem. We aim to con-
struct a general class of MDPs where the exhaustive search over
actions is replaced with an analytical solution. Discrete optimiza-
tion problems rarely have analytical solutions, thus our agenda
calls for continuous actions. This may seem counterintuitive if
one thinks of actions as symbols (“go left,” “go right”). However,
what gives meaning to such symbols are the underlying transition
probabilities—which are continuous. The latter observation is key
to the framework developed here. Instead of asking the agent to
specify symbolic actions, which are then replaced with transition
probabilities, we allow the agent to specify transition probabilities
u(x′ | x) directly. Formally, we have p(x′ | x, u) = u(x′ | x).

Thus, our agent has the power to reshape the dynamics in any
way it wishes. However, it pays a price for too much reshaping,
as follows. Let p(x′| x) denote the passive dynamics characterizing
the behavior of the system in the absence of controls. The lat-
ter will usually be defined as a random walk in discrete domains
and as a diffusion process in continuous domains. Note that the
notion of passive dynamics is common in continuous domains
but is rarely used in discrete domains. We can now quantify how
“large” an action is by measuring the difference between u(·| x)
and p(·| x). Differences between probability distributions are usu-
ally measured via Kullback–Leibler (KL) divergence, suggesting
an immediate cost of the form

�(x, u) = q(x) + KL(u(·| x)||p(·| x)) = q(x) + Ex′∼u(·| x)

[
log

u(x′| x)
p(x′| x)

]
.

[2]

The state cost q(x) can be an arbitrary function encoding how
(un)desirable different states are. The passive dynamics p(x′| x)
and controlled dynamics u(x′| x) can also be arbitrary, except that
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Fig. 1. New problem formulation. (A) A coin-toss example where the action
corresponds to biasing the coin. The optimal bias is obtained by minimizing
the sum (black) of the KL divergence cost (red) and the expected state cost
(blue). Note that the tosses are independent and thus the temporal dynamics
are irrelevant in this example. (B) A stochastic shortest-path problem illus-
trating how our framework can capture the benefits of error tolerance. See
main text.

we require u(x′| x) = 0 whenever p(x′| x) = 0. This constraint is
needed to make KL divergence well-defined. It has the added
benefit of preventing the agent from jumping directly to goal
states, and more generally from making state transitions that are
physically impossible.

Fig. 1 illustrates the construction above with two simple exam-
ples. Fig. 1A is a coin-toss problem where q(Tails) = 0, q(Heads) =
1 and the passive dynamics correspond to an unbiased coin. The
action u has the effect of biasing the coin. The optimal bias, which
turns out to be u∗(Heads) = 0.27, achieves a trade-off between
keeping the action cost and the expected state cost small. Note that
the controller could have made the coin deterministic by setting
u(Heads) = 0, but this is suboptimal because the associated action
cost is too large. In general, the optimal actions resulting from our
framework are stochastic. Fig. 1B is a shortest-path problem where
q = 0 for the goal state (gray) and q = 1 for all other states. The
passive dynamics correspond to the random walk on the graph. At
the green state it does not matter which path is taken, so the opti-
mal action equals the passive dynamics, the action cost is 0, and
the cost-to-go (shown inside the circle) equals the length of the
deterministic shortest path. At the red state, however, the optimal
action deviates from the passive dynamics to cause a transition
up, incurring an action cost of 0.6 and making the red state worse
than the green state. In general, v(x) is smaller when the task can
be accomplished in multiple ways starting from x. This reflects a
preference for error tolerance that is inherent in our framework.

We now return to the theoretical development. The results take
on a simpler form when expressed in terms of the desirability
function

z(x) = exp(−v(x)). [3]

This terminology reflects the fact that z is large at states where
the cost-to-go v is small. Substituting Eq. 1 in Eq. 2, the Bellman
equation can be written in terms of z as

− log(z(x)) = q(x) + min
u

{
Ex′∼u(·| x)

[
log

u(x′| x)
p(x′| x)z(x′)

]}
. [4]

The expression being minimized resembles KL divergence
between u and pz, except that pz is not normalized to sum to 1.
Thus, to obtain proper KL divergence (SI Appendix), we have to
multiply and divide by the normalization term

G[z](x) =
∑

x′
p(x′| x)z(x′) = Ex′∼p(·| x)[z(x′)]. [5]

Recall that KL divergence achieves its global minimum of zero
when the 2 distributions are equal. Therefore, the optimal action
u∗ is proportional to pz:

u∗(x′| x) = p(x′| x)z(x′)
G[z](x)

. [6]

This represents the first general class of MDPs where the optimal
actions can be found analytically given the optimal costs-to-go.
Previously, such results were available only in continuous domains.

The Bellman equation can now be simplified (SI Appendix) by
substituting the optimal action, taking into account the normal-
ization term and exponentiating. The result is

z(x) = exp(−q(x))G[z](x). [7]

The expectation G[z] is a linear operator; thus, Eq. 7 is linear in z. It
can be written more compactly in vector notation. Enumerate the
states from 1 to n, represent z(x) and q(x) with the n-dimensional
column vectors z and q, and p(x′| x) with the n-by-n matrix P, where
the row-index corresponds to x and the column-index to x′. Then
Eq. 7 becomes z = Mz, where M = diag(exp(−q))P, exp is applied
element-wise and diag transforms vectors into diagonal matrices.
The latter equation looks like an eigenvector problem, and indeed
it can be solved (9) by using the power iteration method z ← Mz
(which we call Z iteration). However, the problem here is actually
simpler because the eigenvalue is 1 and v(x) = q(x) at termi-
nal states. If we define the index sets T and N of terminal and
nonterminal states and partition z, q, and P accordingly, Eq. 7
becomes

(diag(exp(qN )) − PNN )zN = PNT exp(−qT ). [8]

The unknown zN is the vector of desirabilities at the nonterminal
states. It can be computed via matrix factorization or by using an
iterative linear solver.

Let us now compare our result (Eq. 8) with policy iteration (3).
We have to solve an equation of the form Az = b just once. In pol-
icy iteration one has to solve an equation of the form A(π)v = b(π)
to evaluate the current policyπ; then, the policy has to be improved
and the process repeated. Therefore, solving an optimal control
problem in our formulation is computationally equivalent to half
a step of policy iteration.

Thus far, we have studied MDPs with discrete state spaces.
There exists a family of continuous (in space and time) problems
related to our MDPs. These problems have stochastic dynamics

dx = a(x)dt + B(x)(udt + σdω). [9]

ω(t) is Brownian motion and σ is the noise amplitude. The cost
rate is of the form

�(x, u) = q(x) + 1
2σ2 ‖u‖2. [10]

The functions q(x), a(x), and B(x) can be arbitrary. This problem
formulation is fairly general and standard (but see Discussion).
Consider, for example, a one-dimensional point with mass m,
position xp, and velocity xv. Then, x = [xp, xv]T, a(x) = [xv, 0]T,
and B = [0, m−1]T. The noise and control signals correspond to
external forces applied to the point mass.

Unlike the discrete case where the agent could specify the tran-
sition probability distribution directly, here, u is a vector that can
shift the distribution given by the passive dynamics but cannot
reshape it. Specifically, if we discretize the time axis in Eq. 9 with
step h, the passive dynamics are Gaussian with mean x + ha(x)
and covariance hσ2B(x)B(x)T, whereas the controlled dynamics
are Gaussian with mean x + ha(x) + hB(x)u and the same covari-
ance. Thus, the agent in the continuous setting has less freedom
compared with the discrete setting. Yet the two settings share many
similarities, as follows. First, the KL divergence between the above
Gaussians can be shown to be h

2σ2 ‖u‖2, which is just the quadratic
energy cost accumulated over time interval h. Second, given the
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Table 1. Summary of results for all performance criteria

Discrete Continuous

Finite exp(q)zt = G[zt+1] qz = L[z] + ∂
∂t z

Total exp(q)z = G[z] qz = L[z]
Average exp(q − c)̃z = G [̃z] (q − c)̃z = L[̃z]
Discounted exp(q)z = G[zα] qz = L[z] − z log(zα)

optimal cost-to-go v(x), the optimal control law can be computed
analytically (4):

u∗(x) = −σ2B(x)Tvx(x). [11]

Here, subscripts denote partial derivatives. Third, the Hamilton–
Jacobi–Bellman equation characterizing v(x) becomes linear (6, 7)
(SI Appendix) when written in terms of the desirability function
z(x):

q(x)z(x) = L[z](x). [12]

The second-order linear differential operator L is defined as

L[z](x) = a(x)Tzx(x) + σ2

2
trace(B(x)B(x)Tzxx(x)). [13]

Additional similarities between the discrete and continuous set-
tings will be described below. They reflect the fact that the contin-
uous problem is a special case of the discrete problem. Indeed, we
can show (SI Appendix) that, for certain MDPs in our class, Eq. 7
reduces to Eq. 12 in the limit h → 0.

The linear equations 7 and 12 were derived by minimizing total
cost in the presence of terminal/goal states. Similar results can be
obtained (SI Appendix) for all other performance criteria used in
practice, in both discrete and continuous settings. They are sum-
marized in Table 1. The constant c is the (unknown) average cost
computed as the principal eigenvalue of the corresponding equa-
tion. z̃ is the exponent of the differential cost-to-go function (3)
(SI Appendix). The constant α is the exponential discount factor.
Note that all equations are linear except in the discounted case.
The finite-horizon and total-cost results in continuous settings
were previously known (6, 7); the remaining six equations were
derived in our work.

Applications. The first application is an algorithm for finding
shortest paths in graphs (recall Fig. 1B). Let s(x) denote the length
of the shortest path from state x to the nearest terminal state.
The passive dynamics p correspond to the random walk on the
graph. The state costs are q = ρ > 0 for non-terminal states and
q = 0 for terminal states. Let vρ(x) denote the optimal cost-to-go
function for given ρ. If the action costs were 0, the shortest path
lengths would be s(x) = 1

ρ
vρ(x) for all ρ. Here, the action costs are

not 0, but nevertheless they are bounded. Because we are free to
choose ρ arbitrarily large, we can make the state costs dominate
the cost-to-go function, and so

s(x) = lim
ρ→∞

vρ(x)
ρ

. [14]

The construction above involves a limit and does not yield the
shortest paths directly. However, we can obtain arbitrarily accu-
rate (modulo numerical errors) approximations by setting ρ large
enough. The method is illustrated in Fig. 2 on the graph of internet
routers. There is a range of values of ρ for which all shortest path
lengths are exactly recovered. Although a thorough comparison
with dedicated shortest-path algorithms remains to be done, we
suspect that they will not be as efficient as linear solvers. Problems
with weighted edges can be handled with the general embedding
method presented next.

Fig. 2. Approximating shortest paths. The computation of shortest path
lengths is illustrated here using the graph of internet routers and their con-
nectivity as of 2003. This dataset is publicly available at www.caida.org. The
graph has 190,914 nodes and 609,066 undirected edges. The shortest path
length from each node to a specified destination node was computed exactly
by using dynamic programming adapted to this problem, and also approxi-
mated by using our algorithm with ρ = 40. Our algorithm was ≈5 times faster,
although both implementations were equally optimized. The exact shortest
path lengths were integers between 1 and 15. (A) The approximate values
were binned in 15 bins according to the corresponding correct value. The
range of approximate values in each bin is shown with the blue symbols. The
diagonal red line is the exact solution. (Inset) Histogram of all values in one
bin, with the correct value subtracted. Note that all errors are between 0 and
1, thus rounding down to the nearest integer recovers the exact solution.
This was the case for all bins. (B) To assess the effects of the free parameter
ρ, we solved the above problem 500 times for each of 10 values of ρ between
25 and 70. In each instance of the problem, the set of destination nodes was
generated randomly and had between 1 and 5 elements. The approximate
shortest path lengths found by our algorithm were rounded down to the
nearest integer and compared with the exact solution. The number of mis-
matches, expressed as a percent of the number of nodes and averaged over
the 500 repetitions, is plotted in black. For large values of ρ the approxima-
tion becomes exact, as expected from Eq. 14. However, ρ cannot be set too
large, because our algorithm multiplies by exp(−ρ), thus some elements of
z may become numerically zero. The percentage of such numerical errors is
plotted in green. There is a comfortable range of ρ where neither type of
error is observed.

The second application is a method for continuous embedding
of traditional MDPs with symbolic actions. It is reminiscent of
linear programming relaxation in integer programming. Denote
the symbolic actions in the traditional MDP with a, the transition
probabilities with p̃(x′| x, a), and the immediate costs with �̃(x, a).
We seek an MDP in our class such that for each (x, a) the action
p̃(·| x, a) has cost �̃(x, a):

q(x) + KL(̃p(·| x, a)||p(·| x)) = �̃(x, a). [15]

For each x this yields a system of linear equations in q and log p,
which has a unique solution under a mild nondegeneracy con-
dition (SI Appendix). If we keep the number of symbolic actions
per state fixed while increasing the number of states (for exam-
ple, by making a grid world larger and larger), the amount of
computation needed to construct the embedding scales linearly
with the number of states. Once the embedding is constructed,
the optimal actions are computed and replaced with the nearest
(in the sense of transition probabilities) symbolic actions. This
yields an approximately optimal policy for the traditional MDP.
We do not yet have theoretical error bounds but have found the
approximation to be very accurate in practice. This method is
illustrated in Fig. 3 on a machine repair problem adapted from
ref. 3. The R2 between the correct and approximate cost-to-go is
0.993.

The third application is a Monte Carlo method for learning z
from experience in the absence of a model of the passive dynamics
p and state costs q. Unlike the previous two applications, where
we started with traditional MDPs and approximated them with
MDPs in our class, here we assume that the problem is already in
our class. The linear Bellman Eq. 7 can be unfolded recursively
by replacing z(x′) with the expectation over the state following x′
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Fig. 3. Embedding traditional MDPs. The continuous embedding of tradi-
tional MDPs is illustrated here on a machine repair problem adapted from
ref. 3. We have a machine whose state xt at time t is an integer between 1
and 100. Larger xt means that the machine is more broken and more costly
to operate: we incur an operation cost of 0.02xt . There are 50 time steps
(this is a finite-horizon problem). The state of the machine has a tendency to
deteriorate over time: if we do nothing, xt+1 has a probability 0.9 of being
one of xt · · · xt + 8 (chosen uniformly) and probability 0.1 of being one of
xt − 9 · · · xt − 1. When xt is near the edges we clip this distribution and renor-
malize it to sum to 1. The symbolic actions ut are integers between 0 and 9
corresponding to how much we invest in repairing the machine in each time
step. The repair cost is 0.1ut . The effect of the repairs is to circularly left-shift
the above transition probability distribution by ut positions. Thus, ut = 0
corresponds to doing nothing; larger ut causes larger expected improvement
in the state of the machine. (A) The traditional MDP described above was
embedded within our class, as outlined in the main text and described in
detail in (SI Appendix). Then, zt (x) was computed and the approximation
− log(z) to the optimal cost-to-go was plotted. Blue is small, red is large. (B)
The traditional MDP was also solved by using dynamic programming and the
optimal cost-to-go vt (x) was plotted in the same format as in A. (C) Scatter
plot of the optimal versus approximate costs-to-go at 5,000 space-time points
(blue). The R2 between the two is 0.993, that is, the optimal values account
for 99.3% of the variance in the approximate values. The red diagonal line
corresponds to the ideal solution. We also computed (via extensive sampling)
the performance of the optimal policy found by dynamic programming, the
approximately optimal policy derived from our embedding, and a random
policy. The performance of our approximation was 0.9% worse than optimal,
whereas the performance of the random policy was 64% worse than optimal.

and so on, and then pushing all state costs inside the expectation
operators. This yields the path-integral representation

z(x) = Ext+1∼p(·| xt)

⎡
⎣exp

⎛
⎝−

tf∑
t=0

q(xt)

⎞
⎠

⎤
⎦ . [16]

(x0, x1 · · · xtf ) are trajectories initialized at x0 = x and sampled from
the passive dynamics, and tf is the time when a goal state is first
reached. A similar result holds in continuous settings, where the
Feynman–Kac theorem states that the unique positive solution to
Eq. 12 has a path-integral representation. The use of Monte Carlo
methods for solving continuous optimal control problems was pio-
neered in ref. 7. Our result (Eq. 16) makes it possible to apply such
methods to discrete problems with non-Gaussian noise.

The fourth application is related to the path-integral approach
above but aims to achieve faster convergence. It is motivated by
Reinforcement Learning (2) where faster convergence is often
observed by using Temporal Difference (TD) methods. A TD-like
method for our MDPs can be obtained from Eq. 7. It constructs
an approximation ẑ using triplets (xt, qt, xt+1). Note that measuring
the action costs is not necessary. ẑ is updated online as follows:

ẑ(xt) ← (1 − ηt) ẑ(xt) + ηt exp(−qt) ẑ(xt+1). [17]

ηt is a learning rate which decreases over time. We call this algo-
rithm Z learning. Despite the resemblance to TD learning, there
is an important difference. Our method learns the optimal cost-
to-go directly, whereas TD methods are limited to learning the
cost-to-go of a specific policy—which then needs to be improved,
the cost-to-go relearned, and so on. Indeed Z learning is an off-
policy method, meaning that it learns the cost-to-go for the optimal
policy while sampling according to the passive dynamics. The only

Fig. 4. Z learning and Q learning. Z learning and Q learning are compared
in the context of a grid-world MDP. The goal state is marked “X.” State transi-
tions are allowed to all neighbors (including diagonal neighbors) and to the
current state. Thus, there are at most 9 possible next states, less when the
current state is adjacent to the obstacles shown in black or to the edges of
the grid. p corresponds to a random walk. All state costs are q = 1 except for
the goal state where q = 0. This MDP is within our class so Z learning can be
applied directly. To apply Q learning we first need to construct a correspond-
ing traditional MDP with symbolic actions. This is done as follows. For each
state x we define a symbolic action with transition probability distribution
matching the optimal u∗(·| x). We also define N(x)−1 other symbolic actions,
where N(x) is the number of possible next states following x. Their transition
probability distributions are obtained from u∗(·| x) by circular shifting; thus,
they have the same shape as u∗ but peak at different next states. All these
symbolic actions incur cost q(x) + KL(u∗(·| x)||p(·| x)) matching the cost in our
MDP. The resulting traditional MDP is guaranteed to have the same optimal
cost-to-go as our MDP. (A) The grayscale image shows the optimal cost-to-
go v = − log z where z is computed with our model-based method. Darker
colors correspond to smaller values. Both Z learning and Q learning aim to
approximate this function. (B) Error is defined as the average absolute differ-
ence between each approximation and the optimal costs-to-go, normalized
by the average optimal cost-to-go. All approximations to z are initialized at 0.
The learning rate decays as ηt = c/(c + t), where c = 5, 000 for Z learning and
c = 40, 000 for Q learning. Each simulation is repeated 10 times. The state is
reset randomly whenever the goal state is reached. Each learning algorithm is
tested by using a random policy corresponding to p, as well as a greedy policy.
Q learning requires exploration; thus, we use an ε-greedy policy with ε = 0.1.
The values of c and ε are optimized manually for each algorithm. Z learning
implicitly contains exploration so we can directly use the greedy policy, i.e.,
the policy û(x ′| x) which appears optimal given the current approximation ẑ.
Greedy Z learning requires importance sampling: the last term in Eq. 17 must
be weighted by p(xt+1| xt )/û(xt+1| xt ). Such weighting requires access to p.
(C) Empirical performance of the policies resulting from each approximation
method at each iteration. Z learning outperforms Q learning, and greedy
methods outperform random sampling.

Reinforcement Learning method capable of doing this is Q learn-
ing (15). However, Q learning has the disadvantage of operating
in the product space of states and actions, and is therefore less
efficient. This is illustrated in Fig. 4 on a navigation problem.

The fifth application accelerates MDP approximations to con-
tinuous problems (16). Such MDPs are obtained via discretization
and tend to be very large, calling for efficient numerical meth-
ods. Because continuous problems of the form (Eqs. 9 and 10)
are limits of MDPs in our class, they can be approximated with
MDPs in our class, which, in turn, are reduced to linear equations
and solved efficiently. The same continuous problems can also be
approximated with traditional MDPs and solved via dynamic pro-
gramming. Both approximations converge to the same solution in
the limit of infinitely fine discretization, and turn out to be equally
accurate away from the limit, but our approximation is faster to
compute. This is shown in Fig. 5 on a car-on-a-hill problem, where
our method is ≈10 times faster than policy iteration and 100 times
faster than value iteration.

The remaining applications have been developed recently.
Below we summarize the key results and refer the reader to online
preprints (12–14). The sixth application is a deterministic method
for computing the most likely trajectory of the optimaly controlled
stochastic system. Combining Eqs. 6 and 7, the optimal control law
can be written as u∗(x′| x) = exp(−q(x))p(x′| x) z(x′)

z(x) . Given a fixed

Todorov PNAS July 14, 2009 vol. 106 no. 28 11481

http://www.pnas.org/cgi/data/full/0710743106/DCSupplemental/SI_Appendix


Fig. 5. Continuous problems. Comparison of our MDP approximation and
a traditional MDP approximation on a continuous car-on-a-hill problem. (A)
The car moves along a curved road in the presence of gravity. The control
signal is tangential acceleration. The goal is to reach the parking lot with
small velocity. (B) Z iteration (blue), policy iteration (red), and value itera-
tion (black) converge to control laws with identical performance; however,
Z iteration is 10 times faster than policy iteration and 100 times faster than
value iteration. Note the log-scale on the horizontal axis. (C) The optimal
cost-to-go for our approximation. Blue is small, red is large. The two black
curves are stochastic trajectories resulting from the optimal control law. The
thick magenta curve is the most likely trajectory of the optimally controlled
stochastic system. It is computed by solving the deterministic optimal control
problem described in the main text. (D) The optimal cost-to-go is inferred
from observed state transitions by using our algorithm for inverse optimal
control. Brown pixels correspond to states where we did not have data (i.e.,
no state transitions landed there); thus, the cost-to-go could not be inferred.
The details are given in (SI Appendix).

initial state x0 and final time T , the probability that the optimal
control law u∗ generates trajectory x1, x2, · · · xT is

T−1∏
t=0

u∗(xt+1| xt) = z(xT )
z(x0)

T−1∏
t=0

exp(−q(xt))p(xt+1| xt). [18]

Omitting z(x0), which is fixed, and noting that z(xT ) =
exp(−q(xT )), the negative log of Eq. 18 can be interpreted as the
cumulative cost for a deterministic optimal control problem with
immediate cost q(x) − log(p(x′| x)). A related result is obtained
in continuous settings when B is constant: the corresponding
deterministic problem has dynamics ẋ = a(x) + Bu and cost
�(x, u) + 1

2 div(a(x)). These results are important because optimal
trajectories for deterministic problems can be found with efficient
numerical methods (17) that avoid the curse of dimensionality.
Our framework makes it possible to apply deterministic methods
to stochastic control for the first time. The most likely trajectory
in the car-on-a-hill problem is shown in Fig. 5C in magenta. See
ref. 12 for details.

The seventh application exploits the duality between Bayesian
estimation and stochastic optimal control. This duality is well-
known for linear systems (4) and was recently generalized (8, 10)
to nonlinear continuous systems of the form Eqs. 9 and 10. Dual-
ity also holds for our MDPs. Indeed, Eq. 18 can be interpreted as
the posterior probability of a trajectory in a Bayesian smoothing
problem, where p(xt+1| xt) are the prior probabilities of the state
transitions and exp(−q(xt)) are the likelihoods of some unspecified
measurements. The desirability function in the control problem
can be shown to be proportional to the backward filtering density
in the dual estimation problem. Thus, stochastic optimal control
problems can be solved by using Bayesian inference. See refs. 10
and 12 for details.

The eighth application concerns inverse optimal control, where
the goal is to infer q(x) given a dataset {xk, x′

k}k=1···K of state
transitions generated by the optimal controller. Existing meth-
ods rely on guessing the cost function, solving the forward prob-
lem, comparing the solution with data, and improving the guess
and iterating (18, 19). This indirect procedure can be inefficient
when the forward problem is hard to solve. For our MDPs the
inverse problem can be solved directly, by minimizing the convex
function

L(v) = dTv + cT log(P exp(−v)), [19]

where v is the vector of (unknown) optimal costs-to-go, P is the
passive dynamics matrix defined earlier, and d and c are the his-
tograms of x′

k and xk (i.e., di is the number of times that x′
k = i).

It can be shown that L(v) is the negative log-likelihood of the
dataset. We have found empirically that its Hessian tends to be
diagonally dominant, which motivates an efficient quasi-Newton
method by using a diagonal approximation to the Hessian. Once
the minimum is found, we can compute z and then find q from
the linear Bellman equation. Fig. 5D illustrates this inverse opti-
mal control method on the car-on-a-hill problem. See ref. 14 for
details.

The ninth application is a method for constructing optimal
control laws as combinations of certain primitives. This can be
done in finite-horizon as well as total-cost problems with termi-
nal/goal states, where the final cost plays the role of a boundary
condition. Suppose we have a collection of component final costs
gi(x) for which we have somehow computed the desirability func-
tions zi(x). Linearity implies that, if the composite final cost g(x)
satisfies

exp(−g(x)) =
∑

i

wi exp(−gi(x)) [20]

for some set of wi, then the composite desirability function is
z(x) = ∑

i wizi(x). This approach is particularly useful when the
component problems can be solved analytically, as in the linear-
quadratic-Gaussian (LQG) framework (4). In that case the com-
ponent desirabilities zi(x) are Gaussians. By mixing them linearly,
we can obtain analytical solutions to finite-horizon problems of
the form Eqs. 9 and 10 where a(x) is linear, B is constant, q(x)
is quadratic; however, the final cost g(x) is not constrained to be
quadratic. Instead g(x) can equal the negative log of any Gaussian
mixture. This is a nontrivial extension to the widely used LQG
framework. See ref. 13 for details.

Discussion
We formulated the problem of stochastic optimal control in a way
which is rather general and yet affords substantial simplifications.
Exhaustive search over actions was replaced with an analytical
solution and the computation of the optimal cost-to-go function
was reduced to a linear problem. This gave rise to efficient new
algorithms speeding up the construction of optimal control laws.
Furthermore, our framework enabled a number of computations
that were not possible previously: solving problems with nonqua-
dratic final costs by mixing LQG primitives, finding the most likely
trajectories of optimally controlled stochastic systems via deter-
ministic methods, solving inverse optimal control problems via
convex optimization, quantifying the benefits of error tolerance,
and applying off-policy learning in the state space as opposed to
the state-action space.

These advances were made possible by imposing a certain struc-
ture on the problem formulation. First, the control cost must be
a KL divergence—which reduces to the familiar quadratic energy
cost in continuous settings. This is a sensible way to measure con-
trol energy and is not particularly restrictive. Second, the controls
and the noise must be able to cause the same state transitions;
the analog in continuous settings is that both the controls and the
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noise act in the subspace spanned by the columns of B(x). This
is a more significant limitation. It prevents us from modeling sys-
tems subject to disturbances outside the actuation space. We are
now pursuing an extension that aims to relax this limitation while
preserving many of the appealing properties of our framework.
Third, the noise amplitude and the control costs are coupled, and,
in particular, the control costs are large when the noise amplitude
is small. This can be compensated to some extent by increasing
the state costs while ensuring that exp(−q(x)) does not become
numerically zero. Fourth, with regard to Z learning, following a
policy other than the passive dynamics p requires importance-
sampling correction based on a model of p. Such a model could
presumably be learned online; however, this extension remains to
be developed.

This framework has many potential applications and we hope
that the list of examples will grow as other researchers begin to
use it. Our current focus is on high-dimensional continuous prob-
lems such as those arising in biomechanics and robotics, where
the discrete-time continuous-state MDP approximation is par-
ticularly promising. It leads to linear integral equations rather
than differential equations, resulting in robust numerical meth-
ods. Furthermore it is well suited to handle discontinuities due
to rigid-body collisions. Initial results using mixture-of-Gaussian
approximations to the desirability function are encouraging (11),
yet a lot more work remains.
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