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Abstract—Both global methods and on-line trajectory opti-
mization methods are powerful techniques for solving optimal
control problems; however, each has limitations. In order to
mitigate the undesirable properties of each, we explore the
possibility of combining the two. We explore two methods of
deriving a descriptive final cost function to assist model predictive
control (MPC) in selecting a good policy without having to plan as
far into the future or having to fine-tune delicate cost functions.
First, we exploit the large amount of data which is generated
in MPC simulations (based on the receding horizon iterative
LQG method) to learn, off-line, the global optimal value function
for use as a final cost. We demonstrate that, while the global
function approximation matches the value function well on some
problems, there is relatively little improvement to the original
MPC. Alternatively, we solve the Bellman equation directly
using aggregation methods for linearly-solvable Markov Decision
Processes to obtain an approximation to the value function and
the optimal policy. Using both pieces of information in the MPC
framework, we find controller performance of similar quality
to MPC alone with long horizon, but now we may drastically
shorten the horizon. Implementation of these methods shows that
Bellman equation-based methods and on-line trajectory methods
can be combined in real applications to the benefit of both.

I. INTRODUCTION & MOTIVATION

Reinforcement Learning (RL) offers a compelling paradigm:
instead of hand-tuning a controller using careful analysis of
the specific system at hand, RL allows us to define high-
level goals for the desired behavior and computes control rules
through numerical optimization. The biggest challenge of RL
is the curse of dimensionality — since the volume of the state
space grows exponentially with added dimensions, any attempt
to optimize a global policy a-priori becomes computationally
infeasible in large, complex systems.

The alternative is to use trajectory optimization by focusing
the limited computational resources on the most relevant
states. Model Predictive Control (MPC) [1], [2] is an approach
that applies trajectory optimization in real time to the cur-
rent state of the system. Computing the policy in real time
makes MPC very reactive, allowing it to generate a control
law for any state of the system. However, reliance on on-
line computation is also the primary limitation of MPC —
computational resources are invariably limited, and on-line
trajectory optimization for high-DOF, complex systems is a
taxing task.

The main parameter used to regulate the computational
demand of MPC is the length of the planning horizon. Akin
to the search depth in classical AI applications (e.g., how
many steps ahead a chess software considers before choosing
a move), the choice of a particular horizon affects both the
computational load (shorter horizons are easier to compute)
and the level of performance (planning over shorter horizons
results in poorer behavior). In some cases, we may find a
“sweet-spot” for this trade-off. However, if real-time optimal
control is required by the application and the longest horizon
we can afford to compute in real time is too short to yield
effective control, a different approach is needed.

In the course of simulation, MPC provides an approximation
to the optimal value function and a near-optimal control policy
near the states which the controller visits. We wish to exploit
this data to avoid having to continually recalculate the value
function at states that have previously been visited; further,
we can use this data to shorten the horizon that MPC uses to
calculate the optimal trajectory. In the extreme case, with exact
replication of the value function or policy solely from data,
we could use straight-forward greedy optimization to control
the system (equivalent to MPC with a 1 time step horizon).

While RL global methods may be guaranteed to converge
to the globally defined cost-to-go function or control policy
in the limit of a large number of basis functions, neurons, or
a high-degree of polynomial, in practice, these approximate
methods must handle the finite error in representation which
they generate. RL-based approximations often suffer from the
curse of dimensionality, low accuracy, and low efficiency in
reality. These shortcomings motivate us to find novel, practical
methods of exploiting a globally defined cost-to-go function
and control policy.

A. Related work

Finding a good way to combine the advantages of local
and global dynamic programming is not a new endeavor. In
particular Atkeson and colleagues have been actively exploring
this area for the past decade [3], [4]. Their data-based approach
involves saving the results of off-line trajectory optimization
as a “trajectory library” and then selecting data from this
library during real-time control. Similar results can also found
in Real-Time Dynamical Programming [5], heuristics for



learning the game GO [6] and shortest path problem solving
applications [7]. The main drawback of this approach is that
it does not efficiently exploit computational resources in real
time. If we already have the trajectory-optimization machinery
at hand that runs in real time, why not use it in both the off-line
and on-line contexts?

In some domains we may expect the optimal system to
converge to a small volume of state space, e.g., when the
optimal behavior leads to some target state or a limit cycle. In
these cases, we may compute the accurate value function in
that small region, and use it as a final cost for the MPC com-
putation. This scheme is called infinite-horizon MPC [8], [9],
[10], and it is guaranteed to produce the optimal behavior as
long as the trajectory terminates in an area where the terminal
cost accurately reflects the value function. Unfortunately, in
high-DOF domains the system may find itself very far from
the asymptotically-optimal region of state space. For example,
consider a walking humanoid that has fallen on the ground;
in this case, knowing the value function around the optimal
gait does not provide enough information to figure out how
to get up. On the other hand, it might well be that the system
has already been in this perturbed state (or one similar to it),
and it would be wise to find a way to reuse past experience
to facilitate the current optimization.

B. Our contribution

The main contribution of this work is to demonstrate the
results of interfacing model predictive control with value
function approximation. First, leveraging machine learning
techniques, we exploit the large quantities of data generated in
a traditional MPC simulation to approximate the optimal value
function globally. We use these global function approximations
in the MPC framework as a final cost to help MPC make
better decisions with shorter planning time. We demonstrate
that, while these types of global function approximations may
prove beneficial in some situations, there is great sensitivity
to the quality of the approximation. As such, combining MPC
with a fitted value function remains an open problem.

Second, we develop an alternative approach that reprsents a
significant improvement over MPC alone. We obtain a global
final cost by using the cost-to-go function generated by solving
a linearly-solvable Markov Decision Process (LMDP), and
we also warm-start MPC’s policy search with the control
policy also from solving the LMDP (both control policy
and value function can be obtained in the same solve). The
LMDP is an optimization problem explicitly related to the
trajectory optimization problem which MPC solves, but it as-
sumes certain structure in the mathematical formulation which
differs from the MPC optimization problem. This structure
reduces the Bellman equation to a linear functional equation,
however we still need a function approximator in order to
solve it numerically. We present results in which we use
the solution of the LMDP, rather than trying to directly fit
MPC data, as a final cost for MPC. With this value function
approximation as a final cost and an extra “hint” from the
computed LMDP policy, we are able to shorten the horizon of

MPC while maintaining solution quality even on underactuated
problems; the cart-pole and the acrobot. In the area of Bellman
equation-based methods, this approach presents a novel way
to recover complicated system behavior even from a coarse
approximation of the cost-to-go function. In the area of MPC,
this method serves as an automatic way to summarize the final
cost.

II. METHODS

In this section we explain details of our methods. First, we
discuss MPC and how we propose to use global methods in
conjunction with this on-line, trajectory-based method. Then,
we discuss the two methods of obtaining a global value
function approximation with which we experiment to improve
MPC.

A. Model Predictive Control

1) Overview: Model Predictive Control, also known as
Receding Horizon Control, solves the optimal control problem
to a user-chosen finite time horizon. That is, from the given
position in state space, MPC searches for an optimal policy
in the neighborhood of the current position to some finite
horizon. The first control of the computed optimal policy
is applied to the system, and then MPC recomputes a new
optimal trajectory from the new state (having not completed
the old planned policy). The MPC algorithm is as follows.

1: for i = 0 to the end of simulation do
2: Initialize optimizer with a control sequence uinit

i,...,i+N−1
3: Solve for the optimal policy ui,...,i+N−1
4: Apply only ui to dynamical system, xi+1 = f(xi,ui)
5: end for
The optimal policy in the line 3 of the algorithm is defined

as the solution of the discrete-time problem

min
ui,...,i+N−1

[
Σi+N−1

k=i l(xk,uk) + vF (xi+N )
]

(1)

where l(x,u) represents the running cost, vF is the final cost,
and the states xk and controls uk are constrained by the
discretized dynamics xk+1 = f(xk,uk).

There are multiple trajectory based optimization methods
available. Having experimented with most of the techniques,
we have found the iLQG method [1], [11], [12], which
assumes a locally linear model of the dynamics and maintains
a local value function of second order accuracy, to be the
fastest and most robust overall. So, we use it exclusively in
this work.

2) Discussion: The primary computational bottleneck in
preventing MPC from running in real time, especially for high
degree of freedom systems, is the need to plan far in advance
at every time step. Therefore, it is desirable to add something
to MPC that permits the same quality of policy at a shortened
horizon, or, equivalently, a better policy with the same horizon.

From equation 1, one sees that MPC sums the running costs
up through the end of the finite horizon and then anything that
would define the system’s behavior from time N to infinity
is lumped into the final cost vF (xi+N ). That is, the final cost



should give information about the desirability of any state
which the finite-horizon planner is able to reach. The more
accurately the final cost describes the desirability of the state
at the end of MPC’s time horizon AND which directions in
state-space increase this desirability, the less the method relies
on the sum of the running costs. If the MPC horizon is fixed
by limited computational resources, we obtain a better policy
with a more descriptive final cost.

To further characterize a desirable final cost function, recall
that MPC is a trajectory-based method of approximating and
computing a solution to the Bellman equation

min
u
l(x,u) + V (f(x,u)) (2)

where V (f(x,u) is the value function evaluated at the state
(x,u) under the dynamics f and l(x,u) is the one-step cost
function.

Drawing parallels between the Bellman equation and the
MPC framework, we notice that the final cost in MPC
vF (xi+N ) is the optimal value function for an infinite-horizon
problem evaluated at the last state in the finite horizon tra-
jectory. So, in the next sections we describe the results of
employing two different methods of obtaining an approxi-
mation to the Bellman-defined value function. We will give
these approximations to MPC as a final cost, and if the
approximation is accurate (or even if it is inaccurate but useful
information is still attainable), we will be able to achieve our
aim of reducing the need for a long horizon for MPC.

A second aspect of trajectory-based MPC which makes it
fast besides solving the local problem to only a finite horizon
is recognizing that, if we only employ the first control of a
computed optimal policy before recomputing a new trajectory
from our new location, we expect that the optimal policy has
not changed drastically from that of the previous time step.
Thus, in line 2 of the MPC algorithm the entirety of the
optimal policy computed at the last time step is used to start
the search for the optimal policy at the new position. This
“warm start” of the policy search permits real-time solution at
every time step. However, it may constrain the solver to a local
minimum; it does not permit the system to look for solutions
that are perhaps better but which are too different from the
solution already has in hand. Furthermore, in practice the on-
line optimizer may not even converge to a local minimum
because computational resources limit us to a single quasi-
Newton optimization step, making good initialization even
more imperative.

B. Data-driven value function approximation

1) Overview: First, we try to exploit the hard work of
model predictive control simulations to make a global ap-
proximation to the optimal value function. As the iLQG-
based MPC controller marches forward in time continually
hypothesizing about optimal trajectories an avalanche of data
is being generated. This data includes not only information
about the state, but also a locally second-order approximation
to the system’s value function is generated at each visited state

along with the gradient and Hessian of the value function. We
use machine learning to fit a global value function to this data.

2) Models for function approximation: With all function
approximation methods, there are many parameters that can
be adjusted to achieve good fit. In broad terms, these typically
include quantity, spacing, quality of the data, how and when
the data is normalized, where the basis functions are placed,
the spread of the basis functions, the cutoff, and the criterion
defining what constitutes a good fit which ends the learning
process. There are an infinite combination of these parameters,
and while most methods of learning are adaptive and boast
some provable convergence criteria, in practice they are highly
sensitive. It is always important to check the fit on training data
and on test data (on which the method was not trained), but
even so, a good fit is commonly elusive. Rather than discuss
further the general complications of fitting, which are well-
known, we will provide just a couple examples of typical
behavior of the function approximations we have chosen to
use.

The function approximation models we employed for this
work were
• Nearest neighbor
• Locally weighted projection regression
• Polynomial mixture of normalized Gaussians
The nearest neighbor is a global approximation that simply

copies all the value function information (the value, the gra-
dient, and the Hessian) from the closest neighbor. The closest
neighbor is, here, defined as the data point with smallest
Euclidean distance to the queried state after all data and the
state of interest have been normalized. Nearest neighbor is, of
course, very simple to implement, has no parameters besides
the norm in which the nearest neighbor is calculated, and can
be used effectively for quick base-line comparisons.

Locally weighted projection regression (LWPR) is a non-
linear function approximation method which is applicable in
high-dimensional spaces. The core is locally linear models
spanned by a relatively small number of univariate regres-
sions in directions of the input state-space selected with a
weighted partial least-squares algorithm. LWPR learns rapidly
and automatically updates the distance metrics of each local
model using statistically significant stochastic cross-validation.
LWPR provides benefit over many other techniques when the
function to be learned is highly-nonlinear, when large amounts
of data is available, and it is even very successful when the data
is high-dimensional with redundant dimensions. Most control
problems of interest are high-dimensional (though we explore
basic behaviors in low-dimensional systems in this paper), so
a method that scales well with dimension is valuable. Also,
we know that the value function is very nonlinear, and we
certainly have large amounts of data with which to train a
model, so LWPR is a reasonable candidate for value function
approximation. (It is worth nothing that the results presented
here are not necessarily the best to showcase the strengths
of LWPR. Namely, we use low-dimensional systems where
other approximation methods work well, and we generate
an approximation to the value function completely off-line.



LWPR is well-suited to on-line, adaptive approximations, as
the update of linear weights can be done more efficiently than
update of other models.) We use the MATLAB implementation
provided by Klanke and Vijayakumar [13].

The third function approximation model is a mixture of
Gaussians each weighted by a polynomial. Here the center
of each normalized Gaussian basis function is determined
through an expectation maximization procedure in an unsu-
pervised learning step, and then coefficients of the polynomial
mixture of the Gaussians are learned in a supervised fashion.
The properties of a Gaussian mixture model are well-studied,
and it is suitable for problems of moderate dimension.

3) Obtaining data: As previously mentioned, the data for
the value function approximation was taken from direct MPC
simulation. For each system data was generated by starting
from a random initial pose also with randomly generated
velocities. These initial states were chosen to sample from
a variety of locations in the possible state space. All joint
limits were respected, and the velocities were selected to be in
ranges which had been seen in typical MPC-only simulation.
The simulations were then run for a fixed simulation period.
The time of simulation was sufficient for the system to achieve
the goal state for most initial conditions.

After simulation, the trajectories were pruned to remove
failed runs, transient behaviors, and other “suspicious” activity
as indicated by outlying states or large regularization in the
iLQG solver.

The main difficulties in obtaining data arose in defining
useful initial states. The function approximation needs to be
very accurate around the goal state, thus much data is required
in that area. This does not present a problem as all simulations
were run to the goal state so every simulated trajectory “saw”
this region of interest. On the other hand, the approximation
needs to provide valuable information to MPC especially
when far away from the goal state, especially if, as was our
experience, the value function approximation leads MPC out
of its typical realms of operation (ostensibly in search of a
better trajectory). As is common experience, to well-cover a
large, high-dimensional state space in data is non-trivial.

C. Using a LMDP solution for value function approximation

1) Linearly-solvable MDPs: Linearly-solvable optimal
control problems are a special class of optimal control problem
that linearizes the Bellman equation. A Markov Decision
Process is said to be linearized if the following conditions
hold: (1) both the passive dynamics and the control policy
are expressed as distributions, and they lie in the same
subspace/subset, and (2) the cost function is defined by the
KL divergence [14].

The linear MDP solves the optimality problem for the
desirability function z(x) = exp(−V (x)). In the MDP, the
passive dynamics are given by x′ ∼ p(·|x), and the running
cost is defined in terms of distributions as follows.

l(x,u(·|x)) = q(x) +KL(u(·|x)||p(·|x)) (3)

where q is the state cost KL denotes the KL divergence
representing control cost.

The minimized Bellman equation, linear in the desirability
function, is given by

exp (q(x)) z(x) = G[z](x), (4)

where
G[z](x) =

∫
x′∈X

p(x′|x)z(x′)dx′, (5)

is the next-state expectation under p. The optimal control
policy is obtainable from z(x) by

u∗(x′|x) =
p(x′|x)z(x′)

G[z](x)
. (6)

In an average cost setting, the desirability function is
the principal eigenfunction of exp (−q̃(x))G[z](x) and is
guaranteed to be positive. For the first-exit formulation the
value function is fixed at terminal states resulting in a linear
equation.

2) LMDP approximation schemes for continuous state
spaces: We have developed several numerical methods [15],
[16], [17] to calculate the value function and the control policy
in a continuous state space without losing the LMDP’s lin-
earity and efficiency. Among them is the aggregation method
[17] which relates the continuous state space to discrete
samples and solves the problem as a discrete state LMDP.
The dynamics are assumed to be in the form:

dx = a(x)dt+B(x)(udt+ σdω), (7)

where ω(t) represents Brownian motion, and σ is the noise
magnitude. The cost function is in the form

l(x,u) = q(x) +
1

2σ2
‖u‖2. (8)

The soft aggregation method defines the following two
transition probability-like quantities to transform a LMDP on
the original space (x ∈ Rn) to discrete clusters (i = 1, 2...).

1) Aggregation probability: p(i|x) = φi(x), the “degree of
membership of x in the aggregate state i”

2) Deaggregation probability: p(x|i) = di(x) the “degree
to which i is represented by x”

The desirability function is defined by deaggregation prob-
abilities. Thus, the aggregation technique yields an approxi-
mation to the value function which is based on the logarithm
of normalized Gaussians. Note that there are no polynomial
factors in this approximation of the value functions which
makes the function nearly a step function. A probability-like
optimal control policy u∗(x′|x) is obtained from (6) and its
mean is used to recover the control signal u∗(x) through
inverse dynamics. Note though that the LMDP may give
instructions u∗(x′|x) to go to somewhere unphysical.

We obtain u∗(x) in a discrete state space and, using the
cluster positions, we are able to define desirable locations
for the continuous system. In MPC, we set the final cost to
vF (x) = − log(z(x)) and modify the MPC warm start of
policy to the LMDP’s control policy uinit

i+N−1 = u∗(xinit
i+N−1).



Also, the probabilistic framework introduces noise that is
not present in MPC, so we are not approximating the value
function of MPC. However, this discrepancy is irrelevant if
the supplied final cost function helps nudge the optimizer in
the right direction.

III. NUMERICAL RESULTS

In this section, we present the results of using the two
different value function approximation methods with MPC
as described above on simulated systems. We demonstrate
our methods on the classic control examples; the inverted
pendulum, the double pendulum and the acrobot.

The simplest system we investigate is the inverted pendu-
lum. The goal is to swing a one-link pendulum up to the
unstable vertical equilibrium and maintain stability. The cost of
control is high, so that building momentum through swinging
is required. This system has two degrees of freedom in the
state (the angle of the pendulum and the angular velocity),
and one control degree of freedom at the pivot point.

One level of difficulty up from the one-link pendulum is
the double pendulum. This is a two link pendulum in which
both joints (“shoulder” and “elbow”) are actuated. The acrobot
system is obtained by simply removing control at the shoulder
such that the system is now underactuated. These systems both
have four degrees of freedom in the state space (the two angles
and the two angular velocities). The double pendulum has two
controls and, as mentioned, the acrobot has only one. Here
again, the goal is to swing both links up to the vertical position
such that the pendulum is fully extended upward and stabilize.

In all the experiments, the state transitions are obtained by
integrating the equations of motion. The starting states for
simulation are randomly initialized within the limits of the
positional degrees of freedom and with velocities on the order
of those seen in unmodified MPC simulations.

A. Data-driven value function approximation

First, we present the results of using a value function learned
from MPC simulation data. We start with the simplest system,
the inverted pendulum, and then work toward more difficult
problems.

1) Inverted pendulum: If we wish to use value function
approximation to improve MPC, it is important to carefully
consider and understand the properties of the chosen function
approximation models and how these properties might trans-
late into their usage in conjunction with MPC. We start with
examining a two degree of freedom system as it permits full
visualization of the state space and can give instruction about
what problems to look out for with larger systems.

Figure 1a shows a fit by locally weighted projection regres-
sion. It was trained with 14600 data points. The parameters had
to be set so that there was a large number of receptive fields
(basis functions), specifically 451, to get this resolution in just
a 2D problem. This model achieved less than 1% error on the
training data though, and we can see it accurately captures
both the linear feature in the middle of the state space and the
periodic condition on the boundary when compared with the

nearest neighbor approximation of figure 1b. One final thing to
note in this model, is that while the value of the optimal-value
function is nearly zero (-0.0025) at the goal state of (0, 0), the
gradient is not ([−0.0299− 0.0086]).

We contrast this behavior with a polynomial mixture of
Gaussians model. A mixture of Gaussians with a first order
polynomial is seen in figure 1c and a mixture with a second
order polynomial is seen in figure 1d. Both figures typify a
mixture of Gaussians, in that we see very circular structures,
and it is not able to well-resolve the linear feature. In addition,
training and storing a normalized mixture of Gaussian model
with polynomials does not exploit any dimension reduction as
LWPR does, so high order polynomials and training with as
many data points as a LWPR model can be trained with is
intractable.

With a learned model of the global value function in hand,
we now investigate using it as a final cost in MPC. To do
so, we choose random initial poses, and then allow MPC to
run for a simulation time of 2 seconds. At the end of the
simulation, the running cost at every state visited is summed
over the complete trajectory. A lower cumulative running cost
implies a more optimal policy. We simulate the four different
methods; 1) MPC without any final cost, 2) MPC with nearest
neighbor value function as final cost, 3) MPC with Locally
Weighted Projection Regression (LWPR) as final cost, and 4)
MPC with second order polynomial mixture of normalized
Gaussians (polyMoG) as final cost. For each method, we vary
the length of the MPC horizon between 4ms and 1.5s.

Figure 2a shows the percentage of trials in which each of the
methods utilizing function approximation are able to achieve a
lower cumulative cost than MPC alone (comparing all methods
at the same MPC horizon). All the methods are able to achieve
a lower running cost nearly all of the time at nearly all the
horizons. Only the polynomial model performs poorly with
short MPC horizon, but even so it is able to out-perform pure
MPC at a horizon half the length of the original.

These results regarding how MPC performs with the value
function approximation give a glimpse at an important piece
of the puzzle in using these methods. That is the quality of
the value function approximation. The quality of the LWPR
and nearest neighbor models is very good, while the quality
of the polyMoG model is relatively poor. We see that a highly
accurate approximation seems to benefit us greatly, but it
also appears that a poor approximation does not necessarily
mean we cannot achieve some improvement. As we move to
higher dimensional systems, achieving the level of accuracy of
the value function that we obtained on this two dimensional
problem is going to be practically impossible.

2) Double pendulum and acrobot: Assured that the general
method works for a small problem, we next move to the
fully-actuated double pendulum example. After obtaining a
global value function approximation with our three techniques,
we wish to give further insight into what information the
approximation of the value function is able to capture. We
note that while there are certainly point-wise errors in the
approximation of the value function, a small relative error is



(a) LWPR (b) Nearest Neighbor (c) PolyMoG order 1 (d) PolyMoG order 2

Fig. 1. Function approximation of inverted pendulum problem

achievable; indeed, not matching the data exactly is important.
We wish for the approximate value function to help MPC avoid
tracking toward local minima. As such, the approximation
needs to have a smoother structure globally than the direct
data yields. However, this global smoothness also hinders the
method.

The norm of the gradient of the value function is not
well-captured. The gradients are much smaller at certain
critical states than the data indicates they should be; i.e., the
approximation is smoother than the true value function. This
smoothing of the value function prevents the method from
being able to make aggressive control corrections. To make
matters worse, there is a problem on the reverse side, too!
That is, the gradient of the approximated function is frequently
non-trivial even at states where they should be small or zero,
namely near the goal state; LWPR is especially culpable in
this matter.

We next examine the behavior of MPC when a global
value function is used as a final cost. Figure 2b shows the
percentage of trials in which each of the methods utilizing
function approximation are able to achieve a lower cumulative
cost than MPC alone. The LWPR model is able to achieve
a lower final cost nearly always with short horizons; nearest
neighbor also performs well in this regime. Their performance
degrades somewhat with longer horizons, but is still able to
achieve lower running cost than MPC more than half of the
time. The polyMoG model does not show as much advantage
at short horizons, but it is consistent throughout all horizons.

The results of the inverted pendulum and the fully-actuated
double pendulum encourages us to further increase the dif-
ficulty of the control problem. Removing actuation at the
shoulder to obtain the acrobot, we apply the same method
and compare the results. Figure 2c shows the plots of the
percentage of trials incurring lower running cost, and figure
2d shows the percentage of trials in which the various methods
were able to stabilize at the goal state. On this problem, the
nearest neighbor is the only method that performs better than
MPC alone with high consistency and this is only at very
short MPC horizons. The polynomial mixture of Gaussians
approximation is not necessarily worse in terms of cost, but
does not provide the benefit we hope to see.

(a) Inverted Pendulum Cost (b) Double Pendulum Cost

(c) Acrobot Cost (d) Acrobot Stabilization

Fig. 2. (a-c) Percentage of trials in which MPC+value function approximation
incurred a lower running cost than MPC alone; (d) Percentage of acrobot trials
able to stabilize

B. LMDP solution for value function approximation

The results of the previous section indicate that data-driven
methods of approximating the value function, while in theory
they work on any system, are limited by the learning process
in high-dimensional systems with complicated value function
topology. We now turn to using the LMDP solution for value
function approximation to find a method that works well for
more difficult systems.

1) Aggregation methods: Solving the LMDP by aggrega-
tion methods as described previously, we obtain a global value
function approximation. However, using this value function as
a final cost fails to provide successful results in achieving
either swing up or stabilization in the underactuated acrobot.
Recall that in solving the LMDP we also obtain the LMDP
optimal policy. Warm starting MPC with this control policy
and not providing a final cost also fails to improve MPC. Thus
neither of the ingredients provided by the global method is able
to help MPC. However, somewhat contrary to intuition, when



both the control policy and the value function are provided
to MPC, the required horizon of planning for MPC can be
reduced while still achieving the control tasks.

Figure 3b shows the percentage of 100 trials (initializing
simulation from a random initial state) in which the controller
is able to swing the pendulum to vertical and in which the
controller is able to stabilize the pendulum after swing-up. In
the acrobot problem, we need a 800 ms time horizon to swing
up and stabilize the acrobot. This is in a sharp contrast contrast
to the MPC method itself, which needs a 1500 ms horizon to
obtain similar results on both problems. Thus using both the
value function and the control policy derived from the LMDP
is an effective method to shrink the horizon MPC needed.
The LMDP solution helps MPC quickly discover the target,
although a too short horizon limits the hybrid method’s ability
to stabilize the system. On the other hand, when the horizon
is too long, the hybrid method often fails to achieve the task
before the simulation is terminated due to the decaying effect
of the policy warm-start. An example trial from each regime
is depicted in Fig. 4.

Compared to the data-driven approach, this combination
does not generally lower the accumulated cost since the LMDP
is actually solving a different optimal control problem. Yet the
success rates show that the combination of LMDP and MPC
is helpful in solving practical problems.

These results were obtained solving for the value function
on a regular grid with approximately 10,000 bases in a 4D
space; such grids are too coarse for aggregation methods alone
to be effective. The computation time of the LMDP is around
10 seconds with 6 threads and utilizing the Mujoco solver
[18]. The solution of the LMDP is done off-line. Extracting the
control policy and the value function on-line after the LMDP
solve is cheap given proper implementation, so MPC is made
more efficient by the hybrid method.

The efficacy of the hybrid method is more noticeable still
on single pendulum and double pendulum problems. For the
double pendulum, a 100ms time horizon in MPC is all that is
needed in the LMDP-MPC hybrid method in contrast to MPC
alone which requires a 1500 ms horizon. Given success on
the underactuated problem, this is not surprise, but we cannot
provide more details due to page limitations.

2) First exit formulation: The flexibility of the LMDP
formulation of the optimal control problem permits us to
solve for a value function and control policy under a first
exit formulation as well as in the average cost formulation
we used previously. Interestingly, we find that in the first exit
formulation, the aggregation method may be used to generate
an acceptable control policy even when the state costs are
not finely-tuned to describe the control problem. That is, the
solution is foremost designed to obtain the goal state, and the
state cost is of secondary concern. This approach puts less of
a burden on the control engineer.

Figure 3d presents results in which we controlled the
acrobot by solving the LMDP under the first exit formulation
with the upward position assigned as the target. In the first
case, the LMDP defined by a constant state cost and very

(a) Reach the top (b) Swing up and stabilize

(c) Percentage of lower cost (d) Compare with first exit

Fig. 3. Results of acrobot trials. (a) Success rate of swing up. (b) Success
rate of swing and stabilization. (c) Percentage of lower running cost. (d)
Success rate of swing up and stabilization of the acrobot under different
LMDP formulations.

Fig. 4. Demonstration of the actual movement of acrobot under different
approaches.

small control cost is solved; such a combination would yield
a practically uncontrollable system under other formulations.
In the other case, we again solve the LMDP in the first
exit formulation, but we retain the well-tuned state cost. The
percentage of trials in which swing up and stabilization are
achieved is nearly equivalent to the case of the solution of
the LMDP in an average cost formulation, but the first exit
formulation is not reliant on a hand-tuned state cost.

3) Resolution of the value function: By using more bases
in the LMDP solver the accuracy of the value function will
be increased. However, for the acrobot, we can still reduce
the MPC planning horizon with as few as 3000 bases, and
the addition of more bases does not significantly decrease
the needed horizon. It is particularly encouraging that the
computational expense of a highly accurate LMDP solution
is not required to provide benefit to MPC and that we can
shorten the horizon needed for MPC quite dramatically using
a global solution which is too inaccurate to be used by itself.



IV. CONCLUSIONS AND FUTURE WORK

We finish with some broad observations from our current
work and indicate the direction of our future efforts.

A. Shortening MPC’s horizon automatically

The planning horizon required by MPC for effective control
of a system is highly dependent upon the descriptiveness of
the final cost function and on the method used for policy
warm-start. Both our global methods for defining a final cost
imply that an automatically synthesized final cost may permit
shortening of the planning horizon. However, in the case of
a value function learned from data, we have only achieved
good results on very simple problems in spite of a great deal
of experimentation. Better methods of function approximation
in the highly-nonlinear and difficult high-dimensional spaces
of complex systems need to be used to approximate the value
function if any benefit to MPC is to be seen. Our LMDP
results show that exploiting both a global value function
and optimal policy is required to provide substantial benefit
to MPC. All our results together show some promise of
successful exploitation of global methods in on-line MPC,
but more scaling to higher-dimensional systems remains to
be demonstrated.

B. Expanding global methods

In the previous sections, we have described how we used
global methods to improve MPC. We note that this is only half
the story. Indeed, equally valuable is the improvement made
to the global LMDP method by adding MPC to its solution. In
our results, we obtain only a very rough estimate of cost-to-go
function which is far from the accuracy required to achieve
the desired control task. Yet, even a coarse global solution
still contains information about the solution of the optimal
control problem. On-line adaptation can exploit this helpful yet
inaccurate information. Instead of increasing the accuracy of a
global method solution by introducing more basis functions or
neurons, it may be more practical to include on-line correction.

On-line planning can also expand a global method’s applica-
bility in real-time applications. First, the prediction generated
by planning provides a last minute safety check of the control
policy. Second, it decreases the demand on the limited com-
putational power installed on robots. Rather than storing and
computing solutions to the global Bellman equation locally
on robots, we have the freedom to compute them on a remote
server and send only the planned trajectories.

C. Future work

In the future, we plan to explore more ways to exploit
other global methods in generating final costs and policies
to assist MPC. In particular, we will seek to understand the
hidden information in a coarse or inaccurate approximation of
the optimal value function, especially in the linearly-solvable
framework.
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