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Abstract: Nonlinear stochastic optimal control problems are fundamental in control theory. A general class of such
problems can be reduced to computing the principal eigenfunction of a linear operator. Here, we describe a new method
for finding this eigenfunction using a moving least-squares function approximation. We use efficient iterative solvers that
do not require matrix factorization, thereby allowing us to handle large numbers of basis functions. The bases are evaluated
at collocation states that change over iterations of the algorithm, so as to provide higher resolution at the regions of state
space that are visited more often. The shape of the bases is automatically defined given the collocation states, in a way that
avoids gaps in the coverage. Numerical results on test problems are provided.

Keywords: Stochastic optimal control; Bellman equations

1 Introduction

Nonlinear stochastic optimal control problems are funda-
mental in control theory, yet they remain difficult to solve.
This motivates exploring more restricted formulations lead-
ing to more efficient algorithms. Previous work [1–3] has
identified a class of nonlinear stochastic optimal control
problems that is reduced to solve a linear problem in terms
of the exponentiated optimal cost-to-go function. In this pa-
per, we primarily focus on infinite-horizon average-cost set-
tings, which involve computing the principal eigenfunction
of a linear operator. Despite this linearity, the state space
of many physical systems is high-dimensional, and so, the
curse of dimensionality is still an issue. Thus, carefully de-
signed approximation schemes are needed for such prob-
lems.

Some numerical methods applicable to this problem class
have previously been developed, in particular direct MDP
discretization [3] and function approximation using Gaus-
sian bases [4]. Discretization is useful in terms of obtain-
ing ‘ground-truth’ solutions in low-dimensional problems
and comparing to the results of more advanced algorithms
that need fine-tuning, but it is not applicable to higher
dimensional problems. Gaussian bases are promising, but
they have some disadvantages. First, the resulting problem
is weighted (in the average-cost setting, it is in the form
λFw = Gw instead of λw = Gw), which slows down the
solver. Second, when λ is also unknown, this method might
converge to the wrong eigenvector. Third, positivity of the
solution (which is required since we are solving for the ex-
ponent of a function) is hard to enforce without introduc-
ing inequality constraints. Fourth, Gaussians have too many

shape parameters that need to be adjusted: it takes O(n2)
scalars to specify a covariance matrix in an n-dimensional
space.

Our new method avoids the above limitations. It is mo-
tivated by the moving least-squares (MLS) methods [5–7],
which is also known as local regression or LOWESS (lo-
cally weighted scatterplot smoothing). The new approxima-
tion scheme developed here leads to simple eigen-problems
in the form λw = Gw (here G = QP in (21)) and guaran-
tees the positivity of the solution by enforcing the positivity
of G. It also adapts the shape of the basis functions auto-
matically given the set of collocation states (see Section 3).
The downside of this is that the bases are defined implicitly
as the solution to a linear system with O(n) equations, thus
evaluating all bases at one state involves an O(n3) operation
(Cholesky decomposition). This by itself is not a major dis-
advantage because of finding the inverse of a covariance ma-
trix (which is needed when working with Gaussian bases) is
also an O(n3) operation. However, the bases developed here
need to be evaluated at more points, because the lack of an
analytical expression leads to the use of cubature formulas
to compute integrals (see below).

In Section 2, we review the linearly solvable optimal con-
trol problems. In Section 3, we demonstrate the moving-
least-square approximation process. In Section 4, we show
other key components of our method. Numerical results will
be presented in Section 5.

2 Linearly solvable optimal control problems

In this section, based on [3,4], we summarize the linearly
solvable Markov decision process (LMDP) framework in
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continuous space and time. While we focus on average-cost
settings, we will also address first-exit and other settings in
later parts.
2.1 Linearly solvable MDPs

Consider an MDP with state x ∈ X ⊆ R
n . Let

p(x′|x, u) ≡ u(x′|x)
denote the transition probability given a certain control sig-
nal u, and p(x′|x) denote the transition probability without
any control, which is also known as passive dynamics. The
optimal cost-to-go function is given by the Bellman equa-
tion:

v(x) = min
u

{l(x, u) + Ex′∼u(·|x)[v(x′)]}. (1)

Note that u under min is the transition probability distribu-
tion u(x′|x) rather than a control vector.

For this problem class, the immediate cost function is de-
fined as

l̃(x, u) = q̃(x) + KL(u(·|x)||p(·|x)), (2)
where KL denotes the Kullback-Leibler divergence between
two probability distributions. Define the desirability func-
tion z(x) = exp(−v(x)), where v(x) is the optimal cost-
to-go function. Then, (1) and (2) become (shown in [3])

− log(z(x)) = q̃(x) min
u

{Ex′∼u(·|x)[
u(x′|x)

p(x′|x)z(x′)
]}.

The minimizing expression resembles KL divergence be-
tween u(x′|x) and p(x′|x)z(x′) except that p(x′|x)z(x′)
is not normalized to 1. Since KL divergence get its global
minimum 0 when the two distributions are equal, therefore
the optimal control law can be expressed in the following
form without minimization:

u∗(x′|x) =
p(x′|x)z(x′)

G[z](x)
, (3)

where the operator G is defined as

G[z](x) =
�

x′∈X
p(x′|x)z(x′)dx′. (4)

The Bellman equation for infinite-horizon average-cost
problems can be written as

exp (q̃(x) − c̃) z(x) = G[z](x). (5)
The desirability function is the principal eigenfunction of
exp (−q̃(x))G[z](x) and is guaranteed to be positive. The
corresponding eigenvalue is λ = exp(−c̃), where c̃ is the
average cost per step. For the first-exit formulation, we have
c̃ = 0 and z(x) = exp(−qT(x)) at terminal states. This
makes the problem a linear equation rather than an eigen-
function problem (see [3]). Reference [3] developed the
Bellman equations for other formulations, and they are re-
viewd in Appendix A2.
2.2 Linearly solvable controlled diffusions

Here, we consider a class of continuous-time optimal
control problems with the following stochastic dynamics:

dx = a(x)dt + B(x)(udt + σdω), (6)
where ω(t) represents Brownian motion, and σ is the noise
magnitude. The cost function of state and control is in the
form

l(x, u) = q(x) +
1

2σ2
‖u‖2, (7)

where q(x) is a state cost function. Note that here l(x, u)
is defined on control vector u rather than u(x′|x) defined
in Section 2.1. The noise is assumed to lie in the same sub-
space as the control. The fact that the noise amplitude also
appears in the cost function is unusual; however, l(x, u) can
be scaled by σ2 without changing the optimal control law,
and this scaling factor can be absorbed in the state cost q(x),
so this is not a restriction. Now, we can discretize this dy-
namical system. The one-step transition probability under
the passive dynamics is approximated as a Gaussian distri-
bution

p(x′|x) = N (x + ha(x), hΣ(x)), (8)
where h is the time duration of this step,

hΣ(x) = hσ2B(x)B(x)T

is the noise covariance.
The transition probability with control u is
p(x′|x, u) = N (x + ha(x) + hB(x)u, hΣ(x)), (9)

while the formula for KL divergence between Gaussians
gives

KL(p(x′|x, u)||p(x′|x)) =
h

2σ2
‖u‖2. (10)

Thus, the familiar quadratic energy cost is a special case
of the KL divergence cost defined earlier. It can be shown
that in the limit h → 0, the solution to the above discrete-
time problem converges to the solution of the underlying
continuous-time problem. Therefore, if we define

q̃(x) = hq(x), c̃ = hc, (11)
the continuous problem is approximated as a continuous-
space discrete-time LMDP. In the infinite-horizon average-
cost setting, (5) becomes

exp (hq(x) − hc) z(x) = G[z](x). (12)

3 Moving least-squares basis functions

3.1 Discretizing LMDPs with basis functions

Approximate solutions to optimal control problems are
often represented as linear combinations of predefined basis
functions. Our method is similar, except that the basis func-
tions here are constructed in an unusual way, as explained
here and in the later sections.

Let φj denote (to defined) the basis functions with
weights wj , j = 1, . . . , N . Then, the desirability function
z(x) can be approximated by

z(x) =
N∑

j=1

wjφj(x). (13)

From (12), for the average-cost setting, we aim to solve
the following eigenfunction problem with λ = exp(−hc)

λz(x) = exp(−hq(x))G[z](x). (14)
Since G[z] is a linear operator, we have

G[z](x) =
N∑

j=1

wjG[φj ](x). (15)

Therefore, if (13) holds, (14) becomes

λ
N∑

j=1

wjφj(x) = exp(−hq(x))
N∑

j=1

wjG[φj ]. (16)

We will solve this equation approximately, by introducing
collocation points xi, i = 1, . . . , M , and enforce the equa-
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tion at those points. This yields the generalized eigenvalue
problem:

λFw = QPw, (17)
Here, F and P are M × N matrices with entries

Fij = φj(xi), Pij = G[φj ](xi), i = 1, . . . , M,

j = 1, . . . , N, (18)
Q is an M × M diagonal matrix with diagonal entries
Qii = exp(−hq(xi)), and w is a vector of all wj .

The above outline applies generally to many basis func-
tion approximators that are linear in the unknown parame-
ters wj . For example, in [4], the functions φj are Gaussians.

Here, we will design bases and select collocation states
so as to satisfy the following conditions:

1) Equal number of collocation points and basis func-
tions, i.e., N = M .

2) F in (17) is the identity matrix, or equivalently,

φj(xi) =

{
1, when i = j,

0, when i �= j.
(19)

3) The basis functions are everywhere nonnegative, i.e.,
φj(xi) � 0. (20)

There are two reasons for these restrictions. First, when
N is large and F is the identity matrix, we can avoid ma-
trix factorization and take advantage of sparsity. Second,
z(x) = exp(−v(x)) > 0 is difficult to enforce if the bases
can be negative.

Thus, in the average-cost setting, the resulting discretized
problem becomes

λw = QPw. (21)
We will discuss the details of the basis function construc-

tion below.
3.2 Moving-least-squares (MLS) approximation

MLS approximation [5] or locally weighted regression
is a way to approximate a continuous function z(x) when
data are assigned to discrete points. MLS is a variation of
weighted least squares fitting. Compared to ordinary least
squares, both the weight function and coefficients here are
no longer constant but are functions of the space variable
x. In MLS, the weight function ω(x) is designed to recon-
struct z(x) based mainly on the neighboring node; in other
words, weights would be higher at nearby nodes.

The reconstructed function can be expressed as
zMLS(x) = hT(x)α(x). (22)

Here, the elements of the vector h(x) are given bases. For
example, in one-dimensional space, h(x) can be expressed
as h(x) = [1 x]T in linear fitting. h(x) should not be con-
fused with the basis functions φi(x) in Sections 3.1 and 3.3.
h(x) is a by-product of MLS approximation process, while
we finally use φi(x) in our solving-procedure, which will
be outlined in subsequent parts.

Elements of α(x) are the unknown coefficients of those
bases h(x). Unlike ordinary least squares, here, they are
functions of x rather than constants. They are obtained by
minimizing the Euclidean norm between the approximation
and the given function values zI at nodes XI .

α(x) = arg min
α

∑
I

ω(xI − x)(h(xI)Tα − zI)2. (23)

Here, ω(x) is a given weight function. It is used to
make the function approximator local, i.e., fit the value at
each state using only the (given) values at nearby states
xI . The minimization process treats the vector α as a free
variable at each x. It can be easily shown that the result-
ing zMLS(x) is linear in the vector z, whose elements are
the given function values zI . This can be represented as
zMLS(x) =

∑
I

φ̃I(x)zI , making the MLS process a natural

candidate for the construction of basis functions (We can
also see that the basis functions defined in MLS approxi-
mation process represent the relationship between a recon-
structed function and original data points, while the bases
h(x) in (22) is a way to restrict the fitting process).
3.3 Construction of basis functions

Now, we begin to construct basis functions for solving
our problem. In addition to the above criteria (19) and (20),
we also need

∑
i

φi(x) = 1. This property guarantees con-

sistency, e.g., if all data indicate that we have a constant
function, and the approximator will recover a constant func-
tion. These properties come for free when using the least-
squares bases, and h(x) contains a constant. In summary,
we seek basis functions φi(x) that satisfy the following con-
ditions:

a) φj(xi) =

{
1, when i = j,

0, when i �= j.

b) φi(x) � 0 everywhere.
c)

∑
i

φi(x) = 1.

To achieve this goal, we first use MLS to generate po-
tential functions φ̃i(x). Then, we truncate and renormal-
ize them to construct basis functions φi(x). Details are de-
scribed below.

Making P sparse can significantly improve computa-
tional efficiency. In order to achieve sparseness, z(x)
will only depend on the values at the K-nearest neigh-
bor nodes (also collocation states). Here, K is a manu-
ally tuned parameter that determines the trade-off between
computer time and smoothness of the approximator. Note
that very large values of K are undesirable even if we ig-
nore computer time, because they induce too much cou-
pling and effectively decrease the approximating power of
the method. Thus, φi(x) = 0 if xi is not among the K-
nearest nodes to x. In the following parts, we will use
x(1), x(2), . . . ,x(K) to represent the K-nearest neighboring
nodes of x. x(1), x(2), . . . ,x(K), which are sorted in the in-
creasing order by distance from x , so we have ‖x−x(1)‖ �
‖x − x(2)‖ � . . . � ‖x − x(K)‖.

Constraint (a) or (19) can be easily obtained by enforcing
a linear constraint h(x1)Tα = z(1). This will not signif-
icantly affect the computational efficiency, since it can be
done by introducing a Lagrange multiplier.

To maintain scalability to higher dimensional systems,
we use linear basis h(x) = [1 x1 · · · xn]T. Here, xi, i =
1, . . . , n are elements of x ∈ R

n. Even when the number
n of dimensions increases, the time complexity of the algo-
rithm in this step will not increase significantly.

We would like to use a weight function that can automat-
ically adjust to areas with different densities. We currently
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use ωi (x) = μi(x)2, with

μi = Cμ(
1

‖x − x(i)‖ − ‖x − x(1)‖ + εμ

− 1
‖x − x(K)‖ − ‖x − x(1)‖ + εμ

). (24)

Here, i = 2, . . . , K. Cμ is a normalization constant adjusted
to yield

∑
i

μi = 1, and εμ is a small constant used to avoid

numerical difficulties.
It is possible to enforce the nonnegativity constraints in

(25) using quadratic programming, however, this is slower
than solving a linear system. Instead, we simply set any neg-
ative values to 0 and renormalize them to ensure∑

i

φi(x) = 1.

To recapitulate, we define α(x) as the solution to the op-
timization problem:

α(x) = arg min
α

K∑
I=2

ω(xI − x)(h(xI)Tα − z(I))2,

s.t. h(x1)Tα = z(1) (25)

to obtain φ̃i(x) in
zMLS(x) = h(x)Tα(x) =

∑
i

φ̃i(x)zi. (26)

This process is done without knowing zi or explicitly
solving for α(x). Instead, (25) is converted into linear equa-
tions, and by comparison with (26), an algorithm for finding
φ̃i(x) is obtained. Details of this process are shown in Ap-
pendix A3.

After setting any negative values to 0 and renormalizing,
the solution is given by

φi(x) =

{
Cφ(x)φ̃i(x), if φ̃i(x) � 0,

0, if φ̃i(x) < 0.
(27)

Note that Cφ(x) is adjusted to ensure that
∑
i

φi(x) = 1.

Fig. 1 gives an example of what these basis functions look
like. There are 16 nodes on the plane. We can see that the ba-
sis functions have an irregular shape, but nevertheless, their
support is concentrated around the node.

Fig. 1 Illustration of basis functions. (a) and (b) show example basis func-
tions, (c) shows a Gaussian function, and (d) shows the fit to the
Gaussian function. Dots represent nodes.

In Fig.1 (a), we see a basis that stretches to the right, since
the right side is ‘empty’. In Fig. 1 (b), we see a base stretch-
ing out to infinity. Suppose the true z(x) is the Gaussian
shown in Fig. 1 (c). The function zMLS(x) fitted by our ap-
proximator is shown in Fig.1 (d). The reconstructed result
is not entirely smooth but captures the shape of the original
function.

In summary, we used an MLS method with truncation
to construct basis functions whose shape is automatically
adapted to the set of collocation states. This method can be
viewed as an interpolation scheme, but it is modified to en-
sure a fast yet reliable algorithm to solve the eigenfunction
problem.

4 Solution method

In this section, we describe how we solve the desirabil-
ity function using the above function approximator. First,
we show how to get the discretized linear operator. Then,
we describe how to determine the weights of the basis func-
tions. Next, we describe how the (approximately) optimal
control law is found from the approximate desirability func-
tion. Finally, we describe a procedure for adding collocation
states so as to improve the solution in critical regions (i.e.,
regions that are visited often under the resulting control law
but do not yet contain enough collocation states).
4.1 Computing the discretized integral operator

Starting from our discretized problem, as mentioned be-
fore, we choose basis functions as (27) in Section 3.3, and
we use the nodes themselves as collocation points. Then, we
have Pij = G[φj ](xi) =

�
p(x′|x)φj(x′)dx′.

Since p(x′|x) is a Gaussian, this integral can be approx-
imated using cubature formulas, as discussed in Appendix
A1. Cubature formulas can be thought of as deterministic
sampling, which is designed to match as many moments of
the Gaussian distribution as possible.
4.2 Solving for the desirability function

Recall that in the average-cost setting, we need to solve
for the leading eigenvalue and eigenvector of a matrix.
Many numerical methods are available for solving this kind
of problem, e.g., [8]. Our current implementation uses the
classic power iteration method. The reasons for choosing
this algorithm are 1) it does not require matrix factorization,
which would be very slow when we have a large number of
nodes; 2) the result is always positive as long as the initial-
ization is positive, and all elements of P are nonnegative
(which is required by design). Thus, the algorithm is gived
as follows:

0) Let w0 be an initial guess.

1) wn =
QPwn−1

‖QPwn−1‖ .

2) Repeat step 1) until ‖wn − wn−1‖ < ε.
After this step, we obtain an approximate cost-to-go func-

tion for the optimal control problem. We know that the
eigenfunction corresponding to the leading eigenvalue of
the linear operator G is unique. Thus, the discretization QP
is also likely to have a unique leading eigenvector, unless
the placement of nodes is pathological (which we have not
observed in practice). The speed of convergence is governed
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by the difference between the top two eigenvalues of QP .
Alternatively, since an iteration can be viewed as running
backward with step h in a finite horizon formulation (see
Appendix A2), the speed of convergence corresponds to the
mixing rate of the Markov chain. In practice, we have found
this algorithm to converge very quickly (in a few iterations)
in our test problems. The time needed to run power iteration
is a small fraction of the overall CPU time; most of the CPU
time is spent in constructing the discretized operator.

In other settings, the discretized problem is no longer an
eigenvector problem. However, iterative algorithms without
matrix factorization are still available. Details are discussed
in Appendix A2.
4.3 Finding the optimal control u∗

Recall that the optimal control law (in terms of probabil-
ity densities) is given by (3).

The above probability distribution function is known,
and its mean can be calculated. In linearly solvable diffu-
sion process, u∗(x′|x) should be a gaussian distribution
whose mean moved hB(x)u∗ from mean of passive dy-
namics, thus to calculate a control vector u∗, we can solve
x + ha(x) + hB(x)u∗ = Ex′∼u∗(·|x)[x′].

From (3), we have
Ex′∼u∗(·|x)[x′]

=
�

u∗(x′|x)x′dx′ =

�
p(x′|x)x′z(x′)dx′

�
p(x′|x)z(x′)dx′ . (28)

Both the numerator and the denominator of the right-hand
side of (28) are the integral of a function multiplied by a nor-
mal distribution. Again, we can use the cubature formula
to calculate them approximately, as discussed in Appendix
A1. By this method, both the numerator and the denomina-
tor can be expressed as a weighted sum of z(ξi), which are
the z values at the cubature points.

Numerical errors introduced by (3) and (28) may be prob-
lematic when the denominator is very small. However, that
happens when z(x) is very small, i.e., the cost-to-go func-
tion v(x) is very large; in other words, x is far away from
the region of interest. In that case, we cannot trust the above
u∗; instead, we can replace it with some default linear feed-
back control law. Another issue is that the cubature for-
mula restricts the left-hand side of (28), so that the mean
of u∗(x′|x) lies in the convex hull of the cubature sampling
points. This effectively restricts the magnitude of the control
signal, which in practice can be a good thing.
4.4 Adapting the nodes

In the previous sections, we described how our method
works once the nodes/collocation states are chosen. This
choice affects performance significantly and needs to be
done in a way suitable for the problem at hand. We have
developed an automated procedure for generating problem-
specific node placements that optimize performance. Note
that the state space is usually very large, so our nodes can
only cover a small fraction of it. Ideally, the part that is cov-
ered will correspond to the region where the optimally con-
trolled system spends most of its time (i.e., where the good
states are found). Thus, we use an adaptive procedure, plac-
ing new nodes in regions that are visited most often under

the control law obtained on the previous iteration of the al-
gorithm. The details are as follows.

The method only adds nodes, with the restriction that ev-
ery new node must be sufficiently far away from any ex-
isting node. If nodes are further restricted to a predefined
volume, then this method is guaranteed to terminate in a fi-
nite number of iterations. After solving for the optimal con-
trol law with the current selection of nodes, we generate
prospective nodes based on a stochastic simulation starting
from the current nodes (or from given initial states). Mean-
while, we also introduce random perturbations to the cur-
rent nodes. Note that regions with lower z(x), or equiva-
lently higher cost-to-go, will end up with smaller node den-
sity under this scheme. We also impose a heuristic restric-
tion to avoid generating prospective nodes in regions, where
it is impossible to add new nodes (because the density is
already too high). The distance between nodes should ap-
proximately match the characteristic distance of the system
determined by ha(x) and

√
hσB(x), which are the magni-

tude of passive dynamics and transition probabilities. This
feature means that the time step should be big enough if one
wants to solve the problem with a small number of nodes.

In summary, we used a heuristic strategy to put place
nodes in regions that are visited more often under the op-
timal control law.

5 Numerical results

In this section, we present numerical results. First, we
show that the results given by the MLS approximation are
meaningful. Then, we show that the method scales to high-
dimensional systems. Finally, we will compare them with
other methods.
5.1 Test problems, solution, and dynamical simulation

Here, we use MLS approximation to solve our test prob-
lems. We focus on the desirability function z(x), cost-to-go
function v(x), optimal control law u∗(x), and dynamical
simulations based on u∗(x). When possible, we compare
these results with dense MDP discretization [4]. Test prob-
lems are fomulated as linearly solvable controlled diffu-
sions, as in Section 2.2. Additional details on the test prob-
lems are provided in Appendix A5.
5.1.1 Example 1: Car-on-the-hill

This test problem is adapted from [3]. It has a 2D state
space (position and velocity) and 1D control space. This dy-
namical system simulates a point mass (a car) moving along
a curve (inverted Gaussian) in the presence of gravity. The
control signal is the force acting in the tangential direction.
One interesting property of this model is that the continu-
ous dynamics are augmented with the following rule. When
the car hits the ‘walls’ at xmin or xmax , its speed becomes
0. Such a discontinuity cannot be captured by the diffusion
model (6), yet it can easily be captured by LMDP [4]. The
reason for constructing a model with collisions is that we
hope our methods will work for more complex tasks, such
as locomotion and hand manipulation, where contact phe-
nomena and discontinuity are essential.

For the average-cost setting, we design a cost function
q(x) (Fig. 2 (b)) that encourages the car to pass repeatedly
via two targets with non zero desired velocity, resulting in a
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limit cycle behavior. As shown in Fig. 2 (c)–(h), the cost-go
function and optimal control law are consistent with the re-
sults of dense MDP discretization. (a) illustrates the model,

Fig. 2 Results for the car-on-the-hill model with average-cost setting.

and (b) shows the state cost function q(x). (c), (e) and (g)
show the cost-to-go function v(x) = − log(z(x)), while
(d), (f) and (h) show the optimal control law obtained. In
(d), (f), and (h), dynamical simulations are shown by curves,
while their initial states are shown by dots. (c) and (d) show
the results from the MDP method with 151 × 151 grid. (e)
and (f) shows the results from the MLS approximation with
21×21 nodes on a regular grid. (g) and (h) shows the results
from the MLS approximation with 189 nodes generated us-
ing our adaptive scheme. Black dots in (e) and (g) represent
nodes.

We can also use this dynamical system to define other
optimal control problems: discounted, first exit, and finite
horizon. For the discounted setting the cost function is the
same as before. For the first exit and finite horizon settings,

the goal (encoded as a final cost) is to park the car at hori-
zontal position 2.4; in that case, the running state cost q(x)
is constant. As shown in Figs. 3–5, the results are again sim-
ilar to those obtained by dense MDP discretization.

Fig. 3 Results for the car-on-a-hill probelm, discounted cost setting.

Fig. 3 (a) illustrates the model and (c) shows the state
cost function q(x). (c) and (e) show the cost-to-go func-
tion v(x) = − log(z(x)). (d) and (f) show the optimal con-
trol law obtained. In (d) and (f), dynamical simulations are
shown by black curves, while their initial states are shown
by gray dots. (c) and (d) show the results from the MDP
method with 151×151 grid. (e) and (f) show the results from
the MLS approximation with 251 nodes generated by our
adaptive scheme. Black dots in (e) represent nodes. Com-
pared with the average-cost setting, here the optimal control
law seems to take advantage of walls (hit the wall, then keep
going). MLS with the adaptive scheme is able to capture this
property.
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Fig. 4 Results for the car-on-the-hill model with first-exit setting.

Fig. 5 Results for the car-on-the-hill model with finite-horizon setting.

Fig. 4 (a) illustrates the model and (b) shows the ter-
minal states vs. nonterminal states. Write shows terminal
states. (c) and (e) show the cost-to-go function v(x) =
− log(z(x)). (d) and (f) show the optimal control law ob-
tained. In (d) and (f), dynamical simulations are shown by

curves, while their initial states are shown by gray dots.
(c) and (d) show the results from the MDP method with
151 × 151 grid. (e) and (f) show the results from the MLS
approximation with 161 nodes generated by our adaptive
scheme. Black dots in (e) represent nodes. The MLS solu-
tion is not identical to the MDP solution, yet the resulting
control laws are similar.

Fig. 5 (a) illustrates the model and (b) shows the final
cost function qF(x). (c) and (e) show the cost-to-go func-
tion v(x) = − log(z(x)) at time 0. In (d) and (f), dynami-
cal simulations are shown by black curves, while their ini-
tial states are shown by gray dots. (c) and (d) show the re-
sults from the MDP method with 151 × 151 grid. (e) and
(f) show the results from the MLS approximation with 334
nodes generated by our adaptive scheme. Black dots in (e)
represent nodes. Different from previous settings, here both
desirability functions and optimal control law are functions
of time, so we focus on showing the dynamical simula-
tion. MLS tends to smooth out the desirability functions and
gives a slightly different optimal control law.
5.1.2 Example 2: Coupling a series of masses on ideal

springs

This model simulates several identical masses attached
to frictionless springs, which are dynamically independent.
Each mass can oscillate with any amplitude. The control ob-
jective is to generate movements such that 1) the energy of
each mass-spring equals a constant and 2) mass number (i)
moves with phase π/2 ahead of mass number (i+1). We use
the average-cost setting to solve the problem, with state cost
function designed to achieve the above goals. This model is
rather simple, but it has advantages when tuning the algo-
rithm, namely, it can be defined for any number of dimen-
sions (masses), and the optimal behavior can be computed
analytically: cosine functions cos(Ct + φ) with appropriate
phase changes.

Here, we applied a modification that includes a decay fac-
tor when the state is too far away from the existing nodes
(This effectively uses an additional control to move the sys-
tem back to nodes or a hybrid method with the Gaussian
approximator in [4]). The formula is shown below. r is the
distance to nearest node:

z̃MLS(x)=

{
zMLS(x), r<R,

zMLS(x) exp(−λ(r−R)2), r�R.
(29)

We found that with some prior information (i.e., initializ-
ing some nodes near the optimal trajectory), our approxima-
tion scheme generates good results even in a 14-dimensional
state space (seven masses), and only requires a few thou-
sand nodes, which is less than a regular grid with two nodes
per dimension. This is because most of the nodes end up
being in places around the limit cycle. Fig. 6 shows the
emergence of an attractive trajectory for systems composed
of two and seven masses, respectively. The trajectories are
shown by projecting to different dimensions. Fig. 6 (a), (c)
and (e) shows the results for 2 masses (4-dimensional state
space) with 166 nodes. (b), (d) and (f) shows the results for
7 masses (14-dimensional state space) with 2912 nodes. (a)
and (b) shows the trajectories of the first mass. (c) and (d)
shows the trajectories of the second mass. (e) and (f) shows
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the positions of the first and second masses. Note that the
analytical solution in each case is a circle with radius 1.

Fig. 6 Stochastic simulation for Example 2 with different dimensionalities.

5.2 Numerical issues

5.2.1 Convergence

First, we consider convergence for fixed bases. The power
iteration method converges geometrically when the lead-
ing eigenvalue is real, and its corresponding eigenvector is
unique. This holds for the original problem (before the ap-
proximation), and in practice, we have observed that it holds
for the approximation as well. The rate of convergence cor-
responds to the mixing time of the MDP and is problem spe-
cific, but normally, it is fast enough. We are guaranteed to
get a positive solution. In our numerical tests, the CPU time
spent on power iteration is always a small fraction of the to-
tal CPU time. Another issue is how accurate the solution is.
Due to the nature of cubature formula, we cannot make our
nodes be distributed too densely; however, as shown in the
previous part, the solution is good in the region covered by
the nodes.

Second, we consider convergence of the adaptive scheme.
The method is trivially guaranteed to terminate in a finite
number of iterations, because the approximation volume
and node density are limited. In our numerical tests, we ob-
served that the solution improves when the number of nodes
increases. The adaptive scheme usually terminates in tens of
iterations.

We demonstrate the process of the adaptive scheme by
showing the intermediate cost-to-go function and desirabil-
ity functions for the average-cost setting of Example 1. The
final result is shown in Fig. 2 (d) and (h), which is obtained
with 17 iterations of our adaptive scheme. Here, Fig. 7 (a)
and (b) shows results with initial nodes. The second column
(c) and (d) shows the fourth iteration, while (e) and (f) show
the ninth iteration. (a), (c) and (e) shows the cost-to-go func-
tion, where black dots represent the nodes. (b), (d) and (f)
show the optimal control law obtained.

Fig. 7 Demonstration of the adaptive scheme.

5.2.2 Scalability to high-dimensional system

Scalability to high-dimensional systems is the primary
challenge in solving Bellman equations numerically. A suc-
cessful method has to satisfy several conditions. First, the
method should give a controller not far from the true solu-
tion. Second, the computational complexity of the method
should scale well with the number of parameters (weights,
grid points, etc.). Third, the number of parameters needed to
achieve good accuracy should scale well with dimensional-
ity. The first and second conditions hold for most methods,
including MDP discretization. The real challenge however
is the third condition. which is rarely met in practice. Our
numerical results illustrated that the new method has a lot
of potential in terms of scaling. This is because the func-
tion approximator is automatically adapted to the problem
at hand, and because for a fixed set of bases, the problem be-
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comes linear and is solved very efficiently. We now discuss
these two points in more detail.

First, we discuss the case of fixed bases/nodes. Our em-
pirical results show that most of the CPU time is spend in
constructing the discretized operator (Section 4.1) using the
MLS method. The time complexity of this construction is
O(n3), where n is the number of state space dimensions.
The cubature formula has time complexity O(n2

c), where
nc is the number of conrol space dimensions. Thus, when
the number of nodes is N and the number of nearest neigh-
bors being considered is K, the overall time complexity
is O(NKn3n2

c). The CPU time for constructing the dis-
cretized operator in Example 2, with the final set of nodes,
was done as follows. For two masses, with 100–200 nodes,
it takes around 0.02 second. For seven masses, with 2000–
4000 nodes, it takes 40–160 seconds. These results are con-
sistent with our theoretical analysis.

Second, we discuss the time complexity of the adaptive
scheme. We do not yet have theoretical results; however,
with our current settings, the number of iterations did not
increase significantly with state space dimensionality (this
is possible because multiple nodes are added in each it-
eration, and the number of new nodes per iteration typ-
ically increases with dimensionality). In Example 2, the
algorithm converges in 10–30 iterations, regardless of the
number of masses. Each iteration involves 1) constructing
the discretized operator, 2) finding the principal eigen-pair
and corresponding control law, and 3) running a dynami-
cal simulation starting from each current node. Part 2) takes
negligible time, while parts 1) and 3) are comparable. The
total CPU time for solving Example 2 with the adaptive
scheme is discussed as follows. For two masses, it takes 1–
3 seconds. For seven masses, it takes 400–4000 seconds.
Our code is a mixture of Matlab and C mex files. The speed
can be improved significantly by utilizing parallel process-
ing; indeed, both the construction of the discretized operator
and the stochastic simulation (starting from many different
states) are easily parallelized.
5.3 Comparison with other methods

5.3.1 Comparison with MDP method

Previous results have demonstrated the similarity of re-
sults given by both methods. Theoretically, MDP can nat-
urally give a ‘ground-truth’ solution, while MLS tends to
yield bigger error.

However, MLS would outperform MDP in practice. First
of all, normally, MLS costs much less CPU time than MDP.
For example, in the example shown in Fig. 2, MDP method
(Fig. 2 (c) and (d)) takes an hour in MATLAB, while MLS
method (Fig. 2 (e) and (f)) takes 0.1 seconds without adap-
tion 0.09 seconds with adaption (Fig. 2(g) and (h)) (Pro-
gramming details and complexity of model may affect those
estimates, but normally, MDP would run much slower than
MLS). In both cases, most of CPU time is spent in con-
structing a matrix (probability transition matrix for MDP,
discretized operator for MLS). In high-dimensional practi-
cal control problems, the MDP method is not numerically
possible, since it needs dense grids on every dimension on
state space. Second, since the MDP method is to approx-
imate a problem within a finite box in state space, it may

yield suspicious results near boundaries (thus, in Section
5.1, we perform MDP in a bigger region than shown). MLS
tends to have less suspicious results near boundaries due to
its exploration power.
5.3.2 Comparison with Gaussian method

The method presented here differs significantly from the
method using gaussians presented in [4] besides different
choices of bases functions. First, the method here uses
power iteration rather than quadratic optimization or non-
linear optimization. Second, the method here uses nonpara-
metric way to adapt the bases. Our comparison need to take
these factors into account.

First, we test the gaussian method on Example 2 with
similar nonparametric adaptive scheme, as described here
in Section 4.4. The covariances of gaussians are allocated
based on distance between each other, thus provides a rather
fair comparison with the MLS method. MATLAB built-in
optimizer ‘quadprog’ is used to perform quadratic program-
ming. The results are similar to that in Section 5.1.2 with 2,
3, and 4 masses but fail for more masses. We can conclude
that MLS bases have the following advantages over gaus-
sian bases. First, solving the resulting eigen problem cost
less CPU time than gaussian bases. Second, MLS method is
less prone to converge to the wrong eigenvector. The disad-
vantage of MLS bases is that constructing MLS bases tends
to comsume more time than constructing gaussian bases.
The total CPU time consumed by either method is similar.
In conclusion, when scaling to high dimensionality, if the
number of bases grows, or the results cannot easily be veri-
fied, MLS tends to outperform gausian bases.

Then, we test the adaptive scheme in Section 4.4 by com-
paring above results with results from gaussian bases with
gradient descent. MATLAB built-in optimizer ‘fmincon’
is used to perform nonlinear optimization. When gaussian
bases are initially placed properly (near trajectories), the
gradient descent method may normally converge to accept-
able results. The results are similar to that in Section 5.1.2
with 2, 3, 4, and 5 masses, but fail for more masses. The time
consumed with gradient descent methods is much higher
than non parametric adaptation if they converge to accept-
able results. For example, with four masses, gradient de-
scent bases adaptation needs 46 seconds with 50 bases,
while adaptive acheme in Section 4.4 with 161 gaussian
bases needs 0.17 seconds, and adaptive scheme in Sec-
tion 4.4 with 191 MLS bases needs 0.06 seconds. This is
likely due to the need to repeatly construct gaussian bases.
Moreever, gradient descent method is very likely to con-
verge to wrong eigenvector (λ very small) when, initially,
bases are not put properly. To conclude, the method pre-
sented here outperform the gaussian approximation method
with gradient descent presented in [4].

6 Conclusions
Here, we developed a new function approximation

method for linearly solvable stochastic optimal control
problems. Numerical tests show its effectiveness. Future
work includes fine-tunning the method and applying it to
more complicated and practical problems, as well as devis-
ing an algorithm to estimate the error in high-dimensional
problems.



460 M. ZHONG et al. / J Control Theory Appl 2011 9 (3) 451–463

Acknowledgements

We would like to thank Yuval Tassa for helpful discus-
sion.

References

[1] H. Kappen. Linear theory for control of nonlinear stochastic systems.
Physics Review Letters, 2005, 95(20): 200 – 201.

[2] E. Todorov. Linearly-solvable Markov decision problems. Advances
in Neural Information Processing Systems, Cambridge: MIT press,
2006: 1369 – 1376.

[3] E. Todorov. Efficient computation of optimal actions. PNAS, 2009,
106(28): 11478 – 11483.

[4] E. Todorov. Eigen-function approximation methods for linearly-
solvable optimal control problems. IEEE International Symposium on
Adaptive Dynamic Programming and Reinforcemenet Learning. New
York: IEEE, 2009: 161 – 168.

[5] T. Belytschko, Y. Krongauz, D. Organ, et al. Meshless methods: An
overview and recent development. Computer Mechanics Engineering,
1996, 139(1/4): 3 – 47 .

[6] C. G. Atkeson, A. W. Moore, S. Schaal. Locally weighted learning.
Artificial Intelligence Review, 1997, 11(1/5): 11 – 73.

[7] C. G. Atkeson, A. W. Moore, S. Schaal. Locally weighted learning for
control. Artificial Intelligence Review, 1997, 11(1/5): 75 – 113.

[8] LN Trefethen, D. Bau. Numerical Linear Algebra. Philadelphia:
SIAM, 1997

[9] J. Lu, D. L. Darmofal. Higher-dimensional integration with Gaussian
weight for applications in probabilistic design. SIAM Journal Science
Computer, 2005, 26(2): 613 – 624.

Appendix

A1 Calculating the expectation of an arbitrary function under

a normal distribution using the cubature method

We want to evaluate the expectation of a function under a nor-
mal distribution. This is equivalent to calculating the integral of
the product of an arbitrary function and a normal distribution nu-
merically. Here, we used the cubature scheme [9].

The goal is to calculate

E[g(x)] =
�

g(y)p(y|x)dy. (a1)

As in (8),
p(y|x) = N (x + ha(x), hΣ(x)), hΣ(x) = CCT, (a2)

where C = σB(x) for continuous formulation.
We need a variable transformation

y = C
√

2ξ + x + ha(x) (a3)
to convert the integral into the standard form of cubature formulas.8><

>:
E[g(x)] = C0

�
f(ξ) exp(−ξTξ)dξ,

C0 =
1

(π)
N
2

, f(ξ) = g(C
√

2ξ + x + ha(x)).
(a4)

Now, we can apply the cubature scheme in [9], which uses the
following formula to approximate the integral.�

f(ξ)dξ ≈ Q[f ] =
NP

j=1

wjf(ξj), (a5)

where wj are weights, and ξj are points.
Several choices of weights and points exist, and it is not clear

which cubature formula is optimal for our problems. We observed
that formula (a6) in [9] works better in some test problems. This
is a degree 5 formula with 2n2

C + 1 points, nC is the number of
columns of the C(x) matrix in (a2), which is the number of di-
mensions in control space (for under actuated systems this number
may be significantly smaller than the number of dimensions in the
system). Here, ‘full sym.’ means all possible index permutations

and reflections.

Q[f ] =
n2 − 7n + 18

18
π

n
2 f(0)

+
4 − n

18
π

n
2
P

full sym.
f(
p

3/2, 0, . . . , 0)

+
1

36
π

n
2
P

full sym.
f(
p

3/2,
p

3/2, . . . , 0). (a6)

In summary, to calculate the integral (a1) approximately, we
used (a4) and (a2); therefore, the following formula represents this
process:

E[g(x)] =
�

g(y)p(y|x)dy = C0

NP
j=1

wjf(ξj). (a7)

More work is needed to estimate the error introduced in this
step, and the effects of using different cubature formulas.
A2 Discretized problems and algorithms for LMDP problems

in different settings

This paper mainly addresses the LMDP problem in the average-
cost setting. Nevertheless, the proposed method is applicable to
other settings as well. Here, we describe the Bellman equation for
all settings, their discretized versions, and the corresponding algo-
rithms. Table a1 is provided to summarize the results.

As in the main text, xi, i = 1, . . . , N are the nodes/collocation
points, and φi(x) are their corresponding basis functions. Q
is an N × N diagonal matrix with diagonal entries Qii =
exp(−hq(xi)). We still have

Pij = G[φj ](xi), i = 1, . . . , N, j = 1, . . . , N. (a8)

A2.1 Finite horizon

In the finite horizon setting, costs are accumulated from time 0
to time T . qF(x) represents the final cost ealuated at time T .

The Bellman equation for the finite-horizon setting [3] is
zt(x) = exp(−hq(x))G[zt+h(x)], (a9)
zT (x) = exp(−qF(x)). (a10)

If we represent the desirability function with the same set of
basis functions at each time step, then

zt(x) =
NP

i=1

wt,iφi(x). (a11)

Defining a column vector wt with elements wt,i, (a9) becomes
wt = QPwt+h. (a12)

Due to the nature of our basis functions, we can use the follow-
ing approximation(≈ would become = if x = xi):

z(x) ≈
NP

i=1

z(xi)φi(x). (a13)

Applying (a13) to (a10), we will have
wT = exp(−qF(xi)). (a14)

Using (a12) iteratively for T/h times from (a14), we would get
the approximated desirability function at time 0:

z0(x) ≈
NP

i=1

w0,i φi(x). (a15)

A2.2 Infinite horizon, discounted cost

In the discounted-cost setting, costs are accumulated from
time 0 to infinity, however, future costs decay exponentially as
exp(−t/τ). Let α = exp(−h/τ) < 1 represent the correspond-
ing discretized discount factor, where h is the time step.

The Bellman equation for the discounted-cost setting [3] is
z(x) = exp(−hq(x))G[zα(x)]. (a16)

We will use our basis functions to approximate the desirability
function:

z(x) =
NP

i=1

wiφi(x). (a17)
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Due to the nature of our basis functions, we can use the following
approximation(≈ would become = if x = xi):

zα(x) ≈
NP

i=1

wα
i φi(x). (a18)

Thus, the problem is discretized as
w = QPwα. (a19)

Here, w is a column vector with elements wi.
There exist alternative ways to solve the equation (a19), but

here, we will focus on the iterative methods to avoid matrix factor-
ization.

One may naturally try to use the following iterative formula
(a20) to solve this problem:

wk+1 = QP (wk)α. (a20)
However, this may not work well when α is close to 1. There are
two possibilities: 1) the decay of cost is slow; 2) the time step h is
too small. In these cases, elements of w would become undistin-
guishable from 0, and the rate of convergence would become very
slow. This situation is not so important since the results are close to
what the average-cost setting may give. However, if one wants to
overcome the numerical difficulty, the following algorithm would
work: (

w̃k+1 = λ̃kQP (w̃k)α,

λ̃k = ‖QP (w̃k)α‖−1, wk = (λ̃k)
1

α−1 w̃k.
(a21)

This is similar to the power iteration method in the average-cost
case. In our simulation, (a20) performs no worse than the simple
power iteration in average-cost setting. On the other hand, if we
only need the optimal control law, since it is invariant when the
desirability function is multiplied by a constant, there is no need
to evaluate wk explicitly.
A2.3 First exit

In the first-exit setting, costs are accumulated from time 0 to in-
finity, however, accumulation would stop when the system reaches
a terminal state. Here, T ∈ R

n represents the subset of terminal
states, and N ∈ R

n represents the subset of nonterminal states.
qT (x) represents the cost at terminal states.

The Bellman equation would become a boundary value prob-
lem [3]:

z(x) = exp(−hq(x))G[z(x)], (a22)

z(x) = exp(−qT (x)), x ∈ T . (a23)
(a22) can be further rewritten as

exp(hq(x))z(x)

= GN [z(x)] + GT [exp(−qT (x))], x ∈ N, (a24)
where operators are defined as integrals on finite regions

GN [z(x)] =
�

x∈N

z(x′)p(x′|x)dx′, (a25)

GT [z(x)] =
�

x∈T
z(x′)p(x′|x)dx′. (a26)

We can construct a matrix PN with integrals only at nontermi-
nal states:

PN ,ij = GN [φj ](xi), i = 1, . . . , N, j = 1, . . . , N, (a27)

and a vector r with elements as ri = GT [exp(−qT (xi))].
�

x∈N

is
usually not different than the integral on the entire space, because
the bases are localized, and terminal states are normally limited in
a small region. Therefore, most PN ,ij can be evaluated with the
cubature formula, as in Appendix A1. Otherwise, if the colloca-
tions state is close to the terminal states, discretization in grids are
needed to evaluate PN ,ij .

If we use basis functions to approximate the desirability func-
tion (a17), we will obtain the discretized formula, which is a linear
equation:

w = Q(PNw + r). (a28)
Many algorithms are available for solving this kind of problems

(backslash in MATLAB, for example). One iterative method will
take the form

wk+1 = QPNwk + Qr. (a29)
This algorithm would terminate when the modulus of the leading
eigenvalue of QPN is smaller than 1, which is true when q(x) > 0
everywhere, i.e., the first exit problem is well defined.
A2.4 Summary

Table a1 summarizes the Bellman equations, their discretized
correspondences, and algorithms. Some details are omitted.

In summary, it is possible to use the MLS approximation to
solve the LMDP problems posed in all four settings [3]. Itera-
tive algorithms are available, so no matrix factorization are needed
when matrix P (PN for first-exit) is constructed. This feature pro-
vides efficiency when dealing with large number of base functions.

Table a1 Discretized problems and algorithms.

Setting Bellman equation Discretized Algorithm

Average z(x) = exp(hc − hq(x))G[z(x)] w = λQPw wk+1 = QPwk/(‖QPwk‖)
Finite zt(x) = exp(−hq(x))G[zt+h(x)] wt = QPwt+h wt = QPwt+h

Discount z(x) = exp(−hq(x))G[zα(x)] w = QPwα wk+1 = QP (wk)α

First exit z(x) = exp(−hq(x))G[z(x)] w = Q(PNw + r) wk+1 = QPNwk + Qr

A3 Details of MLS basis function construction

In the main text, we omitted the details about how to obtain the
basis functions before truncation and renormalization, i.e., φ̃i(x)
in (25) and (26). The optimization problem (25) is solved via a lin-
ear equation, the same way as in the ordinary least square methods.

Let us start from the optimization problem (25)

α(x) = arg min
α

KP
I=2

ω(xI − x)(h(xI)
Tα − z(I))

2,

s.t. h(x1)
Tα = z(1).

Using a Lagrange multiplier λ̃, we can rewrite the optimization
problem as

α(x) = arg min
α

KP
I=2

ω(xI − x)(h(xI)
Tα − z(I))

2

+λ̃(h(x1)
Tα − z(1)). (a30)

This is equivalent to solving for α, λ̃ in the linear equation:
M1(x)[α(x)T λ̃]T − M2(x)z = 0, (a31)

where
z = [z(1) · · · z(K)]

T, (a32)

M1 =

 
HT

2 WH2 HT
1

H1 0

!
, (a33)

M2 =

 
0 HT

2 W

1 0

!
, (a34)

H1 = h(x1)
T = (1 xT

1 ), (a35)

H2 =

0
BB@

h(x2)T

...
h(xK )T

1
CCA =

0
BB@

1 xT
2

...
...

1 xT
K

1
CCA , (a36)



462 M. ZHONG et al. / J Control Theory Appl 2011 9 (3) 451–463

and W is a diagonal matrix representing weights:

W =

0
BBBB@

ω(x − x2) 0 · · · 0

0 ω(x − x3) · · · 0
...

...
...

0 0 · · · ω(x − xK)

1
CCCCA . (a37)

Therefore, from (a31), we have
[α(x)T λ̃]T = M−1

1 (x)M2(x)z. (a38)

Comparing with (26)
zMLS(x) = h(x)Tα(x) =

P
i

φ̃i(x)zi,

we have
[φ̃(1)(x) · · · φ̃(K)(x)] = h(x)T

`
M1(x)−1M2(x)

´
n+1

,

(a39)
where ( · )n+1 denotes the operation that takes the first n + 1 rows
of a matrix (since we ignore the Lagrange multiplier), and n is the
number of dimensions in the dynamical system.

(a39) gives how we construct basis functions from the optimiza-
tion problem (25). Since M1 matrix is an (n+2)×(n+2) matrix,
when we perform M−1

1 M2 with Cholesky decomposion, the com-
putational complexity of (a39) is O(n3).
A4 Details of the adaptive node-placement scheme

In the main text, we omitted the details of the implementation
of our adaptive scheme. Details of the algorithm are given here.

Several general rules apply: 1) All nodes are classified into nor-
mal nodes and ‘pioneer’ nodes. New nodes can only be generated
from ‘pioneer’ nodes. 2) All new nodes should lie sufficiently far
away from old nodes. This distance lower bound is basically a con-
stant, but when an old node has a very small z(x) value, it would
‘occupy’ larger space to avoid new nodes being created. 3) The
user has to specify a range for states and assume that the range is
large enough to cover the region of interest. 4) Initially, all nodes
are pioneer nodes.

a) If any ‘pioneer’ nodes lie outside of the specified range, they
would turn to normal nodes.

b) If any ‘pioneer’ nodes satisfy z(x) < θn for several itera-
tions, where θn is a manually defined parameter, then they would
turn to normal nodes.

c) If any normal nodes satisfy z(x) < θc for several times,
where θc is a manually defined parameter, then they would occupy
a larger region to avoid new nodes to be created.

d) If any ‘pioneer’ nodes failed to generate new nodes for sev-
eral iterations, they would turn to normal nodes.

e) Generate new nodes from ‘pioneer’ nodes. They may come
from both dynamics and random perturbation. (optional) Run dy-
namical simulation from known initial points, and use the resulting
trajectory to generate nodes.

Here, a) is used to avoid exploring less interesting region. b)
and c) is used to avoid exploring the region where the cost-to-go
function is high. d) is used to avoid exploring where the nodes is
dense enough. In e), we generate new nodes both from calculated
optimal control and random perturbation, since the calculated op-
timal control law might not be accurate. If some information about
the system is provided, nodes may be generated from dynamical
simulation.

This method would terminate in finite iterations, which is be-
cause only those nodes in the specific region can be ‘pioneer’
nodes, and the space in this region is limited; then, finally, all of
those ‘pioneer’ nodes would turn to normal thus stop iterations. In
practice, our method hardly terminate in this way, since filling a
high dimensional means a tremendous amount of nodes. On the

other hand, we lack theoretical results about whether the resulting
optimal control law will converge to the true solution or not.
A5 Details of test problems

Our test problems are linearly solvable controlled diffusions
(Section 2.2). Details are listed here.
A5.1 Car-on-the-hill

This test problem is adapted from [4] with 2D state space and
1D control space. This dynamical system is a point mass(a car)
moving along a valley-shaped curve(an inverted Gaussian) with
the existence of gravity. Thus, x = [xp xv]

T , where xp denotes
horizontal position, and xv denotes tangential velocity. The pas-
sive dynamics can be defined as

a(x) =

 
xv(1 + s(xp)2)−

1
2

−9.8sgn(xp)(1 + s(xp)−2)−
1
2

!
, (a40)

where s(xp) = xp exp(−x2
p/2) is the slope of the inverted gaus-

sian ‘hill’ at xp position. B(x) = [0 1]T. Only the velocity of
the car is controlled. Magnitude of noise is σ = 3, while time step
is set as h=0.1. If xp < xmin, at the next time step, xp = xmin.
If xp > xmax, at the next time step, xp = xmax. In both cases,
B = [0; 0](controller would not work when ‘hit the wall’). The
time step is h = 0.1 (finite-horizon setting uses h = 0.04). Cost
functions for each formulation are discussed in the following sec-
tions.

1) Infinite-horizon average cost formulation.
State cost function is defined as

q(x) = 2(2 − exp((xp − 1)2 + (xv + 1)2)

− exp((xp + 2)2 + (xv − 1)2). (a41)

It would keep the car passing those two targets (xp = −2, 1 with
velocities xv = 1,−1) and obtain a limit cycle behavior.

2) Discounted cost formulation.
State cost function is the same as before. Costs decay in rate of

exp(−t/τ), where τ = 0.5.
3) A car-on-the-hill problem, first-exit formulation.
State cost and exit cost are defined as

q(x) = 2, qT(x) = 0 (a42)

The terminal states are within [−2.2, 2.6] × [−0.4, 0.4].
4) A car-on-the-hill problem, finite-horizon formulation.
State cost and terminal cost are defined as8><

>:
q(x) = 2,

qF(x) =

(
0, when x ∈ goal states,
100, when x /∈ goal states.

(a43)

The goal states are within [−2.1, 2.7] × [−.4, .4].
A5.2 Coupling independent masses

This model simulates M masses attached on ideal frictionless
springs (or equivalently, electrical oscillators), which are dynam-
ically independent. Each mass yields oscillation on any ampli-
tude, whose determinant dynamical behavior can be expressed as
ẋp,i = Cxv,i, ẋv,i = −Cxp,i, where C = 2π is a constant. The
control is in the form of a force that would only apply on the veloc-
ity. The time step h is 0.01, σ = 1. Hence, the state space is 2M

dimensional, with M freedom of control. Thus, a(x) and B(x)

can be easily written as a linear function and a constant matrix,
respectively.

The state cost function is designed to achieve the goal, which
are 1) fixing the amplitude to 1 and 2) making the (i)th mass be
π/2 phase ahead of the (i + 1)th mass. We would like to use the
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average-cost formulation to solve the problem.
The state cost function is

q(x) =
mP

i=1

qa([xi vi]
T)

+
m−1P
i=1

qb([xi vi]
T, [xi+1 vi+1]

T). (a44)

Here, first kind of parts makes x2 + v2 be one, i.e.,

qa([xi vi]
T) = 20(

q
x2

i + v2
i − 1)2. (a45)

The second kind of parts tries to create the π/2 phase shift

qb([xi, vi]
T, [xi+1, vi+1]

T)

= 50fε(x
2
i + v2

i )fε(x
2
i+1 + v2

i+1)fθ(θi+1, θi), (a46)(
xi = cos θi,

vi = sin θi,
fε(η) =

(
1, η � 0.1,

0, η < 0.1,
(a47)

fθ(θi+1, θi) = (1 − cos(θi+1 − θi − π/2)). (a48)

Here, fθ(θi+1, θi) is a function designed to achieve desired phase
shift, and fε(η) is a function employed to avoid numerical diffi-

culties when x2
i + v2

i is too close to zero (where angles θi are not
well defined).
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